--- a/ROOT Fri Sep 12 00:47:15 2014 +0800
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-session "Hoare_gen" in "thys" = "HOL" +
- theories
- Hoare_gen
-
-session "Hoare_tm" in "thys" = "Hoare_gen" +
- theories
- Hoare_tm
- Hoare_tm2
-
-session "Hoare_abc" in "thys" = "Hoare_tm" +
- theories
- Hoare_abc
- Hoare_abc2
-
-session "TM" in "thys" = Hoare_abc +
- theories
- My_block
- LetElim
- StateMonad
- TM_Assemble
-
-session "Paper" in "paper" = TM +
- options [document = pdf, document_output = "..", document_variants = "journal"]
- theories
- Paper
- files "document/root.tex"
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Map_Extra.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,573 @@
+(* Author: Rafal Kolanski, 2008
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header {* More properties of maps plus map disjuction. *}
+
+theory Map_Extra
+ imports Main
+begin
+
+text {*
+ A note on naming:
+ Anything not involving heap disjuction can potentially be incorporated
+ directly into Map.thy, thus uses @{text "m"} for map variable names.
+ Anything involving heap disjunction is not really mergeable with Map, is
+ destined for use in separation logic, and hence uses @{text "h"}
+*}
+
+section {* Things that could go into Option Type *}
+
+text {* Misc option lemmas *}
+
+lemma None_not_eq: "(None \<noteq> x) = (\<exists>y. x = Some y)" by (cases x) auto
+
+lemma None_com: "(None = x) = (x = None)" by fast
+
+lemma Some_com: "(Some y = x) = (x = Some y)" by fast
+
+
+section {* Things that go into Map.thy *}
+
+text {* Map intersection: set of all keys for which the maps agree. *}
+
+definition
+ map_inter :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" (infixl "\<inter>\<^isub>m" 70) where
+ "m\<^isub>1 \<inter>\<^isub>m m\<^isub>2 \<equiv> {x \<in> dom m\<^isub>1. m\<^isub>1 x = m\<^isub>2 x}"
+
+text {* Map restriction via domain subtraction *}
+
+definition
+ sub_restrict_map :: "('a \<rightharpoonup> 'b) => 'a set => ('a \<rightharpoonup> 'b)" (infixl "`-" 110)
+ where
+ "m `- S \<equiv> (\<lambda>x. if x \<in> S then None else m x)"
+
+
+subsection {* Properties of maps not related to restriction *}
+
+lemma empty_forall_equiv: "(m = empty) = (\<forall>x. m x = None)"
+ by (fastforce intro!: ext)
+
+lemma map_le_empty2 [simp]:
+ "(m \<subseteq>\<^sub>m empty) = (m = empty)"
+ by (auto simp: map_le_def intro: ext)
+
+lemma dom_iff:
+ "(\<exists>y. m x = Some y) = (x \<in> dom m)"
+ by auto
+
+lemma non_dom_eval:
+ "x \<notin> dom m \<Longrightarrow> m x = None"
+ by auto
+
+lemma non_dom_eval_eq:
+ "x \<notin> dom m = (m x = None)"
+ by auto
+
+lemma map_add_same_left_eq:
+ "m\<^isub>1 = m\<^isub>1' \<Longrightarrow> (m\<^isub>0 ++ m\<^isub>1 = m\<^isub>0 ++ m\<^isub>1')"
+ by simp
+
+lemma map_add_left_cancelI [intro!]:
+ "m\<^isub>1 = m\<^isub>1' \<Longrightarrow> m\<^isub>0 ++ m\<^isub>1 = m\<^isub>0 ++ m\<^isub>1'"
+ by simp
+
+lemma dom_empty_is_empty:
+ "(dom m = {}) = (m = empty)"
+proof (rule iffI)
+ assume a: "dom m = {}"
+ { assume "m \<noteq> empty"
+ hence "dom m \<noteq> {}"
+ by - (subst (asm) empty_forall_equiv, simp add: dom_def)
+ hence False using a by blast
+ }
+ thus "m = empty" by blast
+next
+ assume a: "m = empty"
+ thus "dom m = {}" by simp
+qed
+
+lemma map_add_dom_eq:
+ "dom m = dom m' \<Longrightarrow> m ++ m' = m'"
+ by (rule ext) (auto simp: map_add_def split: option.splits)
+
+lemma map_add_right_dom_eq:
+ "\<lbrakk> m\<^isub>0 ++ m\<^isub>1 = m\<^isub>0' ++ m\<^isub>1'; dom m\<^isub>1 = dom m\<^isub>1' \<rbrakk> \<Longrightarrow> m\<^isub>1 = m\<^isub>1'"
+ unfolding map_add_def
+ by (rule ext, rule ccontr,
+ drule_tac x=x in fun_cong, clarsimp split: option.splits,
+ drule sym, drule sym, force+)
+
+lemma map_le_same_dom_eq:
+ "\<lbrakk> m\<^isub>0 \<subseteq>\<^sub>m m\<^isub>1 ; dom m\<^isub>0 = dom m\<^isub>1 \<rbrakk> \<Longrightarrow> m\<^isub>0 = m\<^isub>1"
+ by (auto intro!: ext simp: map_le_def elim!: ballE)
+
+
+subsection {* Properties of map restriction *}
+
+lemma restrict_map_cancel:
+ "(m |` S = m |` T) = (dom m \<inter> S = dom m \<inter> T)"
+ by (fastforce intro: ext dest: fun_cong
+ simp: restrict_map_def None_not_eq
+ split: split_if_asm)
+
+lemma map_add_restricted_self [simp]:
+ "m ++ m |` S = m"
+ by (auto intro: ext simp: restrict_map_def map_add_def split: option.splits)
+
+lemma map_add_restrict_dom_right [simp]:
+ "(m ++ m') |` dom m' = m'"
+ by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
+
+lemma restrict_map_UNIV [simp]:
+ "m |` UNIV = m"
+ by (simp add: restrict_map_def)
+
+lemma restrict_map_dom:
+ "S = dom m \<Longrightarrow> m |` S = m"
+ by (auto intro!: ext simp: restrict_map_def None_not_eq)
+
+lemma restrict_map_subdom:
+ "dom m \<subseteq> S \<Longrightarrow> m |` S = m"
+ by (fastforce simp: restrict_map_def None_com intro: ext)
+
+lemma map_add_restrict:
+ "(m\<^isub>0 ++ m\<^isub>1) |` S = ((m\<^isub>0 |` S) ++ (m\<^isub>1 |` S))"
+ by (force simp: map_add_def restrict_map_def intro: ext)
+
+lemma map_le_restrict:
+ "m \<subseteq>\<^sub>m m' \<Longrightarrow> m = m' |` dom m"
+ by (force simp: map_le_def restrict_map_def None_com intro: ext)
+
+lemma restrict_map_le:
+ "m |` S \<subseteq>\<^sub>m m"
+ by (auto simp: map_le_def)
+
+lemma restrict_map_remerge:
+ "\<lbrakk> S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` S ++ m |` T = m |` (S \<union> T)"
+ by (rule ext, clarsimp simp: restrict_map_def map_add_def
+ split: option.splits)
+
+lemma restrict_map_empty:
+ "dom m \<inter> S = {} \<Longrightarrow> m |` S = empty"
+ by (fastforce simp: restrict_map_def intro: ext)
+
+lemma map_add_restrict_comp_right [simp]:
+ "(m |` S ++ m |` (UNIV - S)) = m"
+ by (force simp: map_add_def restrict_map_def split: option.splits intro: ext)
+
+lemma map_add_restrict_comp_right_dom [simp]:
+ "(m |` S ++ m |` (dom m - S)) = m"
+ by (auto simp: map_add_def restrict_map_def split: option.splits intro!: ext)
+
+lemma map_add_restrict_comp_left [simp]:
+ "(m |` (UNIV - S) ++ m |` S) = m"
+ by (subst map_add_comm, auto)
+
+lemma restrict_self_UNIV:
+ "m |` (dom m - S) = m |` (UNIV - S)"
+ by (auto intro!: ext simp: restrict_map_def)
+
+lemma map_add_restrict_nonmember_right:
+ "x \<notin> dom m' \<Longrightarrow> (m ++ m') |` {x} = m |` {x}"
+ by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
+
+lemma map_add_restrict_nonmember_left:
+ "x \<notin> dom m \<Longrightarrow> (m ++ m') |` {x} = m' |` {x}"
+ by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
+
+lemma map_add_restrict_right:
+ "x \<subseteq> dom m' \<Longrightarrow> (m ++ m') |` x = m' |` x"
+ by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
+
+lemma restrict_map_compose:
+ "\<lbrakk> S \<union> T = dom m ; S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` S ++ m |` T = m"
+ by (fastforce intro: ext simp: map_add_def restrict_map_def)
+
+lemma map_le_dom_subset_restrict:
+ "\<lbrakk> m' \<subseteq>\<^sub>m m; dom m' \<subseteq> S \<rbrakk> \<Longrightarrow> m' \<subseteq>\<^sub>m (m |` S)"
+ by (force simp: restrict_map_def map_le_def)
+
+lemma map_le_dom_restrict_sub_add:
+ "m' \<subseteq>\<^sub>m m \<Longrightarrow> m |` (dom m - dom m') ++ m' = m"
+ by (auto simp: None_com map_add_def restrict_map_def map_le_def
+ split: option.splits
+ intro!: ext)
+ (force simp: Some_com)+
+
+lemma subset_map_restrict_sub_add:
+ "T \<subseteq> S \<Longrightarrow> m |` (S - T) ++ m |` T = m |` S"
+ by (auto simp: restrict_map_def map_add_def intro!: ext split: option.splits)
+
+lemma restrict_map_sub_union:
+ "m |` (dom m - (S \<union> T)) = (m |` (dom m - T)) |` (dom m - S)"
+ by (auto intro!: ext simp: restrict_map_def)
+
+lemma prod_restrict_map_add:
+ "\<lbrakk> S \<union> T = U; S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` (X \<times> S) ++ m |` (X \<times> T) = m |` (X \<times> U)"
+ by (auto simp: map_add_def restrict_map_def intro!: ext split: option.splits)
+
+
+section {* Things that should not go into Map.thy (separation logic) *}
+
+subsection {* Definitions *}
+
+text {* Map disjuction *}
+
+definition
+ map_disj :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool" (infix "\<bottom>" 51) where
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<equiv> dom h\<^isub>0 \<inter> dom h\<^isub>1 = {}"
+
+declare None_not_eq [simp]
+
+
+subsection {* Properties of @{term "sub_restrict_map"} *}
+
+lemma restrict_map_sub_disj: "h |` S \<bottom> h `- S"
+ by (fastforce simp: sub_restrict_map_def restrict_map_def map_disj_def
+ split: option.splits split_if_asm)
+
+lemma restrict_map_sub_add: "h |` S ++ h `- S = h"
+ by (fastforce simp: sub_restrict_map_def restrict_map_def map_add_def
+ split: option.splits split_if
+ intro: ext)
+
+
+subsection {* Properties of map disjunction *}
+
+lemma map_disj_empty_right [simp]:
+ "h \<bottom> empty"
+ by (simp add: map_disj_def)
+
+lemma map_disj_empty_left [simp]:
+ "empty \<bottom> h"
+ by (simp add: map_disj_def)
+
+lemma map_disj_com:
+ "h\<^isub>0 \<bottom> h\<^isub>1 = h\<^isub>1 \<bottom> h\<^isub>0"
+ by (simp add: map_disj_def, fast)
+
+lemma map_disjD:
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> dom h\<^isub>0 \<inter> dom h\<^isub>1 = {}"
+ by (simp add: map_disj_def)
+
+lemma map_disjI:
+ "dom h\<^isub>0 \<inter> dom h\<^isub>1 = {} \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1"
+ by (simp add: map_disj_def)
+
+
+subsection {* Map associativity-commutativity based on map disjuction *}
+
+lemma map_add_com:
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 ++ h\<^isub>1 = h\<^isub>1 ++ h\<^isub>0"
+ by (drule map_disjD, rule map_add_comm, force)
+
+lemma map_add_left_commute:
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 ++ (h\<^isub>1 ++ h\<^isub>2) = h\<^isub>1 ++ (h\<^isub>0 ++ h\<^isub>2)"
+ by (simp add: map_add_com map_disj_com map_add_assoc)
+
+lemma map_add_disj:
+ "h\<^isub>0 \<bottom> (h\<^isub>1 ++ h\<^isub>2) = (h\<^isub>0 \<bottom> h\<^isub>1 \<and> h\<^isub>0 \<bottom> h\<^isub>2)"
+ by (simp add: map_disj_def, fast)
+
+lemma map_add_disj':
+ "(h\<^isub>1 ++ h\<^isub>2) \<bottom> h\<^isub>0 = (h\<^isub>1 \<bottom> h\<^isub>0 \<and> h\<^isub>2 \<bottom> h\<^isub>0)"
+ by (simp add: map_disj_def, fast)
+
+text {*
+ We redefine @{term "map_add"} associativity to bind to the right, which
+ seems to be the more common case.
+ Note that when a theory includes Map again, @{text "map_add_assoc"} will
+ return to the simpset and will cause infinite loops if its symmetric
+ counterpart is added (e.g. via @{text "map_add_ac"})
+ *}
+
+declare map_add_assoc [simp del]
+
+text {*
+ Since the associativity-commutativity of @{term "map_add"} relies on
+ map disjunction, we include some basic rules into the ac set.
+ *}
+
+lemmas map_add_ac =
+ map_add_assoc[symmetric] map_add_com map_disj_com
+ map_add_left_commute map_add_disj map_add_disj'
+
+
+subsection {* Basic properties *}
+
+lemma map_disj_None_right:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; x \<in> dom h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>1 x = None"
+ by (auto simp: map_disj_def dom_def)
+
+lemma map_disj_None_left:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; x \<in> dom h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 x = None"
+ by (auto simp: map_disj_def dom_def)
+
+lemma map_disj_None_left':
+ "\<lbrakk> h\<^isub>0 x = Some y ; h\<^isub>1 \<bottom> h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>1 x = None "
+ by (auto simp: map_disj_def)
+
+lemma map_disj_None_right':
+ "\<lbrakk> h\<^isub>1 x = Some y ; h\<^isub>1 \<bottom> h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0 x = None "
+ by (auto simp: map_disj_def)
+
+lemma map_disj_common:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; h\<^isub>0 p = Some v ; h\<^isub>1 p = Some v' \<rbrakk> \<Longrightarrow> False"
+ by (frule (1) map_disj_None_left', simp)
+
+lemma map_disj_eq_dom_left:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; dom h\<^isub>0' = dom h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0' \<bottom> h\<^isub>1"
+ by (auto simp: map_disj_def)
+
+
+subsection {* Map disjunction and addition *}
+
+lemma map_add_eval_left:
+ "\<lbrakk> x \<in> dom h ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h x"
+ by (auto dest!: map_disj_None_right simp: map_add_def cong: option.case_cong)
+
+lemma map_add_eval_right:
+ "\<lbrakk> x \<in> dom h' ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h' x"
+ by (auto elim!: map_disjD simp: map_add_comm map_add_eval_left map_disj_com)
+
+lemma map_add_eval_left':
+ "\<lbrakk> x \<notin> dom h' ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h x"
+ by (clarsimp simp: map_disj_def map_add_def split: option.splits)
+
+lemma map_add_eval_right':
+ "\<lbrakk> x \<notin> dom h ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h' x"
+ by (clarsimp simp: map_disj_def map_add_def split: option.splits)
+
+lemma map_add_left_dom_eq:
+ assumes eq: "h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'"
+ assumes etc: "h\<^isub>0 \<bottom> h\<^isub>1" "h\<^isub>0' \<bottom> h\<^isub>1'" "dom h\<^isub>0 = dom h\<^isub>0'"
+ shows "h\<^isub>0 = h\<^isub>0'"
+proof -
+ from eq have "h\<^isub>1 ++ h\<^isub>0 = h\<^isub>1' ++ h\<^isub>0'" using etc by (simp add: map_add_ac)
+ thus ?thesis using etc
+ by (fastforce elim!: map_add_right_dom_eq simp: map_add_ac)
+qed
+
+lemma map_add_left_eq:
+ assumes eq: "h\<^isub>0 ++ h = h\<^isub>1 ++ h"
+ assumes disj: "h\<^isub>0 \<bottom> h" "h\<^isub>1 \<bottom> h"
+ shows "h\<^isub>0 = h\<^isub>1"
+proof (rule ext)
+ fix x
+ from eq have eq': "(h\<^isub>0 ++ h) x = (h\<^isub>1 ++ h) x" by (auto intro!: ext)
+ { assume "x \<in> dom h"
+ hence "h\<^isub>0 x = h\<^isub>1 x" using disj by (simp add: map_disj_None_left)
+ } moreover {
+ assume "x \<notin> dom h"
+ hence "h\<^isub>0 x = h\<^isub>1 x" using disj eq' by (simp add: map_add_eval_left')
+ }
+ ultimately show "h\<^isub>0 x = h\<^isub>1 x" by cases
+qed
+
+lemma map_add_right_eq:
+ "\<lbrakk>h ++ h\<^isub>0 = h ++ h\<^isub>1; h\<^isub>0 \<bottom> h; h\<^isub>1 \<bottom> h\<rbrakk> \<Longrightarrow> h\<^isub>0 = h\<^isub>1"
+ by (rule_tac h=h in map_add_left_eq, auto simp: map_add_ac)
+
+lemma map_disj_add_eq_dom_right_eq:
+ assumes merge: "h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'" and d: "dom h\<^isub>0 = dom h\<^isub>0'" and
+ ab_disj: "h\<^isub>0 \<bottom> h\<^isub>1" and cd_disj: "h\<^isub>0' \<bottom> h\<^isub>1'"
+ shows "h\<^isub>1 = h\<^isub>1'"
+proof (rule ext)
+ fix x
+ from merge have merge_x: "(h\<^isub>0 ++ h\<^isub>1) x = (h\<^isub>0' ++ h\<^isub>1') x" by simp
+ with d ab_disj cd_disj show "h\<^isub>1 x = h\<^isub>1' x"
+ by - (case_tac "h\<^isub>1 x", case_tac "h\<^isub>1' x", simp, fastforce simp: map_disj_def,
+ case_tac "h\<^isub>1' x", clarsimp, simp add: Some_com,
+ force simp: map_disj_def, simp)
+qed
+
+lemma map_disj_add_eq_dom_left_eq:
+ assumes add: "h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'" and
+ dom: "dom h\<^isub>1 = dom h\<^isub>1'" and
+ disj: "h\<^isub>0 \<bottom> h\<^isub>1" "h\<^isub>0' \<bottom> h\<^isub>1'"
+ shows "h\<^isub>0 = h\<^isub>0'"
+proof -
+ have "h\<^isub>1 ++ h\<^isub>0 = h\<^isub>1' ++ h\<^isub>0'" using add disj by (simp add: map_add_ac)
+ thus ?thesis using dom disj
+ by - (rule map_disj_add_eq_dom_right_eq, auto simp: map_disj_com)
+qed
+
+lemma map_add_left_cancel:
+ assumes disj: "h\<^isub>0 \<bottom> h\<^isub>1" "h\<^isub>0 \<bottom> h\<^isub>1'"
+ shows "(h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0 ++ h\<^isub>1') = (h\<^isub>1 = h\<^isub>1')"
+proof (rule iffI, rule ext)
+ fix x
+ assume "(h\<^isub>0 ++ h\<^isub>1) = (h\<^isub>0 ++ h\<^isub>1')"
+ hence "(h\<^isub>0 ++ h\<^isub>1) x = (h\<^isub>0 ++ h\<^isub>1') x" by (auto intro!: ext)
+ hence "h\<^isub>1 x = h\<^isub>1' x" using disj
+ by - (cases "x \<in> dom h\<^isub>0",
+ simp_all add: map_disj_None_right map_add_eval_right')
+ thus "h\<^isub>1 x = h\<^isub>1' x" by (auto intro!: ext)
+qed auto
+
+lemma map_add_lr_disj:
+ "\<lbrakk> h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'; h\<^isub>1 \<bottom> h\<^isub>1' \<rbrakk> \<Longrightarrow> dom h\<^isub>1 \<subseteq> dom h\<^isub>0'"
+ by (clarsimp simp: map_disj_def map_add_def, drule_tac x=x in fun_cong)
+ (auto split: option.splits)
+
+
+subsection {* Map disjunction and map updates *}
+
+lemma map_disj_update_left [simp]:
+ "p \<in> dom h\<^isub>1 \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1(p \<mapsto> v) = h\<^isub>0 \<bottom> h\<^isub>1"
+ by (clarsimp simp add: map_disj_def, blast)
+
+lemma map_disj_update_right [simp]:
+ "p \<in> dom h\<^isub>1 \<Longrightarrow> h\<^isub>1(p \<mapsto> v) \<bottom> h\<^isub>0 = h\<^isub>1 \<bottom> h\<^isub>0"
+ by (simp add: map_disj_com)
+
+lemma map_add_update_left:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; p \<in> dom h\<^isub>0 \<rbrakk> \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>1)(p \<mapsto> v) = (h\<^isub>0(p \<mapsto> v) ++ h\<^isub>1)"
+ by (drule (1) map_disj_None_right)
+ (auto intro: ext simp: map_add_def cong: option.case_cong)
+
+lemma map_add_update_right:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; p \<in> dom h\<^isub>1 \<rbrakk> \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>1)(p \<mapsto> v) = (h\<^isub>0 ++ h\<^isub>1 (p \<mapsto> v))"
+ by (drule (1) map_disj_None_left)
+ (auto intro: ext simp: map_add_def cong: option.case_cong)
+
+lemma map_add3_update:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; h\<^isub>1 \<bottom> h\<^isub>2 ; h\<^isub>0 \<bottom> h\<^isub>2 ; p \<in> dom h\<^isub>0 \<rbrakk>
+ \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>1 ++ h\<^isub>2)(p \<mapsto> v) = h\<^isub>0(p \<mapsto> v) ++ h\<^isub>1 ++ h\<^isub>2"
+ by (auto simp: map_add_update_left[symmetric] map_add_ac)
+
+
+subsection {* Map disjunction and @{term "map_le"} *}
+
+lemma map_le_override [simp]:
+ "\<lbrakk> h \<bottom> h' \<rbrakk> \<Longrightarrow> h \<subseteq>\<^sub>m h ++ h'"
+ by (auto simp: map_le_def map_add_def map_disj_def split: option.splits)
+
+lemma map_leI_left:
+ "\<lbrakk> h = h\<^isub>0 ++ h\<^isub>1 ; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h" by auto
+
+lemma map_leI_right:
+ "\<lbrakk> h = h\<^isub>0 ++ h\<^isub>1 ; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>1 \<subseteq>\<^sub>m h" by auto
+
+lemma map_disj_map_le:
+ "\<lbrakk> h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0' \<bottom> h\<^isub>1"
+ by (force simp: map_disj_def map_le_def)
+
+lemma map_le_on_disj_left:
+ "\<lbrakk> h' \<subseteq>\<^sub>m h ; h\<^isub>0 \<bottom> h\<^isub>1 ; h' = h\<^isub>0 ++ h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h"
+ unfolding map_le_def
+ by (rule ballI, erule_tac x=a in ballE, auto simp: map_add_eval_left)+
+
+lemma map_le_on_disj_right:
+ "\<lbrakk> h' \<subseteq>\<^sub>m h ; h\<^isub>0 \<bottom> h\<^isub>1 ; h' = h\<^isub>1 ++ h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h"
+ by (auto simp: map_le_on_disj_left map_add_ac)
+
+lemma map_le_add_cancel:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0' ++ h\<^isub>1 \<subseteq>\<^sub>m h\<^isub>0 ++ h\<^isub>1"
+ by (auto simp: map_le_def map_add_def map_disj_def split: option.splits)
+
+lemma map_le_override_bothD:
+ assumes subm: "h\<^isub>0' ++ h\<^isub>1 \<subseteq>\<^sub>m h\<^isub>0 ++ h\<^isub>1"
+ assumes disj': "h\<^isub>0' \<bottom> h\<^isub>1"
+ assumes disj: "h\<^isub>0 \<bottom> h\<^isub>1"
+ shows "h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0"
+unfolding map_le_def
+proof (rule ballI)
+ fix a
+ assume a: "a \<in> dom h\<^isub>0'"
+ hence sumeq: "(h\<^isub>0' ++ h\<^isub>1) a = (h\<^isub>0 ++ h\<^isub>1) a"
+ using subm unfolding map_le_def by auto
+ from a have "a \<notin> dom h\<^isub>1" using disj' by (auto dest!: map_disj_None_right)
+ thus "h\<^isub>0' a = h\<^isub>0 a" using a sumeq disj disj'
+ by (simp add: map_add_eval_left map_add_eval_left')
+qed
+
+lemma map_le_conv:
+ "(h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0 \<and> h\<^isub>0' \<noteq> h\<^isub>0) = (\<exists>h\<^isub>1. h\<^isub>0 = h\<^isub>0' ++ h\<^isub>1 \<and> h\<^isub>0' \<bottom> h\<^isub>1 \<and> h\<^isub>0' \<noteq> h\<^isub>0)"
+ unfolding map_le_def map_disj_def map_add_def
+ by (rule iffI,
+ clarsimp intro!: exI[where x="\<lambda>x. if x \<notin> dom h\<^isub>0' then h\<^isub>0 x else None"])
+ (fastforce intro: ext intro: split: option.splits split_if_asm)+
+
+lemma map_le_conv2:
+ "h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0 = (\<exists>h\<^isub>1. h\<^isub>0 = h\<^isub>0' ++ h\<^isub>1 \<and> h\<^isub>0' \<bottom> h\<^isub>1)"
+ by (case_tac "h\<^isub>0'=h\<^isub>0", insert map_le_conv, auto intro: exI[where x=empty])
+
+
+subsection {* Map disjunction and restriction *}
+
+lemma map_disj_comp [simp]:
+ "h\<^isub>0 \<bottom> h\<^isub>1 |` (UNIV - dom h\<^isub>0)"
+ by (force simp: map_disj_def)
+
+lemma restrict_map_disj:
+ "S \<inter> T = {} \<Longrightarrow> h |` S \<bottom> h |` T"
+ by (auto simp: map_disj_def restrict_map_def dom_def)
+
+lemma map_disj_restrict_dom [simp]:
+ "h\<^isub>0 \<bottom> h\<^isub>1 |` (dom h\<^isub>1 - dom h\<^isub>0)"
+ by (force simp: map_disj_def)
+
+lemma restrict_map_disj_dom_empty:
+ "h \<bottom> h' \<Longrightarrow> h |` dom h' = empty"
+ by (fastforce simp: map_disj_def restrict_map_def intro: ext)
+
+lemma restrict_map_univ_disj_eq:
+ "h \<bottom> h' \<Longrightarrow> h |` (UNIV - dom h') = h"
+ by (rule ext, auto simp: map_disj_def restrict_map_def)
+
+lemma restrict_map_disj_dom:
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h |` dom h\<^isub>0 \<bottom> h |` dom h\<^isub>1"
+ by (auto simp: map_disj_def restrict_map_def dom_def)
+
+lemma map_add_restrict_dom_left:
+ "h \<bottom> h' \<Longrightarrow> (h ++ h') |` dom h = h"
+ by (rule ext, auto simp: restrict_map_def map_add_def dom_def map_disj_def
+ split: option.splits)
+
+lemma map_add_restrict_dom_left':
+ "h \<bottom> h' \<Longrightarrow> S = dom h \<Longrightarrow> (h ++ h') |` S = h"
+ by (rule ext, auto simp: restrict_map_def map_add_def dom_def map_disj_def
+ split: option.splits)
+
+lemma restrict_map_disj_left:
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 |` S \<bottom> h\<^isub>1"
+ by (auto simp: map_disj_def)
+
+lemma restrict_map_disj_right:
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1 |` S"
+ by (auto simp: map_disj_def)
+
+lemmas restrict_map_disj_both = restrict_map_disj_right restrict_map_disj_left
+
+lemma map_dom_disj_restrict_right:
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>0') |` dom h\<^isub>1 = h\<^isub>0' |` dom h\<^isub>1"
+ by (simp add: map_add_restrict restrict_map_empty map_disj_def)
+
+lemma restrict_map_on_disj:
+ "h\<^isub>0' \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 |` dom h\<^isub>0' \<bottom> h\<^isub>1"
+ unfolding map_disj_def by auto
+
+lemma restrict_map_on_disj':
+ "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1 |` S"
+ by (auto simp: map_disj_def map_add_def)
+
+lemma map_le_sub_dom:
+ "\<lbrakk> h\<^isub>0 ++ h\<^isub>1 \<subseteq>\<^sub>m h ; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h |` (dom h - dom h\<^isub>1)"
+ by (rule map_le_override_bothD, subst map_le_dom_restrict_sub_add)
+ (auto elim: map_add_le_mapE simp: map_add_ac)
+
+lemma map_submap_break:
+ "\<lbrakk> h \<subseteq>\<^sub>m h' \<rbrakk> \<Longrightarrow> h' = (h' |` (UNIV - dom h)) ++ h"
+ by (fastforce intro!: ext split: option.splits
+ simp: map_le_restrict restrict_map_def map_le_def map_add_def
+ dom_def)
+
+lemma map_add_disj_restrict_both:
+ "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1; S \<inter> S' = {}; T \<inter> T' = {} \<rbrakk>
+ \<Longrightarrow> (h\<^isub>0 |` S) ++ (h\<^isub>1 |` T) \<bottom> (h\<^isub>0 |` S') ++ (h\<^isub>1 |` T')"
+ by (auto simp: map_add_ac intro!: restrict_map_disj_both restrict_map_disj)
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/README Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,11 @@
+This directory contains a generic type class implementation of separation
+algebra for Isabelle/HOL as well as lemmas and generic tactics which can be
+used directly for any instantiation of the type class.
+
+The ex directory contains example instantiations that include structures such
+as a heap or virtual memory.
+
+The abstract separation algebra is based upon "Abstract Separation Logic" by
+Calcagno et al. These theories are also the basis of "Mechanised Separation
+Algebra" by Klein et al.
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ROOT Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,11 @@
+session Separation_Algebra (AFP) = "HOL-Word" +
+ options [timeout = 3600]
+ theories
+ "ex/Simple_Separation_Example"
+ "ex/Sep_Tactics_Test"
+ "ex/VM_Example"
+ Sep_Eq
+ "ex/capDL/Separation_D"
+ files
+ "document/root.bib"
+ "document/root.tex"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Sep_Eq.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,108 @@
+(* Author: Gerwin Klein, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Equivalence between Separation Algebra Formulations"
+
+theory Sep_Eq
+imports Separation_Algebra Separation_Algebra_Alt
+begin
+
+text {*
+ In this theory we show that our total formulation of separation algebra is
+ equivalent in strength to Calcagno et al's original partial one.
+
+ This theory is not intended to be included in own developments.
+*}
+
+no_notation map_add (infixl "++" 100)
+
+section "Total implies Partial"
+
+definition add2 :: "'a::sep_algebra => 'a => 'a option" where
+ "add2 x y \<equiv> if x ## y then Some (x + y) else None"
+
+lemma add2_zero: "add2 x 0 = Some x"
+ by (simp add: add2_def)
+
+lemma add2_comm: "add2 x y = add2 y x"
+ by (auto simp: add2_def sep_add_commute sep_disj_commute)
+
+lemma add2_assoc:
+ "lift2 add2 a (lift2 add2 b c) = lift2 add2 (lift2 add2 a b) c"
+ by (auto simp: add2_def lift2_def sep_add_assoc
+ dest: sep_disj_addD sep_disj_addI3
+ sep_add_disjD sep_disj_addI2 sep_disj_commuteI
+ split: option.splits)
+
+interpretation total_partial: sep_algebra_alt 0 add2
+ by (unfold_locales) (auto intro: add2_zero add2_comm add2_assoc)
+
+
+section "Partial implies Total"
+
+definition
+ sep_add' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a :: sep_algebra_alt" where
+ "sep_add' x y \<equiv> if disjoint x y then the (add x y) else undefined"
+
+lemma sep_disj_zero':
+ "disjoint x 0"
+ by simp
+
+lemma sep_disj_commuteI':
+ "disjoint x y \<Longrightarrow> disjoint y x"
+ by (clarsimp simp: disjoint_def add_comm)
+
+lemma sep_add_zero':
+ "sep_add' x 0 = x"
+ by (simp add: sep_add'_def)
+
+lemma sep_add_commute':
+ "disjoint x y \<Longrightarrow> sep_add' x y = sep_add' y x"
+ by (clarsimp simp: sep_add'_def disjoint_def add_comm)
+
+lemma sep_add_assoc':
+ "\<lbrakk> disjoint x y; disjoint y z; disjoint x z \<rbrakk> \<Longrightarrow>
+ sep_add' (sep_add' x y) z = sep_add' x (sep_add' y z)"
+ using add_assoc [of "Some x" "Some y" "Some z"]
+ by (clarsimp simp: disjoint_def sep_add'_def lift2_def
+ split: option.splits)
+
+lemma sep_disj_addD1':
+ "disjoint x (sep_add' y z) \<Longrightarrow> disjoint y z \<Longrightarrow> disjoint x y"
+proof (clarsimp simp: disjoint_def sep_add'_def)
+ fix a assume a: "y \<oplus> z = Some a"
+ fix b assume b: "x \<oplus> a = Some b"
+ with a have "Some x ++ (Some y ++ Some z) = Some b" by (simp add: lift2_def)
+ hence "(Some x ++ Some y) ++ Some z = Some b" by (simp add: add_assoc)
+ thus "\<exists>b. x \<oplus> y = Some b" by (simp add: lift2_def split: option.splits)
+qed
+
+lemma sep_disj_addI1':
+ "disjoint x (sep_add' y z) \<Longrightarrow> disjoint y z \<Longrightarrow> disjoint (sep_add' x y) z"
+ apply (clarsimp simp: disjoint_def sep_add'_def)
+ apply (rule conjI)
+ apply clarsimp
+ apply (frule lift_to_add2, assumption)
+ apply (simp add: add_assoc)
+ apply (clarsimp simp: lift2_def add_comm)
+ apply clarsimp
+ apply (frule lift_to_add2, assumption)
+ apply (simp add: add_assoc)
+ apply (clarsimp simp: lift2_def)
+ done
+
+interpretation partial_total: sep_algebra sep_add' 0 disjoint
+ apply (unfold_locales)
+ apply (rule sep_disj_zero')
+ apply (erule sep_disj_commuteI')
+ apply (rule sep_add_zero')
+ apply (erule sep_add_commute')
+ apply (erule (2) sep_add_assoc')
+ apply (erule (1) sep_disj_addD1')
+ apply (erule (1) sep_disj_addI1')
+ done
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Sep_Heap_Instance.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,84 @@
+(* Author: Gerwin Klein, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Standard Heaps as an Instance of Separation Algebra"
+
+theory Sep_Heap_Instance
+imports Separation_Algebra
+begin
+
+text {*
+ Example instantiation of a the separation algebra to a map, i.e.\ a
+ function from any type to @{typ "'a option"}.
+*}
+
+class opt =
+ fixes none :: 'a
+begin
+ definition "domain f \<equiv> {x. f x \<noteq> none}"
+end
+
+instantiation option :: (type) opt
+begin
+ definition none_def [simp]: "none \<equiv> None"
+ instance ..
+end
+
+instantiation "fun" :: (type, opt) zero
+begin
+ definition zero_fun_def: "0 \<equiv> \<lambda>s. none"
+ instance ..
+end
+
+instantiation "fun" :: (type, opt) sep_algebra
+begin
+
+definition
+ plus_fun_def: "m1 + m2 \<equiv> \<lambda>x. if m2 x = none then m1 x else m2 x"
+
+definition
+ sep_disj_fun_def: "sep_disj m1 m2 \<equiv> domain m1 \<inter> domain m2 = {}"
+
+instance
+ apply default
+ apply (simp add: sep_disj_fun_def domain_def zero_fun_def)
+ apply (fastforce simp: sep_disj_fun_def)
+ apply (simp add: plus_fun_def zero_fun_def)
+ apply (simp add: plus_fun_def sep_disj_fun_def domain_def)
+ apply (rule ext)
+ apply fastforce
+ apply (rule ext)
+ apply (simp add: plus_fun_def)
+ apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
+ apply fastforce
+ apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
+ apply fastforce
+ done
+
+end
+
+text {*
+ For the actual option type @{const domain} and @{text "+"} are
+ just @{const dom} and @{text "++"}:
+*}
+
+lemma domain_conv: "domain = dom"
+ by (rule ext) (simp add: domain_def dom_def)
+
+lemma plus_fun_conv: "a + b = a ++ b"
+ by (auto simp: plus_fun_def map_add_def split: option.splits)
+
+lemmas map_convs = domain_conv plus_fun_conv
+
+text {*
+ Any map can now act as a separation heap without further work:
+*}
+lemma
+ fixes h :: "(nat => nat) => 'foo option"
+ shows "(P ** Q ** H) h = (Q ** H ** P) h"
+ by (simp add: sep_conj_ac)
+
+end
+
--- a/Separation_Algebra/Sep_Tactics.thy Fri Sep 12 00:47:15 2014 +0800
+++ b/Separation_Algebra/Sep_Tactics.thy Sat Sep 13 10:07:14 2014 +0800
@@ -6,50 +6,78 @@
header "Separation Logic Tactics"
theory Sep_Tactics
-imports Separation_Algebra
+imports Separation_Algebra
+uses "sep_tactics.ML"
begin
-ML_file "sep_tactics.ML"
text {* A number of proof methods to assist with reasoning about separation logic. *}
section {* Selection (move-to-front) tactics *}
+ML {*
+ fun sep_select_method n ctxt =
+ Method.SIMPLE_METHOD' (sep_select_tac ctxt n);
+ fun sep_select_asm_method n ctxt =
+ Method.SIMPLE_METHOD' (sep_select_asm_tac ctxt n);
+*}
+
method_setup sep_select = {*
- Scan.lift Parse.int >> (fn n => fn ctxt => SIMPLE_METHOD' (sep_select_tac ctxt n))
+ Scan.lift Parse.int >> sep_select_method
*} "Select nth separation conjunct in conclusion"
method_setup sep_select_asm = {*
- Scan.lift Parse.int >> (fn n => fn ctxt => SIMPLE_METHOD' (sep_select_asm_tac ctxt n))
+ Scan.lift Parse.int >> sep_select_asm_method
*} "Select nth separation conjunct in assumptions"
section {* Substitution *}
+ML {*
+ fun sep_subst_method ctxt occs thms =
+ SIMPLE_METHOD' (sep_subst_tac ctxt occs thms);
+ fun sep_subst_asm_method ctxt occs thms =
+ SIMPLE_METHOD' (sep_subst_asm_tac ctxt occs thms);
+
+ val sep_subst_parser =
+ Args.mode "asm"
+ -- Scan.lift (Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0])
+ -- Attrib.thms;
+*}
+
method_setup "sep_subst" = {*
- Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) --
- Attrib.thms >> (fn ((asm, occs), thms) => fn ctxt =>
- SIMPLE_METHOD' ((if asm then sep_subst_asm_tac else sep_subst_tac) ctxt occs thms))
+ sep_subst_parser >>
+ (fn ((asm, occs), thms) => fn ctxt =>
+ (if asm then sep_subst_asm_method else sep_subst_method) ctxt occs thms)
*}
"single-step substitution after solving one separation logic assumption"
section {* Forward Reasoning *}
+ML {*
+ fun sep_drule_method thms ctxt = SIMPLE_METHOD' (sep_dtac ctxt thms);
+ fun sep_frule_method thms ctxt = SIMPLE_METHOD' (sep_ftac ctxt thms);
+*}
+
method_setup "sep_drule" = {*
- Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_dtac ctxt thms))
+ Attrib.thms >> sep_drule_method
*} "drule after separating conjunction reordering"
method_setup "sep_frule" = {*
- Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_ftac ctxt thms))
+ Attrib.thms >> sep_frule_method
*} "frule after separating conjunction reordering"
section {* Backward Reasoning *}
+ML {*
+ fun sep_rule_method thms ctxt = SIMPLE_METHOD' (sep_rtac ctxt thms)
+*}
+
method_setup "sep_rule" = {*
- Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_rtac ctxt thms))
+ Attrib.thms >> sep_rule_method
*} "applies rule after separating conjunction reordering"
@@ -97,31 +125,37 @@
fun sep_cancel_smart_tac_rules ctxt etacs =
sep_cancel_smart_tac ctxt (FIRST' ([atac] @ etacs));
- val sep_cancel_syntax = Method.sections [
- Args.add -- Args.colon >> K (I, SepCancel_Rules.add)] >> K ();
-*}
-
-method_setup sep_cancel = {*
- sep_cancel_syntax >> (fn _ => fn ctxt =>
+ fun sep_cancel_method ctxt =
let
val etacs = map etac (SepCancel_Rules.get ctxt);
in
SIMPLE_METHOD' (sep_cancel_smart_tac_rules ctxt etacs)
- end)
+ end;
+
+ val sep_cancel_syntax = Method.sections [
+ Args.add -- Args.colon >> K (I, SepCancel_Rules.add)];
+*}
+
+method_setup sep_cancel = {*
+ sep_cancel_syntax >> K sep_cancel_method
*} "Separating conjunction conjunct cancellation"
text {*
As above, but use blast with a depth limit to figure out where cancellation
can be done. *}
-method_setup sep_cancel_blast = {*
- sep_cancel_syntax >> (fn _ => fn ctxt =>
+ML {*
+ fun sep_cancel_blast_method ctxt =
let
val rules = SepCancel_Rules.get ctxt;
val tac = Blast.depth_tac (ctxt addIs rules) 10;
in
SIMPLE_METHOD' (sep_cancel_smart_tac ctxt tac)
- end)
+ end;
+*}
+
+method_setup sep_cancel_blast = {*
+ sep_cancel_syntax >> K sep_cancel_blast_method
*} "Separating conjunction conjunct cancellation using blast"
end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Sep_Tactics.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,161 @@
+(* Authors: Gerwin Klein and Rafal Kolanski, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Separation Logic Tactics"
+
+theory Sep_Tactics
+imports Separation_Algebra
+begin
+
+ML_file "sep_tactics.ML"
+
+text {* A number of proof methods to assist with reasoning about separation logic. *}
+
+
+section {* Selection (move-to-front) tactics *}
+
+ML {*
+ fun sep_select_method n ctxt =
+ Method.SIMPLE_METHOD' (sep_select_tac ctxt n);
+ fun sep_select_asm_method n ctxt =
+ Method.SIMPLE_METHOD' (sep_select_asm_tac ctxt n);
+*}
+
+method_setup sep_select = {*
+ Scan.lift Parse.int >> sep_select_method
+*} "Select nth separation conjunct in conclusion"
+
+method_setup sep_select_asm = {*
+ Scan.lift Parse.int >> sep_select_asm_method
+*} "Select nth separation conjunct in assumptions"
+
+
+section {* Substitution *}
+
+ML {*
+ fun sep_subst_method ctxt occs thms =
+ SIMPLE_METHOD' (sep_subst_tac ctxt occs thms);
+ fun sep_subst_asm_method ctxt occs thms =
+ SIMPLE_METHOD' (sep_subst_asm_tac ctxt occs thms);
+
+ val sep_subst_parser =
+ Args.mode "asm"
+ -- Scan.lift (Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0])
+ -- Attrib.thms;
+*}
+
+method_setup "sep_subst" = {*
+ sep_subst_parser >>
+ (fn ((asm, occs), thms) => fn ctxt =>
+ (if asm then sep_subst_asm_method else sep_subst_method) ctxt occs thms)
+*}
+"single-step substitution after solving one separation logic assumption"
+
+
+section {* Forward Reasoning *}
+
+ML {*
+ fun sep_drule_method thms ctxt = SIMPLE_METHOD' (sep_dtac ctxt thms);
+ fun sep_frule_method thms ctxt = SIMPLE_METHOD' (sep_ftac ctxt thms);
+*}
+
+method_setup "sep_drule" = {*
+ Attrib.thms >> sep_drule_method
+*} "drule after separating conjunction reordering"
+
+method_setup "sep_frule" = {*
+ Attrib.thms >> sep_frule_method
+*} "frule after separating conjunction reordering"
+
+
+section {* Backward Reasoning *}
+
+ML {*
+ fun sep_rule_method thms ctxt = SIMPLE_METHOD' (sep_rtac ctxt thms)
+*}
+
+method_setup "sep_rule" = {*
+ Attrib.thms >> sep_rule_method
+*} "applies rule after separating conjunction reordering"
+
+
+section {* Cancellation of Common Conjuncts via Elimination Rules *}
+
+ML {*
+ structure SepCancel_Rules = Named_Thms (
+ val name = @{binding "sep_cancel"};
+ val description = "sep_cancel rules";
+ );
+*}
+setup SepCancel_Rules.setup
+
+text {*
+ The basic @{text sep_cancel_tac} is minimal. It only eliminates
+ erule-derivable conjuncts between an assumption and the conclusion.
+
+ To have a more useful tactic, we augment it with more logic, to proceed as
+ follows:
+ \begin{itemize}
+ \item try discharge the goal first using @{text tac}
+ \item if that fails, invoke @{text sep_cancel_tac}
+ \item if @{text sep_cancel_tac} succeeds
+ \begin{itemize}
+ \item try to finish off with tac (but ok if that fails)
+ \item try to finish off with @{term sep_true} (but ok if that fails)
+ \end{itemize}
+ \end{itemize}
+ *}
+
+ML {*
+ fun sep_cancel_smart_tac ctxt tac =
+ let fun TRY' tac = tac ORELSE' (K all_tac)
+ in
+ tac
+ ORELSE' (sep_cancel_tac ctxt tac
+ THEN' TRY' tac
+ THEN' TRY' (rtac @{thm TrueI}))
+ ORELSE' (etac @{thm sep_conj_sep_emptyE}
+ THEN' sep_cancel_tac ctxt tac
+ THEN' TRY' tac
+ THEN' TRY' (rtac @{thm TrueI}))
+ end;
+
+ fun sep_cancel_smart_tac_rules ctxt etacs =
+ sep_cancel_smart_tac ctxt (FIRST' ([atac] @ etacs));
+
+ fun sep_cancel_method ctxt =
+ let
+ val etacs = map etac (SepCancel_Rules.get ctxt);
+ in
+ SIMPLE_METHOD' (sep_cancel_smart_tac_rules ctxt etacs)
+ end;
+
+ val sep_cancel_syntax = Method.sections [
+ Args.add -- Args.colon >> K (I, SepCancel_Rules.add)];
+*}
+
+method_setup sep_cancel = {*
+ sep_cancel_syntax >> K sep_cancel_method
+*} "Separating conjunction conjunct cancellation"
+
+text {*
+ As above, but use blast with a depth limit to figure out where cancellation
+ can be done. *}
+
+ML {*
+ fun sep_cancel_blast_method ctxt =
+ let
+ val rules = SepCancel_Rules.get ctxt;
+ val tac = Blast.depth_tac (ctxt addIs rules) 10;
+ in
+ SIMPLE_METHOD' (sep_cancel_smart_tac ctxt tac)
+ end;
+*}
+
+method_setup sep_cancel_blast = {*
+ sep_cancel_syntax >> K sep_cancel_blast_method
+*} "Separating conjunction conjunct cancellation using blast"
+
+end
--- a/Separation_Algebra/Separation_Algebra.thy Fri Sep 12 00:47:15 2014 +0800
+++ b/Separation_Algebra/Separation_Algebra.thy Sat Sep 13 10:07:14 2014 +0800
@@ -35,7 +35,7 @@
pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
"\<langle>f\<rangle> \<equiv> \<lambda>s. f"
-(* was an abbreviation *)
+(* abbreviation *)
definition pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
"EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"
@@ -216,6 +216,7 @@
then obtain x y z where "P x" and "Q y" and "R z"
and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"
and "h = x + y + z"
+ thm sep_disj_addD
by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)
thus "?lhs h"
by (metis sep_conj_def sep_disj_addI1)
--- a/Separation_Algebra/Separation_Algebra.thy-orig Fri Sep 12 00:47:15 2014 +0800
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,815 +0,0 @@
-(* Authors: Gerwin Klein and Rafal Kolanski, 2012
- Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
- Rafal Kolanski <rafal.kolanski at nicta.com.au>
-*)
-
-header "Abstract Separation Algebra"
-
-theory Separation_Algebra
-imports Main
-begin
-
-
-text {* This theory is the main abstract separation algebra development *}
-
-
-section {* Input syntax for lifting boolean predicates to separation predicates *}
-
-abbreviation (input)
- pred_and :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "and" 35) where
- "a and b \<equiv> \<lambda>s. a s \<and> b s"
-
-abbreviation (input)
- pred_or :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "or" 30) where
- "a or b \<equiv> \<lambda>s. a s \<or> b s"
-
-abbreviation (input)
- pred_not :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" ("not _" [40] 40) where
- "not a \<equiv> \<lambda>s. \<not>a s"
-
-abbreviation (input)
- pred_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "imp" 25) where
- "a imp b \<equiv> \<lambda>s. a s \<longrightarrow> b s"
-
-abbreviation (input)
- pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
- "\<langle>f\<rangle> \<equiv> \<lambda>s. f"
-
-abbreviation (input)
- pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
- "EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"
-
-abbreviation (input)
- pred_all :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "ALLS " 10) where
- "ALLS x. P x \<equiv> \<lambda>s. \<forall>x. P x s"
-
-
-section {* Associative/Commutative Monoid Basis of Separation Algebras *}
-
-class pre_sep_algebra = zero + plus +
- fixes sep_disj :: "'a => 'a => bool" (infix "##" 60)
-
- assumes sep_disj_zero [simp]: "x ## 0"
- assumes sep_disj_commuteI: "x ## y \<Longrightarrow> y ## x"
-
- assumes sep_add_zero [simp]: "x + 0 = x"
- assumes sep_add_commute: "x ## y \<Longrightarrow> x + y = y + x"
-
- assumes sep_add_assoc:
- "\<lbrakk> x ## y; y ## z; x ## z \<rbrakk> \<Longrightarrow> (x + y) + z = x + (y + z)"
-begin
-
-lemma sep_disj_commute: "x ## y = y ## x"
- by (blast intro: sep_disj_commuteI)
-
-lemma sep_add_left_commute:
- assumes a: "a ## b" "b ## c" "a ## c"
- shows "b + (a + c) = a + (b + c)" (is "?lhs = ?rhs")
-proof -
- have "?lhs = b + a + c" using a
- by (simp add: sep_add_assoc[symmetric] sep_disj_commute)
- also have "... = a + b + c" using a
- by (simp add: sep_add_commute sep_disj_commute)
- also have "... = ?rhs" using a
- by (simp add: sep_add_assoc sep_disj_commute)
- finally show ?thesis .
-qed
-
-lemmas sep_add_ac = sep_add_assoc sep_add_commute sep_add_left_commute
- sep_disj_commute (* nearly always necessary *)
-
-end
-
-
-section {* Separation Algebra as Defined by Calcagno et al. *}
-
-class sep_algebra = pre_sep_algebra +
- assumes sep_disj_addD1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y"
- assumes sep_disj_addI1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + y ## z"
-begin
-
-subsection {* Basic Construct Definitions and Abbreviations *}
-
-definition
- sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "**" 35)
- where
- "P ** Q \<equiv> \<lambda>h. \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
-
-notation
- sep_conj (infixr "\<and>*" 35)
-
-definition
- sep_empty :: "'a \<Rightarrow> bool" ("\<box>") where
- "\<box> \<equiv> \<lambda>h. h = 0"
-
-definition
- sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>*" 25)
- where
- "P \<longrightarrow>* Q \<equiv> \<lambda>h. \<forall>h'. h ## h' \<and> P h' \<longrightarrow> Q (h + h')"
-
-definition
- sep_substate :: "'a => 'a => bool" (infix "\<preceq>" 60) where
- "x \<preceq> y \<equiv> \<exists>z. x ## z \<and> x + z = y"
-
-(* We want these to be abbreviations not definitions, because basic True and
- False will occur by simplification in sep_conj terms *)
-abbreviation
- "sep_true \<equiv> \<langle>True\<rangle>"
-
-abbreviation
- "sep_false \<equiv> \<langle>False\<rangle>"
-
-definition
- sep_list_conj :: "('a \<Rightarrow> bool) list \<Rightarrow> ('a \<Rightarrow> bool)" ("\<And>* _" [60] 90) where
- "sep_list_conj Ps \<equiv> foldl (op **) \<box> Ps"
-
-
-subsection {* Disjunction/Addition Properties *}
-
-lemma disjoint_zero_sym [simp]: "0 ## x"
- by (simp add: sep_disj_commute)
-
-lemma sep_add_zero_sym [simp]: "0 + x = x"
- by (simp add: sep_add_commute)
-
-lemma sep_disj_addD2: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## z"
- by (metis sep_disj_addD1 sep_add_ac)
-
-lemma sep_disj_addD: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y \<and> x ## z"
- by (metis sep_disj_addD1 sep_disj_addD2)
-
-lemma sep_add_disjD: "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## z \<and> y ## z"
- by (metis sep_disj_addD sep_disj_commuteI)
-
-lemma sep_disj_addI2:
- "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + z ## y"
- by (metis sep_add_ac sep_disj_addI1)
-
-lemma sep_add_disjI1:
- "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x + z ## y"
- by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
-
-lemma sep_add_disjI2:
- "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> z + y ## x"
- by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
-
-lemma sep_disj_addI3:
- "x + y ## z \<Longrightarrow> x ## y \<Longrightarrow> x ## y + z"
- by (metis sep_add_ac sep_add_disjD sep_add_disjI2)
-
-lemma sep_disj_add:
- "\<lbrakk> y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## y + z = x + y ## z"
- by (metis sep_disj_addI1 sep_disj_addI3)
-
-
-subsection {* Substate Properties *}
-
-lemma sep_substate_disj_add:
- "x ## y \<Longrightarrow> x \<preceq> x + y"
- unfolding sep_substate_def by blast
-
-lemma sep_substate_disj_add':
- "x ## y \<Longrightarrow> x \<preceq> y + x"
- by (simp add: sep_add_ac sep_substate_disj_add)
-
-
-subsection {* Separating Conjunction Properties *}
-
-lemma sep_conjD:
- "(P \<and>* Q) h \<Longrightarrow> \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
- by (simp add: sep_conj_def)
-
-lemma sep_conjE:
- "\<lbrakk> (P ** Q) h; \<And>x y. \<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"
- by (auto simp: sep_conj_def)
-
-lemma sep_conjI:
- "\<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> (P ** Q) h"
- by (auto simp: sep_conj_def)
-
-lemma sep_conj_commuteI:
- "(P ** Q) h \<Longrightarrow> (Q ** P) h"
- by (auto intro!: sep_conjI elim!: sep_conjE simp: sep_add_ac)
-
-lemma sep_conj_commute:
- "(P ** Q) = (Q ** P)"
- by (rule ext) (auto intro: sep_conj_commuteI)
-
-lemma sep_conj_assoc:
- "((P ** Q) ** R) = (P ** Q ** R)" (is "?lhs = ?rhs")
-proof (rule ext, rule iffI)
- fix h
- assume a: "?lhs h"
- then obtain x y z where "P x" and "Q y" and "R z"
- and "x ## y" and "x ## z" and "y ## z" and "x + y ## z"
- and "h = x + y + z"
- by (auto dest!: sep_conjD dest: sep_add_disjD)
- moreover
- then have "x ## y + z"
- by (simp add: sep_disj_add)
- ultimately
- show "?rhs h"
- by (auto simp: sep_add_ac intro!: sep_conjI)
-next
- fix h
- assume a: "?rhs h"
- then obtain x y z where "P x" and "Q y" and "R z"
- and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"
- and "h = x + y + z"
- by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)
- thus "?lhs h"
- by (metis sep_conj_def sep_disj_addI1)
-qed
-
-lemma sep_conj_impl:
- "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> P' h; \<And>h. Q h \<Longrightarrow> Q' h \<rbrakk> \<Longrightarrow> (P' ** Q') h"
- by (erule sep_conjE, auto intro!: sep_conjI)
-
-lemma sep_conj_impl1:
- assumes P: "\<And>h. P h \<Longrightarrow> I h"
- shows "(P ** R) h \<Longrightarrow> (I ** R) h"
- by (auto intro: sep_conj_impl P)
-
-lemma sep_globalise:
- "\<lbrakk> (P ** R) h; (\<And>h. P h \<Longrightarrow> Q h) \<rbrakk> \<Longrightarrow> (Q ** R) h"
- by (fast elim: sep_conj_impl)
-
-lemma sep_conj_trivial_strip2:
- "Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp
-
-lemma disjoint_subheaps_exist:
- "\<exists>x y. x ## y \<and> h = x + y"
- by (rule_tac x=0 in exI, auto)
-
-lemma sep_conj_left_commute: (* for permutative rewriting *)
- "(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")
-proof -
- have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_commute)
- also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)
- finally show ?thesis by (simp add: sep_conj_commute)
-qed
-
-lemmas sep_conj_ac = sep_conj_commute sep_conj_assoc sep_conj_left_commute
-
-lemma ab_semigroup_mult_sep_conj: "class.ab_semigroup_mult op **"
- by (unfold_locales)
- (auto simp: sep_conj_ac)
-
-lemma sep_empty_zero [simp,intro!]: "\<box> 0"
- by (simp add: sep_empty_def)
-
-
-subsection {* Properties of @{text sep_true} and @{text sep_false} *}
-
-lemma sep_conj_sep_true:
- "P h \<Longrightarrow> (P ** sep_true) h"
- by (simp add: sep_conjI[where y=0])
-
-lemma sep_conj_sep_true':
- "P h \<Longrightarrow> (sep_true ** P) h"
- by (simp add: sep_conjI[where x=0])
-
-lemma sep_conj_true [simp]:
- "(sep_true ** sep_true) = sep_true"
- unfolding sep_conj_def
- by (auto intro!: ext intro: disjoint_subheaps_exist)
-
-lemma sep_conj_false_right [simp]:
- "(P ** sep_false) = sep_false"
- by (force elim: sep_conjE intro!: ext)
-
-lemma sep_conj_false_left [simp]:
- "(sep_false ** P) = sep_false"
- by (subst sep_conj_commute) (rule sep_conj_false_right)
-
-
-
-subsection {* Properties of zero (@{const sep_empty}) *}
-
-lemma sep_conj_empty [simp]:
- "(P ** \<box>) = P"
- by (simp add: sep_conj_def sep_empty_def)
-
-lemma sep_conj_empty'[simp]:
- "(\<box> ** P) = P"
- by (subst sep_conj_commute, rule sep_conj_empty)
-
-lemma sep_conj_sep_emptyI:
- "P h \<Longrightarrow> (P ** \<box>) h"
- by simp
-
-lemma sep_conj_sep_emptyE:
- "\<lbrakk> P s; (P ** \<box>) s \<Longrightarrow> (Q ** R) s \<rbrakk> \<Longrightarrow> (Q ** R) s"
- by simp
-
-lemma monoid_add: "class.monoid_add (op **) \<box>"
- by (unfold_locales) (auto simp: sep_conj_ac)
-
-lemma comm_monoid_add: "class.comm_monoid_add op ** \<box>"
- by (unfold_locales) (auto simp: sep_conj_ac)
-
-
-subsection {* Properties of top (@{text sep_true}) *}
-
-lemma sep_conj_true_P [simp]:
- "(sep_true ** (sep_true ** P)) = (sep_true ** P)"
- by (simp add: sep_conj_assoc[symmetric])
-
-lemma sep_conj_disj:
- "((P or Q) ** R) = ((P ** R) or (Q ** R))"
- by (auto simp: sep_conj_def intro!: ext)
-
-lemma sep_conj_sep_true_left:
- "(P ** Q) h \<Longrightarrow> (sep_true ** Q) h"
- by (erule sep_conj_impl, simp+)
-
-lemma sep_conj_sep_true_right:
- "(P ** Q) h \<Longrightarrow> (P ** sep_true) h"
- by (subst (asm) sep_conj_commute, drule sep_conj_sep_true_left,
- simp add: sep_conj_ac)
-
-
-subsection {* Separating Conjunction with Quantifiers *}
-
-lemma sep_conj_conj:
- "((P and Q) ** R) h \<Longrightarrow> ((P ** R) and (Q ** R)) h"
- by (force intro: sep_conjI elim!: sep_conjE)
-
-lemma sep_conj_exists1:
- "((EXS x. P x) ** Q) = (EXS x. (P x ** Q))"
- by (force intro!: ext intro: sep_conjI elim: sep_conjE)
-
-lemma sep_conj_exists2:
- "(P ** (EXS x. Q x)) = (EXS x. P ** Q x)"
- by (force intro!: sep_conjI ext elim!: sep_conjE)
-
-lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2
-
-lemma sep_conj_spec:
- "((ALLS x. P x) ** Q) h \<Longrightarrow> (P x ** Q) h"
- by (force intro: sep_conjI elim: sep_conjE)
-
-
-subsection {* Properties of Separating Implication *}
-
-lemma sep_implI:
- assumes a: "\<And>h'. \<lbrakk> h ## h'; P h' \<rbrakk> \<Longrightarrow> Q (h + h')"
- shows "(P \<longrightarrow>* Q) h"
- unfolding sep_impl_def by (auto elim: a)
-
-lemma sep_implD:
- "(x \<longrightarrow>* y) h \<Longrightarrow> \<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h')"
- by (force simp: sep_impl_def)
-
-lemma sep_implE:
- "(x \<longrightarrow>* y) h \<Longrightarrow> (\<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h') \<Longrightarrow> Q) \<Longrightarrow> Q"
- by (auto dest: sep_implD)
-
-lemma sep_impl_sep_true [simp]:
- "(P \<longrightarrow>* sep_true) = sep_true"
- by (force intro!: sep_implI ext)
-
-lemma sep_impl_sep_false [simp]:
- "(sep_false \<longrightarrow>* P) = sep_true"
- by (force intro!: sep_implI ext)
-
-lemma sep_impl_sep_true_P:
- "(sep_true \<longrightarrow>* P) h \<Longrightarrow> P h"
- by (clarsimp dest!: sep_implD elim!: allE[where x=0])
-
-lemma sep_impl_sep_true_false [simp]:
- "(sep_true \<longrightarrow>* sep_false) = sep_false"
- by (force intro!: ext dest: sep_impl_sep_true_P)
-
-lemma sep_conj_sep_impl:
- "\<lbrakk> P h; \<And>h. (P ** Q) h \<Longrightarrow> R h \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>* R) h"
-proof (rule sep_implI)
- fix h' h
- assume "P h" and "h ## h'" and "Q h'"
- hence "(P ** Q) (h + h')" by (force intro: sep_conjI)
- moreover assume "\<And>h. (P ** Q) h \<Longrightarrow> R h"
- ultimately show "R (h + h')" by simp
-qed
-
-lemma sep_conj_sep_impl2:
- "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> (Q \<longrightarrow>* R) h \<rbrakk> \<Longrightarrow> R h"
- by (force dest: sep_implD elim: sep_conjE)
-
-lemma sep_conj_sep_impl_sep_conj2:
- "(P ** R) h \<Longrightarrow> (P ** (Q \<longrightarrow>* (Q ** R))) h"
- by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)
-
-
-subsection {* Pure assertions *}
-
-definition
- pure :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "pure P \<equiv> \<forall>h h'. P h = P h'"
-
-lemma pure_sep_true:
- "pure sep_true"
- by (simp add: pure_def)
-
-lemma pure_sep_false:
- "pure sep_true"
- by (simp add: pure_def)
-
-lemma pure_split:
- "pure P = (P = sep_true \<or> P = sep_false)"
- by (force simp: pure_def intro!: ext)
-
-lemma pure_sep_conj:
- "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<and>* Q)"
- by (force simp: pure_split)
-
-lemma pure_sep_impl:
- "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<longrightarrow>* Q)"
- by (force simp: pure_split)
-
-lemma pure_conj_sep_conj:
- "\<lbrakk> (P and Q) h; pure P \<or> pure Q \<rbrakk> \<Longrightarrow> (P \<and>* Q) h"
- by (metis pure_def sep_add_zero sep_conjI sep_conj_commute sep_disj_zero)
-
-lemma pure_sep_conj_conj:
- "\<lbrakk> (P \<and>* Q) h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P and Q) h"
- by (force simp: pure_split)
-
-lemma pure_conj_sep_conj_assoc:
- "pure P \<Longrightarrow> ((P and Q) \<and>* R) = (P and (Q \<and>* R))"
- by (auto simp: pure_split)
-
-lemma pure_sep_impl_impl:
- "\<lbrakk> (P \<longrightarrow>* Q) h; pure P \<rbrakk> \<Longrightarrow> P h \<longrightarrow> Q h"
- by (force simp: pure_split dest: sep_impl_sep_true_P)
-
-lemma pure_impl_sep_impl:
- "\<lbrakk> P h \<longrightarrow> Q h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P \<longrightarrow>* Q) h"
- by (force simp: pure_split)
-
-lemma pure_conj_right: "(Q \<and>* (\<langle>P'\<rangle> and Q')) = (\<langle>P'\<rangle> and (Q \<and>* Q'))"
- by (rule ext, rule, rule, clarsimp elim!: sep_conjE)
- (erule sep_conj_impl, auto)
-
-lemma pure_conj_right': "(Q \<and>* (P' and \<langle>Q'\<rangle>)) = (\<langle>Q'\<rangle> and (Q \<and>* P'))"
- by (simp add: conj_comms pure_conj_right)
-
-lemma pure_conj_left: "((\<langle>P'\<rangle> and Q') \<and>* Q) = (\<langle>P'\<rangle> and (Q' \<and>* Q))"
- by (simp add: pure_conj_right sep_conj_ac)
-
-lemma pure_conj_left': "((P' and \<langle>Q'\<rangle>) \<and>* Q) = (\<langle>Q'\<rangle> and (P' \<and>* Q))"
- by (subst conj_comms, subst pure_conj_left, simp)
-
-lemmas pure_conj = pure_conj_right pure_conj_right' pure_conj_left
- pure_conj_left'
-
-declare pure_conj[simp add]
-
-
-subsection {* Intuitionistic assertions *}
-
-definition intuitionistic :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "intuitionistic P \<equiv> \<forall>h h'. P h \<and> h \<preceq> h' \<longrightarrow> P h'"
-
-lemma intuitionisticI:
- "(\<And>h h'. \<lbrakk> P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h') \<Longrightarrow> intuitionistic P"
- by (unfold intuitionistic_def, fast)
-
-lemma intuitionisticD:
- "\<lbrakk> intuitionistic P; P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h'"
- by (unfold intuitionistic_def, fast)
-
-lemma pure_intuitionistic:
- "pure P \<Longrightarrow> intuitionistic P"
- by (clarsimp simp: intuitionistic_def pure_def, fast)
-
-lemma intuitionistic_conj:
- "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P and Q)"
- by (force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_disj:
- "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P or Q)"
- by (force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_forall:
- "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (ALLS x. P x)"
- by (force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_exists:
- "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (EXS x. P x)"
- by (force intro: intuitionisticI dest: intuitionisticD)
-
-lemma intuitionistic_sep_conj_sep_true:
- "intuitionistic (sep_true \<and>* P)"
-proof (rule intuitionisticI)
- fix h h' r
- assume a: "(sep_true \<and>* P) h"
- then obtain x y where P: "P y" and h: "h = x + y" and xyd: "x ## y"
- by - (drule sep_conjD, clarsimp)
- moreover assume a2: "h \<preceq> h'"
- then obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
-
- moreover have "(P \<and>* sep_true) (y + (x + z))"
- using P h hzd xyd
- by (metis sep_add_disjI1 sep_disj_commute sep_conjI)
- ultimately show "(sep_true \<and>* P) h'" using hzd
- by (auto simp: sep_conj_commute sep_add_ac dest!: sep_disj_addD)
-qed
-
-lemma intuitionistic_sep_impl_sep_true:
- "intuitionistic (sep_true \<longrightarrow>* P)"
-proof (rule intuitionisticI)
- fix h h'
- assume imp: "(sep_true \<longrightarrow>* P) h" and hh': "h \<preceq> h'"
-
- from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
- show "(sep_true \<longrightarrow>* P) h'" using imp h' hzd
- apply (clarsimp dest!: sep_implD)
- apply (metis sep_add_assoc sep_add_disjD sep_disj_addI3 sep_implI)
- done
-qed
-
-lemma intuitionistic_sep_conj:
- assumes ip: "intuitionistic (P::('a \<Rightarrow> bool))"
- shows "intuitionistic (P \<and>* Q)"
-proof (rule intuitionisticI)
- fix h h'
- assume sc: "(P \<and>* Q) h" and hh': "h \<preceq> h'"
-
- from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
-
- from sc obtain x y where px: "P x" and qy: "Q y"
- and h: "h = x + y" and xyd: "x ## y"
- by (clarsimp simp: sep_conj_def)
-
- have "x ## z" using hzd h xyd
- by (metis sep_add_disjD)
-
- with ip px have "P (x + z)"
- by (fastforce elim: intuitionisticD sep_substate_disj_add)
-
- thus "(P \<and>* Q) h'" using h' h hzd qy xyd
- by (metis (full_types) sep_add_commute sep_add_disjD sep_add_disjI2
- sep_add_left_commute sep_conjI)
-qed
-
-lemma intuitionistic_sep_impl:
- assumes iq: "intuitionistic Q"
- shows "intuitionistic (P \<longrightarrow>* Q)"
-proof (rule intuitionisticI)
- fix h h'
- assume imp: "(P \<longrightarrow>* Q) h" and hh': "h \<preceq> h'"
-
- from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
- by (clarsimp simp: sep_substate_def)
-
- {
- fix x
- assume px: "P x" and hzx: "h + z ## x"
-
- have "h + x \<preceq> h + x + z" using hzx hzd
- by (metis sep_add_disjI1 sep_substate_def)
-
- with imp hzd iq px hzx
- have "Q (h + z + x)"
- by (metis intuitionisticD sep_add_assoc sep_add_ac sep_add_disjD sep_implE)
- }
-
- with imp h' hzd iq show "(P \<longrightarrow>* Q) h'"
- by (fastforce intro: sep_implI)
-qed
-
-lemma strongest_intuitionistic:
- "\<not> (\<exists>Q. (\<forall>h. (Q h \<longrightarrow> (P \<and>* sep_true) h)) \<and> intuitionistic Q \<and>
- Q \<noteq> (P \<and>* sep_true) \<and> (\<forall>h. P h \<longrightarrow> Q h))"
- by (fastforce intro!: ext sep_substate_disj_add
- dest!: sep_conjD intuitionisticD)
-
-lemma weakest_intuitionistic:
- "\<not> (\<exists>Q. (\<forall>h. ((sep_true \<longrightarrow>* P) h \<longrightarrow> Q h)) \<and> intuitionistic Q \<and>
- Q \<noteq> (sep_true \<longrightarrow>* P) \<and> (\<forall>h. Q h \<longrightarrow> P h))"
- apply (clarsimp intro!: ext)
- apply (rule iffI)
- apply (rule sep_implI)
- apply (drule_tac h="x" and h'="x + h'" in intuitionisticD)
- apply (clarsimp simp: sep_add_ac sep_substate_disj_add)+
- done
-
-lemma intuitionistic_sep_conj_sep_true_P:
- "\<lbrakk> (P \<and>* sep_true) s; intuitionistic P \<rbrakk> \<Longrightarrow> P s"
- by (force dest: intuitionisticD elim: sep_conjE sep_substate_disj_add)
-
-lemma intuitionistic_sep_conj_sep_true_simp:
- "intuitionistic P \<Longrightarrow> (P \<and>* sep_true) = P"
- by (fast intro!: sep_conj_sep_true ext
- elim: intuitionistic_sep_conj_sep_true_P)
-
-lemma intuitionistic_sep_impl_sep_true_P:
- "\<lbrakk> P h; intuitionistic P \<rbrakk> \<Longrightarrow> (sep_true \<longrightarrow>* P) h"
- by (force intro!: sep_implI dest: intuitionisticD
- intro: sep_substate_disj_add)
-
-lemma intuitionistic_sep_impl_sep_true_simp:
- "intuitionistic P \<Longrightarrow> (sep_true \<longrightarrow>* P) = P"
- by (fast intro!: ext
- elim: sep_impl_sep_true_P intuitionistic_sep_impl_sep_true_P)
-
-
-subsection {* Strictly exact assertions *}
-
-definition strictly_exact :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "strictly_exact P \<equiv> \<forall>h h'. P h \<and> P h' \<longrightarrow> h = h'"
-
-lemma strictly_exactD:
- "\<lbrakk> strictly_exact P; P h; P h' \<rbrakk> \<Longrightarrow> h = h'"
- by (unfold strictly_exact_def, fast)
-
-lemma strictly_exactI:
- "(\<And>h h'. \<lbrakk> P h; P h' \<rbrakk> \<Longrightarrow> h = h') \<Longrightarrow> strictly_exact P"
- by (unfold strictly_exact_def, fast)
-
-lemma strictly_exact_sep_conj:
- "\<lbrakk> strictly_exact P; strictly_exact Q \<rbrakk> \<Longrightarrow> strictly_exact (P \<and>* Q)"
- apply (rule strictly_exactI)
- apply (erule sep_conjE)+
- apply (drule_tac h="x" and h'="xa" in strictly_exactD, assumption+)
- apply (drule_tac h="y" and h'="ya" in strictly_exactD, assumption+)
- apply clarsimp
- done
-
-lemma strictly_exact_conj_impl:
- "\<lbrakk> (Q \<and>* sep_true) h; P h; strictly_exact Q \<rbrakk> \<Longrightarrow> (Q \<and>* (Q \<longrightarrow>* P)) h"
- by (force intro: sep_conjI sep_implI dest: strictly_exactD elim!: sep_conjE
- simp: sep_add_commute sep_add_assoc)
-
-end
-
-interpretation sep: ab_semigroup_mult "op **"
- by (rule ab_semigroup_mult_sep_conj)
-
-interpretation sep: comm_monoid_add "op **" \<box>
- by (rule comm_monoid_add)
-
-
-section {* Separation Algebra with Stronger, but More Intuitive Disjunction Axiom *}
-
-class stronger_sep_algebra = pre_sep_algebra +
- assumes sep_add_disj_eq [simp]: "y ## z \<Longrightarrow> x ## y + z = (x ## y \<and> x ## z)"
-begin
-
-lemma sep_disj_add_eq [simp]: "x ## y \<Longrightarrow> x + y ## z = (x ## z \<and> y ## z)"
- by (metis sep_add_disj_eq sep_disj_commute)
-
-subclass sep_algebra by default auto
-
-end
-
-
-section {* Folding separating conjunction over lists of predicates *}
-
-lemma sep_list_conj_Nil [simp]: "\<And>* [] = \<box>"
- by (simp add: sep_list_conj_def)
-
-(* apparently these two are rarely used and had to be removed from List.thy *)
-lemma (in semigroup_add) foldl_assoc:
-shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
-by (induct zs arbitrary: y) (simp_all add:add_assoc)
-
-lemma (in monoid_add) foldl_absorb0:
-shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
-by (induct zs) (simp_all add:foldl_assoc)
-
-lemma sep_list_conj_Cons [simp]: "\<And>* (x#xs) = (x ** \<And>* xs)"
- by (simp add: sep_list_conj_def sep.foldl_absorb0)
-
-lemma sep_list_conj_append [simp]: "\<And>* (xs @ ys) = (\<And>* xs ** \<And>* ys)"
- by (simp add: sep_list_conj_def sep.foldl_absorb0)
-
-lemma (in comm_monoid_add) foldl_map_filter:
- "foldl op + 0 (map f (filter P xs)) +
- foldl op + 0 (map f (filter (not P) xs))
- = foldl op + 0 (map f xs)"
-proof (induct xs)
- case Nil thus ?case by clarsimp
-next
- case (Cons x xs)
- hence IH: "foldl op + 0 (map f xs) =
- foldl op + 0 (map f (filter P xs)) +
- foldl op + 0 (map f [x\<leftarrow>xs . \<not> P x])"
- by (simp only: eq_commute)
-
- have foldl_Cons':
- "\<And>x xs. foldl op + 0 (x # xs) = x + (foldl op + 0 xs)"
- by (simp, subst foldl_absorb0[symmetric], rule refl)
-
- { assume "P x"
- hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
- } moreover {
- assume "\<not> P x"
- hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
- }
- ultimately show ?case by blast
-qed
-
-
-section {* Separation Algebra with a Cancellative Monoid (for completeness) *}
-
-text {*
- Separation algebra with a cancellative monoid. The results of being a precise
- assertion (distributivity over separating conjunction) require this.
- although we never actually use this property in our developments, we keep
- it here for completeness.
- *}
-class cancellative_sep_algebra = sep_algebra +
- assumes sep_add_cancelD: "\<lbrakk> x + z = y + z ; x ## z ; y ## z \<rbrakk> \<Longrightarrow> x = y"
-begin
-
-definition
- (* In any heap, there exists at most one subheap for which P holds *)
- precise :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "precise P = (\<forall>h hp hp'. hp \<preceq> h \<and> P hp \<and> hp' \<preceq> h \<and> P hp' \<longrightarrow> hp = hp')"
-
-lemma "precise (op = s)"
- by (metis (full_types) precise_def)
-
-lemma sep_add_cancel:
- "x ## z \<Longrightarrow> y ## z \<Longrightarrow> (x + z = y + z) = (x = y)"
- by (metis sep_add_cancelD)
-
-lemma precise_distribute:
- "precise P = (\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P)))"
-proof (rule iffI)
- assume pp: "precise P"
- {
- fix Q R
- fix h hp hp' s
-
- { assume a: "((Q and R) \<and>* P) s"
- hence "((Q \<and>* P) and (R \<and>* P)) s"
- by (fastforce dest!: sep_conjD elim: sep_conjI)
- }
- moreover
- { assume qs: "(Q \<and>* P) s" and qr: "(R \<and>* P) s"
-
- from qs obtain x y where sxy: "s = x + y" and xy: "x ## y"
- and x: "Q x" and y: "P y"
- by (fastforce dest!: sep_conjD)
- from qr obtain x' y' where sxy': "s = x' + y'" and xy': "x' ## y'"
- and x': "R x'" and y': "P y'"
- by (fastforce dest!: sep_conjD)
-
- from sxy have ys: "y \<preceq> x + y" using xy
- by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
- from sxy' have ys': "y' \<preceq> x' + y'" using xy'
- by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
-
- from pp have yy: "y = y'" using sxy sxy' xy xy' y y' ys ys'
- by (fastforce simp: precise_def)
-
- hence "x = x'" using sxy sxy' xy xy'
- by (fastforce dest!: sep_add_cancelD)
-
- hence "((Q and R) \<and>* P) s" using sxy x x' yy y' xy'
- by (fastforce intro: sep_conjI)
- }
- ultimately
- have "((Q and R) \<and>* P) s = ((Q \<and>* P) and (R \<and>* P)) s" using pp by blast
- }
- thus "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))" by (blast intro!: ext)
-
-next
- assume a: "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))"
- thus "precise P"
- proof (clarsimp simp: precise_def)
- fix h hp hp' Q R
- assume hp: "hp \<preceq> h" and hp': "hp' \<preceq> h" and php: "P hp" and php': "P hp'"
-
- obtain z where hhp: "h = hp + z" and hpz: "hp ## z" using hp
- by (clarsimp simp: sep_substate_def)
- obtain z' where hhp': "h = hp' + z'" and hpz': "hp' ## z'" using hp'
- by (clarsimp simp: sep_substate_def)
-
- have h_eq: "z' + hp' = z + hp" using hhp hhp' hpz hpz'
- by (fastforce simp: sep_add_ac)
-
- from hhp hhp' a hpz hpz' h_eq
- have "\<forall>Q R. ((Q and R) \<and>* P) (z + hp) = ((Q \<and>* P) and (R \<and>* P)) (z' + hp')"
- by (fastforce simp: h_eq sep_add_ac sep_conj_commute)
-
- hence "((op = z and op = z') \<and>* P) (z + hp) =
- ((op = z \<and>* P) and (op = z' \<and>* P)) (z' + hp')" by blast
-
- thus "hp = hp'" using php php' hpz hpz' h_eq
- by (fastforce dest!: iffD2 cong: conj_cong
- simp: sep_add_ac sep_add_cancel sep_conj_def)
- qed
-qed
-
-lemma strictly_precise: "strictly_exact P \<Longrightarrow> precise P"
- by (metis precise_def strictly_exactD)
-
-end
-
-end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Separation_Algebra.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,815 @@
+(* Authors: Gerwin Klein and Rafal Kolanski, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Abstract Separation Algebra"
+
+theory Separation_Algebra
+imports Main
+begin
+
+
+text {* This theory is the main abstract separation algebra development *}
+
+
+section {* Input syntax for lifting boolean predicates to separation predicates *}
+
+abbreviation (input)
+ pred_and :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "and" 35) where
+ "a and b \<equiv> \<lambda>s. a s \<and> b s"
+
+abbreviation (input)
+ pred_or :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "or" 30) where
+ "a or b \<equiv> \<lambda>s. a s \<or> b s"
+
+abbreviation (input)
+ pred_not :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" ("not _" [40] 40) where
+ "not a \<equiv> \<lambda>s. \<not>a s"
+
+abbreviation (input)
+ pred_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "imp" 25) where
+ "a imp b \<equiv> \<lambda>s. a s \<longrightarrow> b s"
+
+abbreviation (input)
+ pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
+ "\<langle>f\<rangle> \<equiv> \<lambda>s. f"
+
+(* abbreviation *)
+ definition pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
+ "EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"
+
+abbreviation (input)
+ pred_all :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "ALLS " 10) where
+ "ALLS x. P x \<equiv> \<lambda>s. \<forall>x. P x s"
+
+
+section {* Associative/Commutative Monoid Basis of Separation Algebras *}
+
+class pre_sep_algebra = zero + plus +
+ fixes sep_disj :: "'a => 'a => bool" (infix "##" 60)
+
+ assumes sep_disj_zero [simp]: "x ## 0"
+ assumes sep_disj_commuteI: "x ## y \<Longrightarrow> y ## x"
+
+ assumes sep_add_zero [simp]: "x + 0 = x"
+ assumes sep_add_commute: "x ## y \<Longrightarrow> x + y = y + x"
+
+ assumes sep_add_assoc:
+ "\<lbrakk> x ## y; y ## z; x ## z \<rbrakk> \<Longrightarrow> (x + y) + z = x + (y + z)"
+begin
+
+lemma sep_disj_commute: "x ## y = y ## x"
+ by (blast intro: sep_disj_commuteI)
+
+lemma sep_add_left_commute:
+ assumes a: "a ## b" "b ## c" "a ## c"
+ shows "b + (a + c) = a + (b + c)" (is "?lhs = ?rhs")
+proof -
+ have "?lhs = b + a + c" using a
+ by (simp add: sep_add_assoc[symmetric] sep_disj_commute)
+ also have "... = a + b + c" using a
+ by (simp add: sep_add_commute sep_disj_commute)
+ also have "... = ?rhs" using a
+ by (simp add: sep_add_assoc sep_disj_commute)
+ finally show ?thesis .
+qed
+
+lemmas sep_add_ac = sep_add_assoc sep_add_commute sep_add_left_commute
+ sep_disj_commute (* nearly always necessary *)
+
+end
+
+
+section {* Separation Algebra as Defined by Calcagno et al. *}
+
+class sep_algebra = pre_sep_algebra +
+ assumes sep_disj_addD1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y"
+ assumes sep_disj_addI1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + y ## z"
+begin
+
+subsection {* Basic Construct Definitions and Abbreviations *}
+
+definition
+ sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "**" 35)
+ where
+ "P ** Q \<equiv> \<lambda>h. \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
+
+notation
+ sep_conj (infixr "\<and>*" 35)
+
+definition
+ sep_empty :: "'a \<Rightarrow> bool" ("\<box>") where
+ "\<box> \<equiv> \<lambda>h. h = 0"
+
+definition
+ sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>*" 25)
+ where
+ "P \<longrightarrow>* Q \<equiv> \<lambda>h. \<forall>h'. h ## h' \<and> P h' \<longrightarrow> Q (h + h')"
+
+definition
+ sep_substate :: "'a => 'a => bool" (infix "\<preceq>" 60) where
+ "x \<preceq> y \<equiv> \<exists>z. x ## z \<and> x + z = y"
+
+(* We want these to be abbreviations not definitions, because basic True and
+ False will occur by simplification in sep_conj terms *)
+abbreviation
+ "sep_true \<equiv> \<langle>True\<rangle>"
+
+abbreviation
+ "sep_false \<equiv> \<langle>False\<rangle>"
+
+definition
+ sep_list_conj :: "('a \<Rightarrow> bool) list \<Rightarrow> ('a \<Rightarrow> bool)" ("\<And>* _" [60] 90) where
+ "sep_list_conj Ps \<equiv> foldl (op **) \<box> Ps"
+
+
+subsection {* Disjunction/Addition Properties *}
+
+lemma disjoint_zero_sym [simp]: "0 ## x"
+ by (simp add: sep_disj_commute)
+
+lemma sep_add_zero_sym [simp]: "0 + x = x"
+ by (simp add: sep_add_commute)
+
+lemma sep_disj_addD2: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## z"
+ by (metis sep_disj_addD1 sep_add_ac)
+
+lemma sep_disj_addD: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y \<and> x ## z"
+ by (metis sep_disj_addD1 sep_disj_addD2)
+
+lemma sep_add_disjD: "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## z \<and> y ## z"
+ by (metis sep_disj_addD sep_disj_commuteI)
+
+lemma sep_disj_addI2:
+ "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + z ## y"
+ by (metis sep_add_ac sep_disj_addI1)
+
+lemma sep_add_disjI1:
+ "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x + z ## y"
+ by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
+
+lemma sep_add_disjI2:
+ "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> z + y ## x"
+ by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
+
+lemma sep_disj_addI3:
+ "x + y ## z \<Longrightarrow> x ## y \<Longrightarrow> x ## y + z"
+ by (metis sep_add_ac sep_add_disjD sep_add_disjI2)
+
+lemma sep_disj_add:
+ "\<lbrakk> y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## y + z = x + y ## z"
+ by (metis sep_disj_addI1 sep_disj_addI3)
+
+
+subsection {* Substate Properties *}
+
+lemma sep_substate_disj_add:
+ "x ## y \<Longrightarrow> x \<preceq> x + y"
+ unfolding sep_substate_def by blast
+
+lemma sep_substate_disj_add':
+ "x ## y \<Longrightarrow> x \<preceq> y + x"
+ by (simp add: sep_add_ac sep_substate_disj_add)
+
+
+subsection {* Separating Conjunction Properties *}
+
+lemma sep_conjD:
+ "(P \<and>* Q) h \<Longrightarrow> \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
+ by (simp add: sep_conj_def)
+
+lemma sep_conjE:
+ "\<lbrakk> (P ** Q) h; \<And>x y. \<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"
+ by (auto simp: sep_conj_def)
+
+lemma sep_conjI:
+ "\<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> (P ** Q) h"
+ by (auto simp: sep_conj_def)
+
+lemma sep_conj_commuteI:
+ "(P ** Q) h \<Longrightarrow> (Q ** P) h"
+ by (auto intro!: sep_conjI elim!: sep_conjE simp: sep_add_ac)
+
+lemma sep_conj_commute:
+ "(P ** Q) = (Q ** P)"
+ by (rule ext) (auto intro: sep_conj_commuteI)
+
+lemma sep_conj_assoc:
+ "((P ** Q) ** R) = (P ** Q ** R)" (is "?lhs = ?rhs")
+proof (rule ext, rule iffI)
+ fix h
+ assume a: "?lhs h"
+ then obtain x y z where "P x" and "Q y" and "R z"
+ and "x ## y" and "x ## z" and "y ## z" and "x + y ## z"
+ and "h = x + y + z"
+ by (auto dest!: sep_conjD dest: sep_add_disjD)
+ moreover
+ then have "x ## y + z"
+ by (simp add: sep_disj_add)
+ ultimately
+ show "?rhs h"
+ by (auto simp: sep_add_ac intro!: sep_conjI)
+next
+ fix h
+ assume a: "?rhs h"
+ then obtain x y z where "P x" and "Q y" and "R z"
+ and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"
+ and "h = x + y + z"
+ by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)
+ thus "?lhs h"
+ by (metis sep_conj_def sep_disj_addI1)
+qed
+
+lemma sep_conj_impl:
+ "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> P' h; \<And>h. Q h \<Longrightarrow> Q' h \<rbrakk> \<Longrightarrow> (P' ** Q') h"
+ by (erule sep_conjE, auto intro!: sep_conjI)
+
+lemma sep_conj_impl1:
+ assumes P: "\<And>h. P h \<Longrightarrow> I h"
+ shows "(P ** R) h \<Longrightarrow> (I ** R) h"
+ by (auto intro: sep_conj_impl P)
+
+lemma sep_globalise:
+ "\<lbrakk> (P ** R) h; (\<And>h. P h \<Longrightarrow> Q h) \<rbrakk> \<Longrightarrow> (Q ** R) h"
+ by (fast elim: sep_conj_impl)
+
+lemma sep_conj_trivial_strip2:
+ "Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp
+
+lemma disjoint_subheaps_exist:
+ "\<exists>x y. x ## y \<and> h = x + y"
+ by (rule_tac x=0 in exI, auto)
+
+lemma sep_conj_left_commute: (* for permutative rewriting *)
+ "(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")
+proof -
+ have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_commute)
+ also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)
+ finally show ?thesis by (simp add: sep_conj_commute)
+qed
+
+lemmas sep_conj_ac = sep_conj_commute sep_conj_assoc sep_conj_left_commute
+
+lemma ab_semigroup_mult_sep_conj: "class.ab_semigroup_mult op **"
+ by (unfold_locales)
+ (auto simp: sep_conj_ac)
+
+lemma sep_empty_zero [simp,intro!]: "\<box> 0"
+ by (simp add: sep_empty_def)
+
+
+subsection {* Properties of @{text sep_true} and @{text sep_false} *}
+
+lemma sep_conj_sep_true:
+ "P h \<Longrightarrow> (P ** sep_true) h"
+ by (simp add: sep_conjI[where y=0])
+
+lemma sep_conj_sep_true':
+ "P h \<Longrightarrow> (sep_true ** P) h"
+ by (simp add: sep_conjI[where x=0])
+
+lemma sep_conj_true [simp]:
+ "(sep_true ** sep_true) = sep_true"
+ unfolding sep_conj_def
+ by (auto intro!: ext intro: disjoint_subheaps_exist)
+
+lemma sep_conj_false_right [simp]:
+ "(P ** sep_false) = sep_false"
+ by (force elim: sep_conjE intro!: ext)
+
+lemma sep_conj_false_left [simp]:
+ "(sep_false ** P) = sep_false"
+ by (subst sep_conj_commute) (rule sep_conj_false_right)
+
+
+
+subsection {* Properties of zero (@{const sep_empty}) *}
+
+lemma sep_conj_empty [simp]:
+ "(P ** \<box>) = P"
+ by (simp add: sep_conj_def sep_empty_def)
+
+lemma sep_conj_empty'[simp]:
+ "(\<box> ** P) = P"
+ by (subst sep_conj_commute, rule sep_conj_empty)
+
+lemma sep_conj_sep_emptyI:
+ "P h \<Longrightarrow> (P ** \<box>) h"
+ by simp
+
+lemma sep_conj_sep_emptyE:
+ "\<lbrakk> P s; (P ** \<box>) s \<Longrightarrow> (Q ** R) s \<rbrakk> \<Longrightarrow> (Q ** R) s"
+ by simp
+
+lemma monoid_add: "class.monoid_add (op **) \<box>"
+ by (unfold_locales) (auto simp: sep_conj_ac)
+
+lemma comm_monoid_add: "class.comm_monoid_add op ** \<box>"
+ by (unfold_locales) (auto simp: sep_conj_ac)
+
+
+subsection {* Properties of top (@{text sep_true}) *}
+
+lemma sep_conj_true_P [simp]:
+ "(sep_true ** (sep_true ** P)) = (sep_true ** P)"
+ by (simp add: sep_conj_assoc[symmetric])
+
+lemma sep_conj_disj:
+ "((P or Q) ** R) = ((P ** R) or (Q ** R))"
+ by (auto simp: sep_conj_def intro!: ext)
+
+lemma sep_conj_sep_true_left:
+ "(P ** Q) h \<Longrightarrow> (sep_true ** Q) h"
+ by (erule sep_conj_impl, simp+)
+
+lemma sep_conj_sep_true_right:
+ "(P ** Q) h \<Longrightarrow> (P ** sep_true) h"
+ by (subst (asm) sep_conj_commute, drule sep_conj_sep_true_left,
+ simp add: sep_conj_ac)
+
+
+subsection {* Separating Conjunction with Quantifiers *}
+
+lemma sep_conj_conj:
+ "((P and Q) ** R) h \<Longrightarrow> ((P ** R) and (Q ** R)) h"
+ by (force intro: sep_conjI elim!: sep_conjE)
+
+lemma sep_conj_exists1:
+ "((EXS x. P x) ** Q) = (EXS x. (P x ** Q))"
+ by (unfold pred_ex_def, force intro!: ext intro: sep_conjI elim: sep_conjE)
+
+lemma sep_conj_exists2:
+ "(P ** (EXS x. Q x)) = (EXS x. P ** Q x)"
+ by (unfold pred_ex_def, force intro!: sep_conjI ext elim!: sep_conjE)
+
+lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2
+
+lemma sep_conj_spec:
+ "((ALLS x. P x) ** Q) h \<Longrightarrow> (P x ** Q) h"
+ by (force intro: sep_conjI elim: sep_conjE)
+
+
+subsection {* Properties of Separating Implication *}
+
+lemma sep_implI:
+ assumes a: "\<And>h'. \<lbrakk> h ## h'; P h' \<rbrakk> \<Longrightarrow> Q (h + h')"
+ shows "(P \<longrightarrow>* Q) h"
+ unfolding sep_impl_def by (auto elim: a)
+
+lemma sep_implD:
+ "(x \<longrightarrow>* y) h \<Longrightarrow> \<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h')"
+ by (force simp: sep_impl_def)
+
+lemma sep_implE:
+ "(x \<longrightarrow>* y) h \<Longrightarrow> (\<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h') \<Longrightarrow> Q) \<Longrightarrow> Q"
+ by (auto dest: sep_implD)
+
+lemma sep_impl_sep_true [simp]:
+ "(P \<longrightarrow>* sep_true) = sep_true"
+ by (force intro!: sep_implI ext)
+
+lemma sep_impl_sep_false [simp]:
+ "(sep_false \<longrightarrow>* P) = sep_true"
+ by (force intro!: sep_implI ext)
+
+lemma sep_impl_sep_true_P:
+ "(sep_true \<longrightarrow>* P) h \<Longrightarrow> P h"
+ by (clarsimp dest!: sep_implD elim!: allE[where x=0])
+
+lemma sep_impl_sep_true_false [simp]:
+ "(sep_true \<longrightarrow>* sep_false) = sep_false"
+ by (force intro!: ext dest: sep_impl_sep_true_P)
+
+lemma sep_conj_sep_impl:
+ "\<lbrakk> P h; \<And>h. (P ** Q) h \<Longrightarrow> R h \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>* R) h"
+proof (rule sep_implI)
+ fix h' h
+ assume "P h" and "h ## h'" and "Q h'"
+ hence "(P ** Q) (h + h')" by (force intro: sep_conjI)
+ moreover assume "\<And>h. (P ** Q) h \<Longrightarrow> R h"
+ ultimately show "R (h + h')" by simp
+qed
+
+lemma sep_conj_sep_impl2:
+ "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> (Q \<longrightarrow>* R) h \<rbrakk> \<Longrightarrow> R h"
+ by (force dest: sep_implD elim: sep_conjE)
+
+lemma sep_conj_sep_impl_sep_conj2:
+ "(P ** R) h \<Longrightarrow> (P ** (Q \<longrightarrow>* (Q ** R))) h"
+ by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)
+
+
+subsection {* Pure assertions *}
+
+definition
+ pure :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "pure P \<equiv> \<forall>h h'. P h = P h'"
+
+lemma pure_sep_true:
+ "pure sep_true"
+ by (simp add: pure_def)
+
+lemma pure_sep_false:
+ "pure sep_true"
+ by (simp add: pure_def)
+
+lemma pure_split:
+ "pure P = (P = sep_true \<or> P = sep_false)"
+ by (force simp: pure_def intro!: ext)
+
+lemma pure_sep_conj:
+ "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<and>* Q)"
+ by (force simp: pure_split)
+
+lemma pure_sep_impl:
+ "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<longrightarrow>* Q)"
+ by (force simp: pure_split)
+
+lemma pure_conj_sep_conj:
+ "\<lbrakk> (P and Q) h; pure P \<or> pure Q \<rbrakk> \<Longrightarrow> (P \<and>* Q) h"
+ by (metis pure_def sep_add_zero sep_conjI sep_conj_commute sep_disj_zero)
+
+lemma pure_sep_conj_conj:
+ "\<lbrakk> (P \<and>* Q) h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P and Q) h"
+ by (force simp: pure_split)
+
+lemma pure_conj_sep_conj_assoc:
+ "pure P \<Longrightarrow> ((P and Q) \<and>* R) = (P and (Q \<and>* R))"
+ by (auto simp: pure_split)
+
+lemma pure_sep_impl_impl:
+ "\<lbrakk> (P \<longrightarrow>* Q) h; pure P \<rbrakk> \<Longrightarrow> P h \<longrightarrow> Q h"
+ by (force simp: pure_split dest: sep_impl_sep_true_P)
+
+lemma pure_impl_sep_impl:
+ "\<lbrakk> P h \<longrightarrow> Q h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P \<longrightarrow>* Q) h"
+ by (force simp: pure_split)
+
+lemma pure_conj_right: "(Q \<and>* (\<langle>P'\<rangle> and Q')) = (\<langle>P'\<rangle> and (Q \<and>* Q'))"
+ by (rule ext, rule, rule, clarsimp elim!: sep_conjE)
+ (erule sep_conj_impl, auto)
+
+lemma pure_conj_right': "(Q \<and>* (P' and \<langle>Q'\<rangle>)) = (\<langle>Q'\<rangle> and (Q \<and>* P'))"
+ by (simp add: conj_comms pure_conj_right)
+
+lemma pure_conj_left: "((\<langle>P'\<rangle> and Q') \<and>* Q) = (\<langle>P'\<rangle> and (Q' \<and>* Q))"
+ by (simp add: pure_conj_right sep_conj_ac)
+
+lemma pure_conj_left': "((P' and \<langle>Q'\<rangle>) \<and>* Q) = (\<langle>Q'\<rangle> and (P' \<and>* Q))"
+ by (subst conj_comms, subst pure_conj_left, simp)
+
+lemmas pure_conj = pure_conj_right pure_conj_right' pure_conj_left
+ pure_conj_left'
+
+declare pure_conj[simp add]
+
+
+subsection {* Intuitionistic assertions *}
+
+definition intuitionistic :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "intuitionistic P \<equiv> \<forall>h h'. P h \<and> h \<preceq> h' \<longrightarrow> P h'"
+
+lemma intuitionisticI:
+ "(\<And>h h'. \<lbrakk> P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h') \<Longrightarrow> intuitionistic P"
+ by (unfold intuitionistic_def, fast)
+
+lemma intuitionisticD:
+ "\<lbrakk> intuitionistic P; P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h'"
+ by (unfold intuitionistic_def, fast)
+
+lemma pure_intuitionistic:
+ "pure P \<Longrightarrow> intuitionistic P"
+ by (clarsimp simp: intuitionistic_def pure_def, fast)
+
+lemma intuitionistic_conj:
+ "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P and Q)"
+ by (force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_disj:
+ "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P or Q)"
+ by (force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_forall:
+ "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (ALLS x. P x)"
+ by (force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_exists:
+ "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (EXS x. P x)"
+ by (unfold pred_ex_def, force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_sep_conj_sep_true:
+ "intuitionistic (sep_true \<and>* P)"
+proof (rule intuitionisticI)
+ fix h h' r
+ assume a: "(sep_true \<and>* P) h"
+ then obtain x y where P: "P y" and h: "h = x + y" and xyd: "x ## y"
+ by - (drule sep_conjD, clarsimp)
+ moreover assume a2: "h \<preceq> h'"
+ then obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+
+ moreover have "(P \<and>* sep_true) (y + (x + z))"
+ using P h hzd xyd
+ by (metis sep_add_disjI1 sep_disj_commute sep_conjI)
+ ultimately show "(sep_true \<and>* P) h'" using hzd
+ by (auto simp: sep_conj_commute sep_add_ac dest!: sep_disj_addD)
+qed
+
+lemma intuitionistic_sep_impl_sep_true:
+ "intuitionistic (sep_true \<longrightarrow>* P)"
+proof (rule intuitionisticI)
+ fix h h'
+ assume imp: "(sep_true \<longrightarrow>* P) h" and hh': "h \<preceq> h'"
+
+ from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+ show "(sep_true \<longrightarrow>* P) h'" using imp h' hzd
+ apply (clarsimp dest!: sep_implD)
+ apply (metis sep_add_assoc sep_add_disjD sep_disj_addI3 sep_implI)
+ done
+qed
+
+lemma intuitionistic_sep_conj:
+ assumes ip: "intuitionistic (P::('a \<Rightarrow> bool))"
+ shows "intuitionistic (P \<and>* Q)"
+proof (rule intuitionisticI)
+ fix h h'
+ assume sc: "(P \<and>* Q) h" and hh': "h \<preceq> h'"
+
+ from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+
+ from sc obtain x y where px: "P x" and qy: "Q y"
+ and h: "h = x + y" and xyd: "x ## y"
+ by (clarsimp simp: sep_conj_def)
+
+ have "x ## z" using hzd h xyd
+ by (metis sep_add_disjD)
+
+ with ip px have "P (x + z)"
+ by (fastforce elim: intuitionisticD sep_substate_disj_add)
+
+ thus "(P \<and>* Q) h'" using h' h hzd qy xyd
+ by (metis (full_types) sep_add_commute sep_add_disjD sep_add_disjI2
+ sep_add_left_commute sep_conjI)
+qed
+
+lemma intuitionistic_sep_impl:
+ assumes iq: "intuitionistic Q"
+ shows "intuitionistic (P \<longrightarrow>* Q)"
+proof (rule intuitionisticI)
+ fix h h'
+ assume imp: "(P \<longrightarrow>* Q) h" and hh': "h \<preceq> h'"
+
+ from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+
+ {
+ fix x
+ assume px: "P x" and hzx: "h + z ## x"
+
+ have "h + x \<preceq> h + x + z" using hzx hzd
+ by (metis sep_add_disjI1 sep_substate_def)
+
+ with imp hzd iq px hzx
+ have "Q (h + z + x)"
+ by (metis intuitionisticD sep_add_assoc sep_add_ac sep_add_disjD sep_implE)
+ }
+
+ with imp h' hzd iq show "(P \<longrightarrow>* Q) h'"
+ by (fastforce intro: sep_implI)
+qed
+
+lemma strongest_intuitionistic:
+ "\<not> (\<exists>Q. (\<forall>h. (Q h \<longrightarrow> (P \<and>* sep_true) h)) \<and> intuitionistic Q \<and>
+ Q \<noteq> (P \<and>* sep_true) \<and> (\<forall>h. P h \<longrightarrow> Q h))"
+ by (fastforce intro!: ext sep_substate_disj_add
+ dest!: sep_conjD intuitionisticD)
+
+lemma weakest_intuitionistic:
+ "\<not> (\<exists>Q. (\<forall>h. ((sep_true \<longrightarrow>* P) h \<longrightarrow> Q h)) \<and> intuitionistic Q \<and>
+ Q \<noteq> (sep_true \<longrightarrow>* P) \<and> (\<forall>h. Q h \<longrightarrow> P h))"
+ apply (clarsimp intro!: ext)
+ apply (rule iffI)
+ apply (rule sep_implI)
+ apply (drule_tac h="x" and h'="x + h'" in intuitionisticD)
+ apply (clarsimp simp: sep_add_ac sep_substate_disj_add)+
+ done
+
+lemma intuitionistic_sep_conj_sep_true_P:
+ "\<lbrakk> (P \<and>* sep_true) s; intuitionistic P \<rbrakk> \<Longrightarrow> P s"
+ by (force dest: intuitionisticD elim: sep_conjE sep_substate_disj_add)
+
+lemma intuitionistic_sep_conj_sep_true_simp:
+ "intuitionistic P \<Longrightarrow> (P \<and>* sep_true) = P"
+ by (fast intro!: sep_conj_sep_true ext
+ elim: intuitionistic_sep_conj_sep_true_P)
+
+lemma intuitionistic_sep_impl_sep_true_P:
+ "\<lbrakk> P h; intuitionistic P \<rbrakk> \<Longrightarrow> (sep_true \<longrightarrow>* P) h"
+ by (force intro!: sep_implI dest: intuitionisticD
+ intro: sep_substate_disj_add)
+
+lemma intuitionistic_sep_impl_sep_true_simp:
+ "intuitionistic P \<Longrightarrow> (sep_true \<longrightarrow>* P) = P"
+ by (fast intro!: ext
+ elim: sep_impl_sep_true_P intuitionistic_sep_impl_sep_true_P)
+
+
+subsection {* Strictly exact assertions *}
+
+definition strictly_exact :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "strictly_exact P \<equiv> \<forall>h h'. P h \<and> P h' \<longrightarrow> h = h'"
+
+lemma strictly_exactD:
+ "\<lbrakk> strictly_exact P; P h; P h' \<rbrakk> \<Longrightarrow> h = h'"
+ by (unfold strictly_exact_def, fast)
+
+lemma strictly_exactI:
+ "(\<And>h h'. \<lbrakk> P h; P h' \<rbrakk> \<Longrightarrow> h = h') \<Longrightarrow> strictly_exact P"
+ by (unfold strictly_exact_def, fast)
+
+lemma strictly_exact_sep_conj:
+ "\<lbrakk> strictly_exact P; strictly_exact Q \<rbrakk> \<Longrightarrow> strictly_exact (P \<and>* Q)"
+ apply (rule strictly_exactI)
+ apply (erule sep_conjE)+
+ apply (drule_tac h="x" and h'="xa" in strictly_exactD, assumption+)
+ apply (drule_tac h="y" and h'="ya" in strictly_exactD, assumption+)
+ apply clarsimp
+ done
+
+lemma strictly_exact_conj_impl:
+ "\<lbrakk> (Q \<and>* sep_true) h; P h; strictly_exact Q \<rbrakk> \<Longrightarrow> (Q \<and>* (Q \<longrightarrow>* P)) h"
+ by (force intro: sep_conjI sep_implI dest: strictly_exactD elim!: sep_conjE
+ simp: sep_add_commute sep_add_assoc)
+
+end
+
+interpretation sep: ab_semigroup_mult "op **"
+ by (rule ab_semigroup_mult_sep_conj)
+
+interpretation sep: comm_monoid_add "op **" \<box>
+ by (rule comm_monoid_add)
+
+
+section {* Separation Algebra with Stronger, but More Intuitive Disjunction Axiom *}
+
+class stronger_sep_algebra = pre_sep_algebra +
+ assumes sep_add_disj_eq [simp]: "y ## z \<Longrightarrow> x ## y + z = (x ## y \<and> x ## z)"
+begin
+
+lemma sep_disj_add_eq [simp]: "x ## y \<Longrightarrow> x + y ## z = (x ## z \<and> y ## z)"
+ by (metis sep_add_disj_eq sep_disj_commute)
+
+subclass sep_algebra by default auto
+
+end
+
+
+section {* Folding separating conjunction over lists of predicates *}
+
+lemma sep_list_conj_Nil [simp]: "\<And>* [] = \<box>"
+ by (simp add: sep_list_conj_def)
+
+(* apparently these two are rarely used and had to be removed from List.thy *)
+lemma (in semigroup_add) foldl_assoc:
+shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
+by (induct zs arbitrary: y) (simp_all add:add_assoc)
+
+lemma (in monoid_add) foldl_absorb0:
+shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
+by (induct zs) (simp_all add:foldl_assoc)
+
+lemma sep_list_conj_Cons [simp]: "\<And>* (x#xs) = (x ** \<And>* xs)"
+ by (simp add: sep_list_conj_def sep.foldl_absorb0)
+
+lemma sep_list_conj_append [simp]: "\<And>* (xs @ ys) = (\<And>* xs ** \<And>* ys)"
+ by (simp add: sep_list_conj_def sep.foldl_absorb0)
+
+lemma (in comm_monoid_add) foldl_map_filter:
+ "foldl op + 0 (map f (filter P xs)) +
+ foldl op + 0 (map f (filter (not P) xs))
+ = foldl op + 0 (map f xs)"
+proof (induct xs)
+ case Nil thus ?case by clarsimp
+next
+ case (Cons x xs)
+ hence IH: "foldl op + 0 (map f xs) =
+ foldl op + 0 (map f (filter P xs)) +
+ foldl op + 0 (map f [x\<leftarrow>xs . \<not> P x])"
+ by (simp only: eq_commute)
+
+ have foldl_Cons':
+ "\<And>x xs. foldl op + 0 (x # xs) = x + (foldl op + 0 xs)"
+ by (simp, subst foldl_absorb0[symmetric], rule refl)
+
+ { assume "P x"
+ hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
+ } moreover {
+ assume "\<not> P x"
+ hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
+ }
+ ultimately show ?case by blast
+qed
+
+
+section {* Separation Algebra with a Cancellative Monoid (for completeness) *}
+
+text {*
+ Separation algebra with a cancellative monoid. The results of being a precise
+ assertion (distributivity over separating conjunction) require this.
+ although we never actually use this property in our developments, we keep
+ it here for completeness.
+ *}
+class cancellative_sep_algebra = sep_algebra +
+ assumes sep_add_cancelD: "\<lbrakk> x + z = y + z ; x ## z ; y ## z \<rbrakk> \<Longrightarrow> x = y"
+begin
+
+definition
+ (* In any heap, there exists at most one subheap for which P holds *)
+ precise :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "precise P = (\<forall>h hp hp'. hp \<preceq> h \<and> P hp \<and> hp' \<preceq> h \<and> P hp' \<longrightarrow> hp = hp')"
+
+lemma "precise (op = s)"
+ by (metis (full_types) precise_def)
+
+lemma sep_add_cancel:
+ "x ## z \<Longrightarrow> y ## z \<Longrightarrow> (x + z = y + z) = (x = y)"
+ by (metis sep_add_cancelD)
+
+lemma precise_distribute:
+ "precise P = (\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P)))"
+proof (rule iffI)
+ assume pp: "precise P"
+ {
+ fix Q R
+ fix h hp hp' s
+
+ { assume a: "((Q and R) \<and>* P) s"
+ hence "((Q \<and>* P) and (R \<and>* P)) s"
+ by (fastforce dest!: sep_conjD elim: sep_conjI)
+ }
+ moreover
+ { assume qs: "(Q \<and>* P) s" and qr: "(R \<and>* P) s"
+
+ from qs obtain x y where sxy: "s = x + y" and xy: "x ## y"
+ and x: "Q x" and y: "P y"
+ by (fastforce dest!: sep_conjD)
+ from qr obtain x' y' where sxy': "s = x' + y'" and xy': "x' ## y'"
+ and x': "R x'" and y': "P y'"
+ by (fastforce dest!: sep_conjD)
+
+ from sxy have ys: "y \<preceq> x + y" using xy
+ by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
+ from sxy' have ys': "y' \<preceq> x' + y'" using xy'
+ by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
+
+ from pp have yy: "y = y'" using sxy sxy' xy xy' y y' ys ys'
+ by (fastforce simp: precise_def)
+
+ hence "x = x'" using sxy sxy' xy xy'
+ by (fastforce dest!: sep_add_cancelD)
+
+ hence "((Q and R) \<and>* P) s" using sxy x x' yy y' xy'
+ by (fastforce intro: sep_conjI)
+ }
+ ultimately
+ have "((Q and R) \<and>* P) s = ((Q \<and>* P) and (R \<and>* P)) s" using pp by blast
+ }
+ thus "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))" by (blast intro!: ext)
+
+next
+ assume a: "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))"
+ thus "precise P"
+ proof (clarsimp simp: precise_def)
+ fix h hp hp' Q R
+ assume hp: "hp \<preceq> h" and hp': "hp' \<preceq> h" and php: "P hp" and php': "P hp'"
+
+ obtain z where hhp: "h = hp + z" and hpz: "hp ## z" using hp
+ by (clarsimp simp: sep_substate_def)
+ obtain z' where hhp': "h = hp' + z'" and hpz': "hp' ## z'" using hp'
+ by (clarsimp simp: sep_substate_def)
+
+ have h_eq: "z' + hp' = z + hp" using hhp hhp' hpz hpz'
+ by (fastforce simp: sep_add_ac)
+
+ from hhp hhp' a hpz hpz' h_eq
+ have "\<forall>Q R. ((Q and R) \<and>* P) (z + hp) = ((Q \<and>* P) and (R \<and>* P)) (z' + hp')"
+ by (fastforce simp: h_eq sep_add_ac sep_conj_commute)
+
+ hence "((op = z and op = z') \<and>* P) (z + hp) =
+ ((op = z \<and>* P) and (op = z' \<and>* P)) (z' + hp')" by blast
+
+ thus "hp = hp'" using php php' hpz hpz' h_eq
+ by (fastforce dest!: iffD2 cong: conj_cong
+ simp: sep_add_ac sep_add_cancel sep_conj_def)
+ qed
+qed
+
+lemma strictly_precise: "strictly_exact P \<Longrightarrow> precise P"
+ by (metis precise_def strictly_exactD)
+
+end
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Separation_Algebra_Alt.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,313 @@
+(* Author: Gerwin Klein, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Abstract Separation Logic, Alternative Definition"
+
+theory Separation_Algebra_Alt
+imports Main
+begin
+
+text {*
+ This theory contains an alternative definition of speration algebra,
+ following Calcagno et al very closely. While some of the abstract
+ development is more algebraic, it is cumbersome to instantiate.
+ We only use it to prove equivalence and to give an impression of how
+ it would look like.
+*}
+
+(* The @{text "++"} notation is a horrible choice, but this theory is
+ only intended to show how the development would look like, not to
+ actually use it. We remove the notation for map-add so it doesn't
+ conflict.
+*)
+no_notation map_add (infixl "++" 100)
+
+definition
+ lift2 :: "('a => 'b => 'c option) \<Rightarrow> 'a option => 'b option => 'c option"
+where
+ "lift2 f a b \<equiv> case (a,b) of (Some a, Some b) \<Rightarrow> f a b | _ \<Rightarrow> None"
+
+
+class sep_algebra_alt = zero +
+ fixes add :: "'a => 'a => 'a option" (infixr "\<oplus>" 65)
+
+ assumes add_zero [simp]: "x \<oplus> 0 = Some x"
+ assumes add_comm: "x \<oplus> y = y \<oplus> x"
+ assumes add_assoc: "lift2 add a (lift2 add b c) = lift2 add (lift2 add a b) c"
+
+begin
+
+definition
+ disjoint :: "'a => 'a => bool" (infix "##" 60)
+where
+ "a ## b \<equiv> a \<oplus> b \<noteq> None"
+
+lemma disj_com: "x ## y = y ## x"
+ by (auto simp: disjoint_def add_comm)
+
+lemma disj_zero [simp]: "x ## 0"
+ by (auto simp: disjoint_def)
+
+lemma disj_zero2 [simp]: "0 ## x"
+ by (subst disj_com) simp
+
+lemma add_zero2 [simp]: "0 \<oplus> x = Some x"
+ by (subst add_comm) auto
+
+definition
+ substate :: "'a => 'a => bool" (infix "\<preceq>" 60) where
+ "a \<preceq> b \<equiv> \<exists>c. a \<oplus> c = Some b"
+
+definition
+ sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixl "**" 61)
+ where
+ "P ** Q \<equiv> \<lambda>s. \<exists>p q. p \<oplus> q = Some s \<and> P p \<and> Q q"
+
+definition emp :: "'a \<Rightarrow> bool" ("\<box>") where
+ "\<box> \<equiv> \<lambda>s. s = 0"
+
+definition
+ sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>\<^sup>*" 25)
+ where
+ "P \<longrightarrow>\<^sup>* Q \<equiv> \<lambda>h. \<forall>h' h''. h \<oplus> h' = Some h'' \<and> P h' \<longrightarrow> Q h''"
+
+definition
+ "sep_true \<equiv> \<lambda>s. True"
+
+definition
+ "sep_false \<equiv> \<lambda>s. False"
+
+
+abbreviation
+ add2 :: "'a option => 'a option => 'a option" (infixr "++" 65)
+where
+ "add2 == lift2 add"
+
+
+lemma add2_comm:
+ "a ++ b = b ++ a"
+ by (simp add: lift2_def add_comm split: option.splits)
+
+lemma add2_None [simp]:
+ "x ++ None = None"
+ by (simp add: lift2_def split: option.splits)
+
+lemma None_add2 [simp]:
+ "None ++ x = None"
+ by (simp add: lift2_def split: option.splits)
+
+lemma add2_Some_Some:
+ "Some x ++ Some y = x \<oplus> y"
+ by (simp add: lift2_def)
+
+lemma add2_zero [simp]:
+ "Some x ++ Some 0 = Some x"
+ by (simp add: add2_Some_Some)
+
+lemma zero_add2 [simp]:
+ "Some 0 ++ Some x = Some x"
+ by (simp add: add2_Some_Some)
+
+
+lemma sep_conjE:
+ "\<lbrakk> (P ** Q) s; \<And>p q. \<lbrakk> P p; Q q; p \<oplus> q = Some s \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"
+ by (auto simp: sep_conj_def)
+
+lemma sep_conjI:
+ "\<lbrakk> P p; Q q; p \<oplus> q = Some s \<rbrakk> \<Longrightarrow> (P ** Q) s"
+ by (auto simp: sep_conj_def)
+
+lemma sep_conj_comI:
+ "(P ** Q) s \<Longrightarrow> (Q ** P) s"
+ by (auto intro!: sep_conjI elim!: sep_conjE simp: add_comm)
+
+lemma sep_conj_com:
+ "P ** Q = Q ** P"
+ by (auto intro: sep_conj_comI intro!: ext)
+
+lemma lift_to_add2:
+ "\<lbrakk>z \<oplus> q = Some s; x \<oplus> y = Some q\<rbrakk> \<Longrightarrow> Some z ++ Some x ++ Some y = Some s"
+ by (simp add: add2_Some_Some)
+
+lemma lift_to_add2':
+ "\<lbrakk>q \<oplus> z = Some s; x \<oplus> y = Some q\<rbrakk> \<Longrightarrow> (Some x ++ Some y) ++ Some z = Some s"
+ by (simp add: add2_Some_Some)
+
+lemma add2_Some:
+ "(x ++ Some y = Some z) = (\<exists>x'. x = Some x' \<and> x' \<oplus> y = Some z)"
+ by (simp add: lift2_def split: option.splits)
+
+lemma Some_add2:
+ "(Some x ++ y = Some z) = (\<exists>y'. y = Some y' \<and> x \<oplus> y' = Some z)"
+ by (simp add: lift2_def split: option.splits)
+
+lemma sep_conj_assoc:
+ "P ** (Q ** R) = (P ** Q) ** R"
+ unfolding sep_conj_def
+ apply (rule ext)
+ apply (rule iffI)
+ apply clarsimp
+ apply (drule (1) lift_to_add2)
+ apply (subst (asm) add_assoc)
+ apply (fastforce simp: add2_Some_Some add2_Some)
+ apply clarsimp
+ apply (drule (1) lift_to_add2')
+ apply (subst (asm) add_assoc [symmetric])
+ apply (fastforce simp: add2_Some_Some Some_add2)
+ done
+
+lemma sep_true[simp]: "sep_true s" by (simp add: sep_true_def)
+lemma sep_false[simp]: "\<not>sep_false x" by (simp add: sep_false_def)
+
+lemma sep_conj_sep_true:
+ "P s \<Longrightarrow> (P ** sep_true) s"
+ by (auto simp: sep_conjI [where q=0])
+
+lemma sep_conj_sep_true':
+ "P s \<Longrightarrow> (sep_true ** P) s"
+ by (auto simp: sep_conjI [where p=0])
+
+lemma disjoint_submaps_exist:
+ "\<exists>h\<^isub>0 h\<^isub>1. h\<^isub>0 \<oplus> h\<^isub>1 = Some h"
+ by (rule_tac x=0 in exI, auto)
+
+lemma sep_conj_true[simp]:
+ "(sep_true ** sep_true) = sep_true"
+ unfolding sep_conj_def
+ by (auto intro!: ext intro: disjoint_submaps_exist)
+
+lemma sep_conj_false_right[simp]:
+ "(P ** sep_false) = sep_false"
+ by (force elim: sep_conjE intro!: ext)
+
+lemma sep_conj_false_left[simp]:
+ "(sep_false ** P) = sep_false"
+ by (subst sep_conj_com) (rule sep_conj_false_right)
+
+lemma sep_conj_left_com:
+ "(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")
+proof -
+ have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_com)
+ also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)
+ finally show ?thesis by (simp add: sep_conj_com)
+qed
+
+lemmas sep_conj_ac = sep_conj_com sep_conj_assoc sep_conj_left_com
+
+lemma empty_empty[simp]: "\<box> 0"
+ by (simp add: emp_def)
+
+lemma sep_conj_empty[simp]:
+ "(P ** \<box>) = P"
+ by (simp add: sep_conj_def emp_def)
+
+ lemma sep_conj_empty'[simp]:
+ "(\<box> ** P) = P"
+ by (subst sep_conj_com, rule sep_conj_empty)
+
+lemma sep_conj_sep_emptyI:
+ "P s \<Longrightarrow> (P ** \<box>) s"
+ by simp
+
+lemma sep_conj_true_P[simp]:
+ "(sep_true ** (sep_true ** P)) = (sep_true ** P)"
+ by (simp add: sep_conj_assoc)
+
+lemma sep_conj_disj:
+ "((\<lambda>s. P s \<or> Q s) ** R) s = ((P ** R) s \<or> (Q ** R) s)" (is "?x = (?y \<or> ?z)")
+ by (auto simp: sep_conj_def)
+
+lemma sep_conj_conj:
+ "((\<lambda>s. P s \<and> Q s) ** R) s \<Longrightarrow> (P ** R) s \<and> (Q ** R) s"
+ by (force intro: sep_conjI elim!: sep_conjE)
+
+lemma sep_conj_exists1:
+ "((\<lambda>s. \<exists>x. P x s) ** Q) s = (\<exists>x. (P x ** Q) s)"
+ by (force intro: sep_conjI elim: sep_conjE)
+
+lemma sep_conj_exists2:
+ "(P ** (\<lambda>s. \<exists>x. Q x s)) = (\<lambda>s. (\<exists>x. (P ** Q x) s))"
+ by (force intro!: sep_conjI ext elim!: sep_conjE)
+
+lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2
+
+lemma sep_conj_forall:
+ "((\<lambda>s. \<forall>x. P x s) ** Q) s \<Longrightarrow> (P x ** Q) s"
+ by (force intro: sep_conjI elim: sep_conjE)
+
+lemma sep_conj_impl:
+ "\<lbrakk> (P ** Q) s; \<And>s. P s \<Longrightarrow> P' s; \<And>s. Q s \<Longrightarrow> Q' s \<rbrakk> \<Longrightarrow> (P' ** Q') s"
+ by (erule sep_conjE, auto intro!: sep_conjI)
+
+lemma sep_conj_impl1:
+ assumes P: "\<And>s. P s \<Longrightarrow> I s"
+ shows "(P ** R) s \<Longrightarrow> (I ** R) s"
+ by (auto intro: sep_conj_impl P)
+
+lemma sep_conj_sep_true_left:
+ "(P ** Q) s \<Longrightarrow> (sep_true ** Q) s"
+ by (erule sep_conj_impl, simp+)
+
+lemma sep_conj_sep_true_right:
+ "(P ** Q) s \<Longrightarrow> (P ** sep_true) s"
+ by (subst (asm) sep_conj_com, drule sep_conj_sep_true_left,
+ simp add: sep_conj_ac)
+
+lemma sep_globalise:
+ "\<lbrakk> (P ** R) s; (\<And>s. P s \<Longrightarrow> Q s) \<rbrakk> \<Longrightarrow> (Q ** R) s"
+ by (fast elim: sep_conj_impl)
+
+lemma sep_implI:
+ assumes a: "\<And>h' h''. \<lbrakk> h \<oplus> h' = Some h''; P h' \<rbrakk> \<Longrightarrow> Q h''"
+ shows "(P \<longrightarrow>\<^sup>* Q) h"
+ unfolding sep_impl_def by (auto elim: a)
+
+lemma sep_implD:
+ "(x \<longrightarrow>\<^sup>* y) h \<Longrightarrow> \<forall>h' h''. h \<oplus> h' = Some h'' \<and> x h' \<longrightarrow> y h''"
+ by (force simp: sep_impl_def)
+
+lemma sep_impl_sep_true[simp]:
+ "(P \<longrightarrow>\<^sup>* sep_true) = sep_true"
+ by (force intro!: sep_implI ext)
+
+lemma sep_impl_sep_false[simp]:
+ "(sep_false \<longrightarrow>\<^sup>* P) = sep_true"
+ by (force intro!: sep_implI ext)
+
+lemma sep_impl_sep_true_P:
+ "(sep_true \<longrightarrow>\<^sup>* P) s \<Longrightarrow> P s"
+ apply (drule sep_implD)
+ apply (erule_tac x=0 in allE)
+ apply simp
+ done
+
+lemma sep_impl_sep_true_false[simp]:
+ "(sep_true \<longrightarrow>\<^sup>* sep_false) = sep_false"
+ by (force intro!: ext dest: sep_impl_sep_true_P)
+
+lemma sep_conj_sep_impl:
+ "\<lbrakk> P s; \<And>s. (P ** Q) s \<Longrightarrow> R s \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>\<^sup>* R) s"
+proof (rule sep_implI)
+ fix h' h h''
+ assume "P h" and "h \<oplus> h' = Some h''" and "Q h'"
+ hence "(P ** Q) h''" by (force intro: sep_conjI)
+ moreover assume "\<And>s. (P ** Q) s \<Longrightarrow> R s"
+ ultimately show "R h''" by simp
+qed
+
+lemma sep_conj_sep_impl2:
+ "\<lbrakk> (P ** Q) s; \<And>s. P s \<Longrightarrow> (Q \<longrightarrow>\<^sup>* R) s \<rbrakk> \<Longrightarrow> R s"
+ by (force dest: sep_implD elim: sep_conjE)
+
+lemma sep_conj_sep_impl_sep_conj2:
+ "(P ** R) s \<Longrightarrow> (P ** (Q \<longrightarrow>\<^sup>* (Q ** R))) s"
+ by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)
+
+lemma sep_conj_triv_strip2:
+ "Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp
+
+end
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/config Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,9 @@
+# -*- shell-script -*-
+
+# Get email when automated build fails. May be empty.
+# values: "email1 email2 .. emailn"
+NOTIFY="kleing@cse.unsw.edu.au rafal.kolanski@nicta.com.au"
+
+# Participate in frequent (nightly) build (only for small submissions)
+# values: "yes" "no"
+FREQUENT="yes"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/document/root.bib Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,6 @@
+@inproceedings{KleinKB-ITP12,
+author={Gerwin Klein and Rafal Kolanski and Andrew Boyton},
+title={Mechanised Separation Algebra (Rough Diamond)},
+booktitle={Interactive Theorem Proving (ITP 2012)},
+editor={Beringer and Felty},
+publisher={Springer},series={LNCS},volume={},pages={},year=2012}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/document/root.tex Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,67 @@
+% $Id: root.tex,v 1.2 2007-11-12 21:00:45 nipkow Exp $
+
+\documentclass[11pt,a4paper]{article}
+\usepackage{isabelle,isabellesym}
+
+% further packages required for unusual symbols (see also isabellesym.sty)
+% use only when needed
+\usepackage{amssymb} % for \<leadsto>, \<box>, \<diamond>,
+ % \<sqsupset>, \<mho>, \<Join>,
+ % \<lhd>, \<lesssim>, \<greatersim>,
+ % \<lessapprox>, \<greaterapprox>,
+ % \<triangleq>, \<yen>, \<lozenge>
+%\usepackage[greek,english]{babel} % greek for \<euro>,
+ % english for \<guillemotleft>,
+ % \<guillemotright>
+ % default language = last
+%\usepackage[latin1]{inputenc} % for \<onesuperior>, \<onequarter>,
+ % \<twosuperior>, \<onehalf>,
+ % \<threesuperior>, \<threequarters>,
+ % \<degree>
+%\usepackage[only,bigsqcap]{stmaryrd} % for \<Sqinter>
+%\usepackage{eufrak} % for \<AA> ... \<ZZ>, \<aa> ... \<zz>
+ % (only needed if amssymb not used)
+%\usepackage{textcomp} % for \<cent>, \<currency>
+
+% this should be the last package used
+\usepackage{pdfsetup}
+
+% urls in roman style, theory text in math-similar italics
+\urlstyle{rm}
+\isabellestyle{it}
+
+
+\begin{document}
+
+\title{Separation Algebra}
+\author{Gerwin Klein and Rafal Kolanski and Andrew Boyton}
+\maketitle
+
+\begin{abstract}
+We present a generic type class implementation of separation
+algebra for Isabelle/HOL as well as lemmas and generic tactics which can
+be used directly for any instantiation of the type class.
+
+The ex directory contains example instantiations that include structures
+such as a heap or virtual memory.
+
+The abstract separation algebra is based upon ``Abstract Separation
+Logic'' by Calcagno et al. These theories are also the basis of
+``Mechanised Separation Algebra'' by the authors \cite{KleinKB-ITP12}.
+
+The aim of this work is to support and significantly reduce the effort
+for future separation logic developments in Isabelle/HOL by factoring
+out the part of separation logic that can be treated abstractly once
+and for all. This includes developing typical default rule sets for
+reasoning as well as automated tactic support for separation logic.
+\end{abstract}
+
+\tableofcontents
+
+% include generated text of all theories
+\input{session}
+
+\bibliographystyle{abbrv}
+\bibliography{root}
+
+\end{document}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/Sep_Tactics_Test.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,123 @@
+(* Authors: Gerwin Klein and Rafal Kolanski, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+theory Sep_Tactics_Test
+imports "../Sep_Tactics"
+begin
+
+text {* Substitution and forward/backward reasoning *}
+
+typedecl p
+typedecl val
+typedecl heap
+
+arities heap :: sep_algebra
+
+axiomatization
+ points_to :: "p \<Rightarrow> val \<Rightarrow> heap \<Rightarrow> bool" and
+ val :: "heap \<Rightarrow> p \<Rightarrow> val"
+where
+ points_to: "(points_to p v ** P) h \<Longrightarrow> val h p = v"
+
+
+lemma
+ "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
+ \<Longrightarrow> Q (val h p) (val h p)"
+ apply (sep_subst (2) points_to)
+ apply (sep_subst (asm) points_to)
+ apply (sep_subst points_to)
+ oops
+
+lemma
+ "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
+ \<Longrightarrow> Q (val h p) (val h p)"
+ apply (sep_drule points_to)
+ apply simp
+ oops
+
+lemma
+ "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
+ \<Longrightarrow> Q (val h p) (val h p)"
+ apply (sep_frule points_to)
+ apply simp
+ oops
+
+consts
+ update :: "p \<Rightarrow> val \<Rightarrow> heap \<Rightarrow> heap"
+
+schematic_lemma
+ assumes a: "\<And>P. (stuff p ** P) H \<Longrightarrow> (other_stuff p v ** P) (update p v H)"
+ shows "(X ** Y ** other_stuff p ?v) (update p v H)"
+ apply (sep_rule a)
+ oops
+
+
+text {* Example of low-level rewrites *}
+
+lemma "\<lbrakk> unrelated s ; (P ** Q ** R) s \<rbrakk> \<Longrightarrow> (A ** B ** Q ** P) s"
+ apply (tactic {* dtac (mk_sep_select_rule @{context} true (3,1)) 1 *})
+ apply (tactic {* rtac (mk_sep_select_rule @{context} false (4,2)) 1 *})
+ (* now sep_conj_impl1 can be used *)
+ apply (erule (1) sep_conj_impl)
+ oops
+
+
+text {* Conjunct selection *}
+
+lemma "(A ** B ** Q ** P) s"
+ apply (sep_select 1)
+ apply (sep_select 3)
+ apply (sep_select 4)
+ oops
+
+lemma "\<lbrakk> also unrelated; (A ** B ** Q ** P) s \<rbrakk> \<Longrightarrow> unrelated"
+ apply (sep_select_asm 2)
+ oops
+
+
+section {* Test cases for @{text sep_cancel}. *}
+
+lemma
+ assumes forward: "\<And>s g p v. A g p v s \<Longrightarrow> AA g p s "
+ shows "\<And>xv yv P s y x s. (A g x yv ** A g y yv ** P) s \<Longrightarrow> (AA g y ** sep_true) s"
+ by (sep_cancel add: forward)
+
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ shows "(A ** generic ** B) s \<Longrightarrow> ((instance ** B)**A) s"
+ by (sep_cancel add: forward)+
+
+lemma "\<lbrakk> (A ** B) sa ; (A ** Y) s \<rbrakk> \<Longrightarrow> (A ** X) s"
+ apply (sep_cancel)
+ oops
+
+lemma "\<lbrakk> (A ** B) sa ; (A ** Y) s \<rbrakk> \<Longrightarrow> (\<lambda>s. (A ** X) s) s"
+ apply (sep_cancel)
+ oops
+
+schematic_lemma tt: "\<lbrakk> (B ** A ** C) s \<rbrakk> \<Longrightarrow> (\<lambda>s. (A ** ?X) s) s"
+ by (sep_cancel)
+
+(* test backtracking on premises with same state *)
+
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ shows "\<lbrakk> (A ** B) s ; (generic ** Y) s \<rbrakk> \<Longrightarrow> (X ** instance) s"
+ apply (sep_cancel add: forward)
+ oops
+
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ shows "generic s \<Longrightarrow> instance s"
+ by (sep_cancel add: forward)
+
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ assumes forward2: "\<And>s. instance s \<Longrightarrow> instance2 s"
+ shows "generic s \<Longrightarrow> (instance2 ** sep_true) s"
+ by (sep_cancel_blast add: forward forward2)
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/Sep_Tactics_Test.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,122 @@
+(* Authors: Gerwin Klein and Rafal Kolanski, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+theory Sep_Tactics_Test
+imports "../Sep_Tactics"
+begin
+
+text {* Substitution and forward/backward reasoning *}
+
+typedecl p
+typedecl val
+typedecl heap
+
+arities heap :: sep_algebra
+
+axiomatization
+ points_to :: "p \<Rightarrow> val \<Rightarrow> heap \<Rightarrow> bool" and
+ val :: "heap \<Rightarrow> p \<Rightarrow> val"
+where
+ points_to: "(points_to p v ** P) h \<Longrightarrow> val h p = v"
+
+
+lemma
+ "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
+ \<Longrightarrow> Q (val h p) (val h p)"
+ apply (sep_subst (2) points_to)
+ apply (sep_subst (asm) points_to)
+ apply (sep_subst points_to)
+ oops
+
+lemma
+ "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
+ \<Longrightarrow> Q (val h p) (val h p)"
+ apply (sep_drule points_to)
+ apply simp
+ oops
+
+lemma
+ "\<lbrakk> Q2 (val h p); (K ** T ** blub ** P ** points_to p v ** P ** J) h \<rbrakk>
+ \<Longrightarrow> Q (val h p) (val h p)"
+ apply (sep_frule points_to)
+ apply simp
+ oops
+
+consts
+ update :: "p \<Rightarrow> val \<Rightarrow> heap \<Rightarrow> heap"
+
+schematic_lemma
+ assumes a: "\<And>P. (stuff p ** P) H \<Longrightarrow> (other_stuff p v ** P) (update p v H)"
+ shows "(X ** Y ** other_stuff p ?v) (update p v H)"
+ apply (sep_rule a)
+ oops
+
+
+text {* Example of low-level rewrites *}
+
+lemma "\<lbrakk> unrelated s ; (P ** Q ** R) s \<rbrakk> \<Longrightarrow> (A ** B ** Q ** P) s"
+ apply (tactic {* dtac (mk_sep_select_rule @{context} true (3,1)) 1 *})
+ apply (tactic {* rtac (mk_sep_select_rule @{context} false (4,2)) 1 *})
+ (* now sep_conj_impl1 can be used *)
+ apply (erule (1) sep_conj_impl)
+ oops
+
+
+text {* Conjunct selection *}
+
+lemma "(A ** B ** Q ** P) s"
+ apply (sep_select 1)
+ apply (sep_select 3)
+ apply (sep_select 4)
+ oops
+
+lemma "\<lbrakk> also unrelated; (A ** B ** Q ** P) s \<rbrakk> \<Longrightarrow> unrelated"
+ apply (sep_select_asm 2)
+ oops
+
+
+section {* Test cases for @{text sep_cancel}. *}
+
+lemma
+ assumes forward: "\<And>s g p v. A g p v s \<Longrightarrow> AA g p s "
+ shows "\<And>xv yv P s y x s. (A g x yv ** A g y yv ** P) s \<Longrightarrow> (AA g y ** sep_true) s"
+ by (sep_cancel add: forward)
+
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ shows "(A ** generic ** B) s \<Longrightarrow> (instance ** sep_true) s"
+ by (sep_cancel add: forward)
+
+lemma "\<lbrakk> (A ** B) sa ; (A ** Y) s \<rbrakk> \<Longrightarrow> (A ** X) s"
+ apply (sep_cancel)
+ oops
+
+lemma "\<lbrakk> (A ** B) sa ; (A ** Y) s \<rbrakk> \<Longrightarrow> (\<lambda>s. (A ** X) s) s"
+ apply (sep_cancel)
+ oops
+
+schematic_lemma "\<lbrakk> (B ** A ** C) s \<rbrakk> \<Longrightarrow> (\<lambda>s. (A ** ?X) s) s"
+ by (sep_cancel)
+
+(* test backtracking on premises with same state *)
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ shows "\<lbrakk> (A ** B) s ; (generic ** Y) s \<rbrakk> \<Longrightarrow> (X ** instance) s"
+ apply (sep_cancel add: forward)
+ oops
+
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ shows "generic s \<Longrightarrow> instance s"
+ by (sep_cancel add: forward)
+
+lemma
+ assumes forward: "\<And>s. generic s \<Longrightarrow> instance s"
+ assumes forward2: "\<And>s. instance s \<Longrightarrow> instance2 s"
+ shows "generic s \<Longrightarrow> (instance2 ** sep_true) s"
+ by (sep_cancel_blast add: forward forward2)
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/Simple_Separation_Example.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,109 @@
+(* Title: Adaptation of example from HOL/Hoare/Separation
+ Author: Gerwin Klein, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Example from HOL/Hoare/Separation"
+
+theory Simple_Separation_Example
+ imports "~~/src/HOL/Hoare/Hoare_Logic_Abort" "../Sep_Heap_Instance"
+ "../Sep_Tactics"
+begin
+
+declare [[syntax_ambiguity_warning = false]]
+
+type_synonym heap = "(nat \<Rightarrow> nat option)"
+
+(* This syntax isn't ideal, but this is what is used in the original *)
+definition maps_to:: "nat \<Rightarrow> nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> _" [56,51] 56)
+ where "x \<mapsto> y \<equiv> \<lambda>h. h = [x \<mapsto> y]"
+
+(* If you don't mind syntax ambiguity: *)
+notation pred_ex (binder "\<exists>" 10)
+
+(* could be generated automatically *)
+definition maps_to_ex :: "nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> -" [56] 56)
+ where "x \<mapsto> - \<equiv> \<exists>y. x \<mapsto> y"
+
+
+(* could be generated automatically *)
+lemma maps_to_maps_to_ex [elim!]:
+ "(p \<mapsto> v) s \<Longrightarrow> (p \<mapsto> -) s"
+ by (auto simp: maps_to_ex_def)
+
+(* The basic properties of maps_to: *)
+lemma maps_to_write:
+ "(p \<mapsto> - ** P) H \<Longrightarrow> (p \<mapsto> v ** P) (H (p \<mapsto> v))"
+ apply (clarsimp simp: sep_conj_def maps_to_def maps_to_ex_def split: option.splits)
+ apply (rule_tac x=y in exI)
+ apply (auto simp: sep_disj_fun_def map_convs map_add_def split: option.splits)
+ done
+
+lemma points_to:
+ "(p \<mapsto> v ** P) H \<Longrightarrow> the (H p) = v"
+ by (auto elim!: sep_conjE
+ simp: sep_disj_fun_def maps_to_def map_convs map_add_def
+ split: option.splits)
+
+
+(* This differs from the original and uses separation logic for the definition. *)
+primrec
+ list :: "nat \<Rightarrow> nat list \<Rightarrow> heap \<Rightarrow> bool"
+where
+ "list i [] = (\<langle>i=0\<rangle> and \<box>)"
+| "list i (x#xs) = (\<langle>i=x \<and> i\<noteq>0\<rangle> and (EXS j. i \<mapsto> j ** list j xs))"
+
+lemma list_empty [simp]:
+ shows "list 0 xs = (\<lambda>s. xs = [] \<and> \<box> s)"
+ by (cases xs) auto
+
+(* The examples from Hoare/Separation.thy *)
+lemma "VARS x y z w h
+ {(x \<mapsto> y ** z \<mapsto> w) h}
+ SKIP
+ {x \<noteq> z}"
+ apply vcg
+ apply(auto elim!: sep_conjE simp: maps_to_def sep_disj_fun_def domain_conv)
+done
+
+lemma "VARS H x y z w
+ {(P ** Q) H}
+ SKIP
+ {(Q ** P) H}"
+ apply vcg
+ apply(simp add: sep_conj_commute)
+done
+
+lemma "VARS H
+ {p\<noteq>0 \<and> (p \<mapsto> - ** list q qs) H}
+ H := H(p \<mapsto> q)
+ {list p (p#qs) H}"
+ apply vcg
+ apply (auto intro: maps_to_write)
+done
+
+lemma "VARS H p q r
+ {(list p Ps ** list q Qs) H}
+ WHILE p \<noteq> 0
+ INV {\<exists>ps qs. (list p ps ** list q qs) H \<and> rev ps @ qs = rev Ps @ Qs}
+ DO r := p; p := the(H p); H := H(r \<mapsto> q); q := r OD
+ {list q (rev Ps @ Qs) H}"
+ apply vcg
+ apply fastforce
+ apply clarsimp
+ apply (case_tac ps, simp)
+ apply (rename_tac p ps')
+ apply (clarsimp simp: sep_conj_exists sep_conj_ac)
+ apply (sep_subst points_to)
+ apply (rule_tac x = "ps'" in exI)
+ apply (rule_tac x = "p # qs" in exI)
+ apply (simp add: sep_conj_exists sep_conj_ac)
+ apply (rule exI)
+ apply (sep_rule maps_to_write)
+ apply (sep_cancel)+
+ apply ((sep_cancel add: maps_to_maps_to_ex)+)[1]
+ apply clarsimp
+ done
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/Simple_Separation_Example.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,109 @@
+(* Title: Adaptation of example from HOL/Hoare/Separation
+ Author: Gerwin Klein, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Example from HOL/Hoare/Separation"
+
+theory Simple_Separation_Example
+ imports "~~/src/HOL/Hoare/Hoare_Logic_Abort" "../Sep_Heap_Instance"
+ "../Sep_Tactics"
+begin
+
+declare [[syntax_ambiguity_warning = false]]
+
+type_synonym heap = "(nat \<Rightarrow> nat option)"
+
+(* This syntax isn't ideal, but this is what is used in the original *)
+definition maps_to:: "nat \<Rightarrow> nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> _" [56,51] 56)
+ where "x \<mapsto> y \<equiv> \<lambda>h. h = [x \<mapsto> y]"
+
+(* If you don't mind syntax ambiguity: *)
+notation pred_ex (binder "\<exists>" 10)
+
+(* could be generated automatically *)
+definition maps_to_ex :: "nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> -" [56] 56)
+ where "x \<mapsto> - \<equiv> \<exists>y. x \<mapsto> y"
+
+
+(* could be generated automatically *)
+lemma maps_to_maps_to_ex [elim!]:
+ "(p \<mapsto> v) s \<Longrightarrow> (p \<mapsto> -) s"
+ by (auto simp: maps_to_ex_def)
+
+(* The basic properties of maps_to: *)
+lemma maps_to_write:
+ "(p \<mapsto> - ** P) H \<Longrightarrow> (p \<mapsto> v ** P) (H (p \<mapsto> v))"
+ apply (clarsimp simp: sep_conj_def maps_to_def maps_to_ex_def split: option.splits)
+ apply (rule_tac x=y in exI)
+ apply (auto simp: sep_disj_fun_def map_convs map_add_def split: option.splits)
+ done
+
+lemma points_to:
+ "(p \<mapsto> v ** P) H \<Longrightarrow> the (H p) = v"
+ by (auto elim!: sep_conjE
+ simp: sep_disj_fun_def maps_to_def map_convs map_add_def
+ split: option.splits)
+
+
+(* This differs from the original and uses separation logic for the definition. *)
+primrec
+ list :: "nat \<Rightarrow> nat list \<Rightarrow> heap \<Rightarrow> bool"
+where
+ "list i [] = (\<langle>i=0\<rangle> and \<box>)"
+| "list i (x#xs) = (\<langle>i=x \<and> i\<noteq>0\<rangle> and (EXS j. i \<mapsto> j ** list j xs))"
+
+lemma list_empty [simp]:
+ shows "list 0 xs = (\<lambda>s. xs = [] \<and> \<box> s)"
+ by (cases xs) auto
+
+(* The examples from Hoare/Separation.thy *)
+lemma "VARS x y z w h
+ {(x \<mapsto> y ** z \<mapsto> w) h}
+ SKIP
+ {x \<noteq> z}"
+ apply vcg
+ apply(auto elim!: sep_conjE simp: maps_to_def sep_disj_fun_def domain_conv)
+done
+
+lemma "VARS H x y z w
+ {(P ** Q) H}
+ SKIP
+ {(Q ** P) H}"
+ apply vcg
+ apply(simp add: sep_conj_commute)
+done
+
+lemma "VARS H
+ {p\<noteq>0 \<and> (p \<mapsto> - ** list q qs) H}
+ H := H(p \<mapsto> q)
+ {list p (p#qs) H}"
+ apply vcg
+ apply (auto intro: maps_to_write)
+done
+
+lemma "VARS H p q r
+ {(list p Ps ** list q Qs) H}
+ WHILE p \<noteq> 0
+ INV {\<exists>ps qs. (list p ps ** list q qs) H \<and> rev ps @ qs = rev Ps @ Qs}
+ DO r := p; p := the(H p); H := H(r \<mapsto> q); q := r OD
+ {list q (rev Ps @ Qs) H}"
+ apply vcg
+ apply fastforce
+ apply clarsimp
+ apply (case_tac ps, simp)
+ apply (rename_tac p ps')
+ apply (clarsimp simp: sep_conj_exists sep_conj_ac)
+ apply (sep_subst points_to)
+ apply (rule_tac x = "ps'" in exI)
+ apply (rule_tac x = "p # qs" in exI)
+ apply (simp add: sep_conj_exists sep_conj_ac)
+ apply (rule exI)
+ apply (sep_rule maps_to_write)
+ apply (sep_cancel)+
+ apply ((sep_cancel add: maps_to_maps_to_ex)+)[1]
+ apply clarsimp
+ done
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/VM_Example.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,78 @@
+(* Title: Adaptation of example from HOL/Hoare/Separation
+ Author: Rafal Kolanski, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Separation Algebra for Virtual Memory"
+
+theory VM_Example
+imports "../Sep_Tactics" "../Map_Extra"
+begin
+
+text {*
+ Example instantiation of the abstract separation algebra to the sliced-memory
+ model used for building a separation logic in ``Verification of Programs in
+ Virtual Memory Using Separation Logic'' (PhD Thesis) by Rafal Kolanski.
+
+ We wrap up the concept of physical and virtual pointers as well as value
+ (usually a byte), and the page table root, into a datatype for instantiation.
+ This avoids having to produce a hierarchy of type classes.
+
+ The result is more general than the original. It does not mention the types
+ of pointers or virtual memory addresses. Instead of supporting only
+ singleton page table roots, we now support sets so we can identify a single
+ 0 for the monoid.
+ This models multiple page tables in memory, whereas the original logic was
+ only capable of one at a time.
+*}
+
+datatype ('p,'v,'value,'r) vm_sep_state
+ = VMSepState "((('p \<times> 'v) \<rightharpoonup> 'value) \<times> 'r set)"
+
+instantiation vm_sep_state :: (type, type, type, type) sep_algebra
+begin
+
+fun
+ vm_heap :: "('a,'b,'c,'d) vm_sep_state \<Rightarrow> (('a \<times> 'b) \<rightharpoonup> 'c)" where
+ "vm_heap (VMSepState (h,r)) = h"
+
+fun
+ vm_root :: "('a,'b,'c,'d) vm_sep_state \<Rightarrow> 'd set" where
+ "vm_root (VMSepState (h,r)) = r"
+
+definition
+ sep_disj_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state
+ \<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state \<Rightarrow> bool" where
+ "sep_disj_vm_sep_state x y = vm_heap x \<bottom> vm_heap y"
+
+definition
+ zero_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state" where
+ "zero_vm_sep_state \<equiv> VMSepState (empty, {})"
+
+fun
+ plus_vm_sep_state :: "('a, 'b, 'c, 'd) vm_sep_state
+ \<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state
+ \<Rightarrow> ('a, 'b, 'c, 'd) vm_sep_state" where
+ "plus_vm_sep_state (VMSepState (x,r)) (VMSepState (y,r'))
+ = VMSepState (x ++ y, r \<union> r')"
+
+instance
+ apply default
+ apply (simp add: zero_vm_sep_state_def sep_disj_vm_sep_state_def)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_disj_def)
+ apply (case_tac x, clarsimp simp: zero_vm_sep_state_def)
+ apply (case_tac x, case_tac y)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_add_ac)
+ apply (case_tac x, case_tac y, case_tac z)
+ apply (fastforce simp: sep_disj_vm_sep_state_def)
+ apply (case_tac x, case_tac y, case_tac z)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_add_disj)
+ apply (case_tac x, case_tac y, case_tac z)
+ apply (fastforce simp: sep_disj_vm_sep_state_def map_add_disj map_disj_com)
+ done
+
+end
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/capDL/Abstract_Separation_D.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,714 @@
+(* Author: Andrew Boyton, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Instantiating capDL as a separation algebra."
+
+theory Abstract_Separation_D
+imports "../../Sep_Tactics" Types_D "../../Map_Extra"
+begin
+
+(**************************************
+ * Start of lemmas to move elsewhere. *
+ **************************************)
+
+lemma inter_empty_not_both:
+"\<lbrakk>x \<in> A; A \<inter> B = {}\<rbrakk> \<Longrightarrow> x \<notin> B"
+ by fastforce
+
+lemma union_intersection:
+ "A \<inter> (A \<union> B) = A"
+ "B \<inter> (A \<union> B) = B"
+ "(A \<union> B) \<inter> A = A"
+ "(A \<union> B) \<inter> B = B"
+ by fastforce+
+
+lemma union_intersection1: "A \<inter> (A \<union> B) = A"
+ by (rule inf_sup_absorb)
+lemma union_intersection2: "B \<inter> (A \<union> B) = B"
+ by fastforce
+
+(* This lemma is strictly weaker than restrict_map_disj. *)
+lemma restrict_map_disj':
+ "S \<inter> T = {} \<Longrightarrow> h |` S \<bottom> h' |` T"
+ by (auto simp: map_disj_def restrict_map_def dom_def)
+
+lemma map_add_restrict_comm:
+ "S \<inter> T = {} \<Longrightarrow> h |` S ++ h' |` T = h' |` T ++ h |` S"
+ apply (drule restrict_map_disj')
+ apply (erule map_add_com)
+ done
+
+(************************************
+ * End of lemmas to move elsewhere. *
+ ************************************)
+
+
+
+(* The state for separation logic has:
+ * The memory heap.
+ * A function for which objects own which fields.
+ In capDL, we say that an object either owns all of its fields, or none of them.
+ These are both taken from the cdl_state.
+ *)
+
+datatype sep_state = SepState cdl_heap cdl_ghost_state
+
+(* Functions to get the heap and the ghost_state from the sep_state. *)
+primrec sep_heap :: "sep_state \<Rightarrow> cdl_heap"
+where "sep_heap (SepState h gs) = h"
+
+primrec sep_ghost_state :: "sep_state \<Rightarrow> cdl_ghost_state"
+where "sep_ghost_state (SepState h gs) = gs"
+
+definition
+ the_set :: "'a option set \<Rightarrow> 'a set"
+where
+ "the_set xs = {x. Some x \<in> xs}"
+
+lemma the_set_union [simp]:
+ "the_set (A \<union> B) = the_set A \<union> the_set B"
+ by (fastforce simp: the_set_def)
+
+lemma the_set_inter [simp]:
+ "the_set (A \<inter> B) = the_set A \<inter> the_set B"
+ by (fastforce simp: the_set_def)
+
+lemma the_set_inter_empty:
+ "A \<inter> B = {} \<Longrightarrow> the_set A \<inter> the_set B = {}"
+ by (fastforce simp: the_set_def)
+
+
+(* As the capDL operations mostly take the state (rather than the heap)
+ * we need to redefine some of them again to take just the heap.
+ *)
+definition
+ slots_of_heap :: "cdl_heap \<Rightarrow> cdl_object_id \<Rightarrow> cdl_cap_map"
+where
+ "slots_of_heap h \<equiv> \<lambda>obj_id.
+ case h obj_id of
+ None \<Rightarrow> empty
+ | Some obj \<Rightarrow> object_slots obj"
+
+(* Adds new caps to an object. It won't overwrite on a collision. *)
+definition
+ add_to_slots :: "cdl_cap_map \<Rightarrow> cdl_object \<Rightarrow> cdl_object"
+where
+ "add_to_slots new_val obj \<equiv> update_slots (new_val ++ (object_slots obj)) obj"
+
+lemma add_to_slots_assoc:
+ "add_to_slots x (add_to_slots (y ++ z) obj) =
+ add_to_slots (x ++ y) (add_to_slots z obj)"
+ apply (clarsimp simp: add_to_slots_def update_slots_def object_slots_def)
+ apply (fastforce simp: cdl_tcb.splits cdl_cnode.splits
+ split: cdl_object.splits)
+ done
+
+(* Lemmas about add_to_slots, update_slots and object_slots. *)
+lemma add_to_slots_twice [simp]:
+ "add_to_slots x (add_to_slots y a) = add_to_slots (x ++ y) a"
+ by (fastforce simp: add_to_slots_def update_slots_def object_slots_def
+ split: cdl_object.splits)
+
+lemma slots_of_heap_empty [simp]: "slots_of_heap empty object_id = empty"
+ by (simp add: slots_of_heap_def)
+
+lemma slots_of_heap_empty2 [simp]:
+ "h obj_id = None \<Longrightarrow> slots_of_heap h obj_id = empty"
+ by (simp add: slots_of_heap_def)
+
+lemma update_slots_add_to_slots_empty [simp]:
+ "update_slots empty (add_to_slots new obj) = update_slots empty obj"
+ by (clarsimp simp: update_slots_def add_to_slots_def split:cdl_object.splits)
+
+lemma update_object_slots_id [simp]: "update_slots (object_slots a) a = a"
+ by (clarsimp simp: update_slots_def object_slots_def
+ split: cdl_object.splits)
+
+lemma update_slots_of_heap_id [simp]:
+ "h obj_id = Some obj \<Longrightarrow> update_slots (slots_of_heap h obj_id) obj = obj"
+ by (clarsimp simp: update_slots_def slots_of_heap_def object_slots_def
+ split: cdl_object.splits)
+
+lemma add_to_slots_empty [simp]: "add_to_slots empty h = h"
+ by (simp add: add_to_slots_def)
+
+lemma update_slots_eq:
+ "update_slots a o1 = update_slots a o2 \<Longrightarrow> update_slots b o1 = update_slots b o2"
+ by (fastforce simp: update_slots_def cdl_tcb.splits cdl_cnode.splits
+ split: cdl_object.splits)
+
+
+
+(* If there are not two conflicting objects at a position in two states.
+ * Objects conflict if their types are different or their ghost_states collide.
+ *)
+definition
+ not_conflicting_objects :: "sep_state \<Rightarrow> sep_state \<Rightarrow> cdl_object_id \<Rightarrow> bool"
+where
+ "not_conflicting_objects state_a state_b = (\<lambda>obj_id.
+ let heap_a = sep_heap state_a;
+ heap_b = sep_heap state_b;
+ gs_a = sep_ghost_state state_a;
+ gs_b = sep_ghost_state state_b
+ in case (heap_a obj_id, heap_b obj_id) of
+ (Some o1, Some o2) \<Rightarrow> object_type o1 = object_type o2 \<and> gs_a obj_id \<inter> gs_b obj_id = {}
+ | _ \<Rightarrow> True)"
+
+
+(* "Cleans" slots to conform with the compontents. *)
+definition
+ clean_slots :: "cdl_cap_map \<Rightarrow> cdl_components \<Rightarrow> cdl_cap_map"
+where
+ "clean_slots slots cmp \<equiv> slots |` the_set cmp"
+
+(* Sets the fields of an object to a "clean" state.
+ Because a frame's size is part of it's type, we don't reset it. *)
+definition
+ object_clean_fields :: "cdl_object \<Rightarrow> cdl_components \<Rightarrow> cdl_object"
+where
+ "object_clean_fields obj cmp \<equiv> if None \<in> cmp then obj else case obj of
+ Tcb x \<Rightarrow> Tcb (x\<lparr>cdl_tcb_fault_endpoint := undefined\<rparr>)
+ | CNode x \<Rightarrow> CNode (x\<lparr>cdl_cnode_size_bits := undefined \<rparr>)
+ | _ \<Rightarrow> obj"
+
+(* Sets the slots of an object to a "clean" state. *)
+definition
+ object_clean_slots :: "cdl_object \<Rightarrow> cdl_components \<Rightarrow> cdl_object"
+where
+ "object_clean_slots obj cmp \<equiv> update_slots (clean_slots (object_slots obj) cmp) obj"
+
+(* Sets an object to a "clean" state. *)
+definition
+ object_clean :: "cdl_object \<Rightarrow> cdl_components \<Rightarrow> cdl_object"
+where
+ "object_clean obj gs \<equiv> object_clean_slots (object_clean_fields obj gs) gs"
+
+(* Overrides the left object with the attributes of the right, as specified by the ghost state.
+ If the components for an object are empty, then this object is treated as empty, and thus ignored.
+ *)
+definition
+ object_add :: "cdl_object \<Rightarrow> cdl_object \<Rightarrow> cdl_components \<Rightarrow> cdl_components \<Rightarrow> cdl_object"
+where
+ "object_add obj_a obj_b cmps_a cmps_b \<equiv>
+ let clean_obj_a = object_clean obj_a cmps_a;
+ clean_obj_b = object_clean obj_b cmps_b
+ in if (cmps_a = {})
+ then clean_obj_b
+ else if (cmps_b = {})
+ then clean_obj_a
+ else if (None \<in> cmps_b)
+ then (update_slots (object_slots clean_obj_a ++ object_slots clean_obj_b) clean_obj_b)
+ else (update_slots (object_slots clean_obj_a ++ object_slots clean_obj_b) clean_obj_a)"
+
+(* Heaps are added by adding their repsective objects.
+ * The ghost state tells us which object's fields should be taken.
+ * Adding objects of the same type adds their caps
+ * (overwrites the left with the right).
+ *)
+definition
+ cdl_heap_add :: "sep_state \<Rightarrow> sep_state \<Rightarrow> cdl_heap"
+where
+ "cdl_heap_add state_a state_b \<equiv> \<lambda>obj_id.
+ let heap_a = sep_heap state_a;
+ heap_b = sep_heap state_b;
+ gs_a = sep_ghost_state state_a;
+ gs_b = sep_ghost_state state_b
+ in case heap_b obj_id of
+ None \<Rightarrow> heap_a obj_id
+ | Some obj_b \<Rightarrow> case heap_a obj_id of
+ None \<Rightarrow> heap_b obj_id
+ | Some obj_a \<Rightarrow> Some (object_add obj_a obj_b (gs_a obj_id) (gs_b obj_id))"
+
+(* Heaps are added by adding their repsective objects.
+ * The ghost state tells us which object's fields should be taken.
+ * Adding objects of the same type adds their caps
+ * (overwrites the left with the right).
+ *)
+definition
+ cdl_ghost_state_add :: "sep_state \<Rightarrow> sep_state \<Rightarrow> cdl_ghost_state"
+where
+ "cdl_ghost_state_add state_a state_b \<equiv> \<lambda>obj_id.
+ let heap_a = sep_heap state_a;
+ heap_b = sep_heap state_b;
+ gs_a = sep_ghost_state state_a;
+ gs_b = sep_ghost_state state_b
+ in if heap_a obj_id = None \<and> heap_b obj_id \<noteq> None then gs_b obj_id
+ else if heap_b obj_id = None \<and> heap_a obj_id \<noteq> None then gs_a obj_id
+ else gs_a obj_id \<union> gs_b obj_id"
+
+
+(* Adding states adds their heaps,
+ * and each objects owns whichever fields it owned in either heap.
+ *)
+definition
+ sep_state_add :: "sep_state \<Rightarrow> sep_state \<Rightarrow> sep_state"
+where
+ "sep_state_add state_a state_b \<equiv>
+ let
+ heap_a = sep_heap state_a;
+ heap_b = sep_heap state_b;
+ gs_a = sep_ghost_state state_a;
+ gs_b = sep_ghost_state state_b
+ in
+ SepState (cdl_heap_add state_a state_b) (cdl_ghost_state_add state_a state_b)"
+
+
+(* Heaps are disjoint if for all of their objects:
+ * the caps of their respective objects are disjoint,
+ * their respective objects don't conflict,
+ * they don't both own any of the same fields.
+*)
+definition
+ sep_state_disj :: "sep_state \<Rightarrow> sep_state \<Rightarrow> bool"
+where
+ "sep_state_disj state_a state_b \<equiv>
+ let
+ heap_a = sep_heap state_a;
+ heap_b = sep_heap state_b;
+ gs_a = sep_ghost_state state_a;
+ gs_b = sep_ghost_state state_b
+ in
+ \<forall>obj_id. not_conflicting_objects state_a state_b obj_id"
+
+lemma not_conflicting_objects_comm:
+ "not_conflicting_objects h1 h2 obj = not_conflicting_objects h2 h1 obj"
+ apply (clarsimp simp: not_conflicting_objects_def split:option.splits)
+ apply (fastforce simp: update_slots_def cdl_tcb.splits cdl_cnode.splits
+ split: cdl_object.splits)
+ done
+
+lemma object_clean_comm:
+ "\<lbrakk>object_type obj_a = object_type obj_b;
+ object_slots obj_a ++ object_slots obj_b = object_slots obj_b ++ object_slots obj_a; None \<notin> cmp\<rbrakk>
+ \<Longrightarrow> object_clean (add_to_slots (object_slots obj_a) obj_b) cmp =
+ object_clean (add_to_slots (object_slots obj_b) obj_a) cmp"
+ apply (clarsimp simp: object_type_def split: cdl_object.splits)
+ apply (clarsimp simp: object_clean_def object_clean_slots_def object_clean_fields_def
+ add_to_slots_def object_slots_def update_slots_def
+ cdl_tcb.splits cdl_cnode.splits
+ split: cdl_object.splits)+
+ done
+
+lemma add_to_slots_object_slots:
+ "object_type y = object_type z
+ \<Longrightarrow> add_to_slots (object_slots (add_to_slots (x) y)) z =
+ add_to_slots (x ++ object_slots y) z"
+ apply (clarsimp simp: add_to_slots_def update_slots_def object_slots_def)
+ apply (fastforce simp: object_type_def cdl_tcb.splits cdl_cnode.splits
+ split: cdl_object.splits)
+ done
+
+lemma not_conflicting_objects_empty [simp]:
+ "not_conflicting_objects s (SepState empty (\<lambda>obj_id. {})) obj_id"
+ by (clarsimp simp: not_conflicting_objects_def split:option.splits)
+
+lemma empty_not_conflicting_objects [simp]:
+ "not_conflicting_objects (SepState empty (\<lambda>obj_id. {})) s obj_id"
+ by (clarsimp simp: not_conflicting_objects_def split:option.splits)
+
+lemma not_conflicting_objects_empty_object [elim!]:
+ "(sep_heap x) obj_id = None \<Longrightarrow> not_conflicting_objects x y obj_id"
+ by (clarsimp simp: not_conflicting_objects_def)
+
+lemma empty_object_not_conflicting_objects [elim!]:
+ "(sep_heap y) obj_id = None \<Longrightarrow> not_conflicting_objects x y obj_id"
+ apply (drule not_conflicting_objects_empty_object [where y=x])
+ apply (clarsimp simp: not_conflicting_objects_comm)
+ done
+
+lemma cdl_heap_add_empty [simp]:
+ "cdl_heap_add (SepState h gs) (SepState empty (\<lambda>obj_id. {})) = h"
+ by (simp add: cdl_heap_add_def)
+
+lemma empty_cdl_heap_add [simp]:
+ "cdl_heap_add (SepState empty (\<lambda>obj_id. {})) (SepState h gs)= h"
+ apply (simp add: cdl_heap_add_def)
+ apply (rule ext)
+ apply (clarsimp split: option.splits)
+ done
+
+lemma map_add_result_empty1: "a ++ b = empty \<Longrightarrow> a = empty"
+ apply (subgoal_tac "dom (a++b) = {}")
+ apply (subgoal_tac "dom (a) = {}")
+ apply clarsimp
+ apply (unfold dom_map_add)[1]
+ apply clarsimp
+ apply clarsimp
+ done
+
+lemma map_add_result_empty2: "a ++ b = empty \<Longrightarrow> b = empty"
+ apply (subgoal_tac "dom (a++b) = {}")
+ apply (subgoal_tac "dom (a) = {}")
+ apply clarsimp
+ apply (unfold dom_map_add)[1]
+ apply clarsimp
+ apply clarsimp
+ done
+
+lemma map_add_emptyE [elim!]: "\<lbrakk>a ++ b = empty; \<lbrakk>a = empty; b = empty\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
+ apply (frule map_add_result_empty1)
+ apply (frule map_add_result_empty2)
+ apply clarsimp
+ done
+
+lemma clean_slots_empty [simp]:
+ "clean_slots empty cmp = empty"
+ by (clarsimp simp: clean_slots_def)
+
+lemma object_type_update_slots [simp]:
+ "object_type (update_slots slots x) = object_type x"
+ by (clarsimp simp: object_type_def update_slots_def split: cdl_object.splits)
+
+lemma object_type_object_clean_slots [simp]:
+ "object_type (object_clean_slots x cmp) = object_type x"
+ by (clarsimp simp: object_clean_slots_def)
+
+lemma object_type_object_clean_fields [simp]:
+ "object_type (object_clean_fields x cmp) = object_type x"
+ by (clarsimp simp: object_clean_fields_def object_type_def split: cdl_object.splits)
+
+lemma object_type_object_clean [simp]:
+ "object_type (object_clean x cmp) = object_type x"
+ by (clarsimp simp: object_clean_def)
+
+lemma object_type_add_to_slots [simp]:
+ "object_type (add_to_slots slots x) = object_type x"
+ by (clarsimp simp: object_type_def add_to_slots_def update_slots_def split: cdl_object.splits)
+
+lemma object_slots_update_slots [simp]:
+ "has_slots obj \<Longrightarrow> object_slots (update_slots slots obj) = slots"
+ by (clarsimp simp: object_slots_def update_slots_def has_slots_def
+ split: cdl_object.splits)
+
+lemma object_slots_update_slots_empty [simp]:
+ "\<not>has_slots obj \<Longrightarrow> object_slots (update_slots slots obj) = empty"
+ by (clarsimp simp: object_slots_def update_slots_def has_slots_def
+ split: cdl_object.splits)
+
+lemma update_slots_no_slots [simp]:
+ "\<not>has_slots obj \<Longrightarrow> update_slots slots obj = obj"
+ by (clarsimp simp: update_slots_def has_slots_def split: cdl_object.splits)
+
+lemma update_slots_update_slots [simp]:
+ "update_slots slots (update_slots slots' obj) = update_slots slots obj"
+ by (clarsimp simp: update_slots_def split: cdl_object.splits)
+
+lemma update_slots_same_object:
+ "a = b \<Longrightarrow> update_slots a obj = update_slots b obj"
+ by (erule arg_cong)
+
+lemma object_type_has_slots:
+ "\<lbrakk>has_slots x; object_type x = object_type y\<rbrakk> \<Longrightarrow> has_slots y"
+ by (clarsimp simp: object_type_def has_slots_def split: cdl_object.splits)
+
+lemma object_slots_object_clean_fields [simp]:
+ "object_slots (object_clean_fields obj cmp) = object_slots obj"
+ by (clarsimp simp: object_slots_def object_clean_fields_def split: cdl_object.splits)
+
+lemma object_slots_object_clean_slots [simp]:
+ "object_slots (object_clean_slots obj cmp) = clean_slots (object_slots obj) cmp"
+ by (clarsimp simp: object_clean_slots_def object_slots_def update_slots_def split: cdl_object.splits)
+
+lemma object_slots_object_clean [simp]:
+ "object_slots (object_clean obj cmp) = clean_slots (object_slots obj) cmp"
+ by (clarsimp simp: object_clean_def)
+
+lemma object_slots_add_to_slots [simp]:
+ "object_type y = object_type z \<Longrightarrow> object_slots (add_to_slots (object_slots y) z) = object_slots y ++ object_slots z"
+ by (clarsimp simp: object_slots_def add_to_slots_def update_slots_def object_type_def split: cdl_object.splits)
+
+lemma update_slots_object_clean_slots [simp]:
+ "update_slots slots (object_clean_slots obj cmp) = update_slots slots obj"
+ by (clarsimp simp: object_clean_slots_def)
+
+lemma object_clean_fields_idem [simp]:
+ "object_clean_fields (object_clean_fields obj cmp) cmp = object_clean_fields obj cmp"
+ by (clarsimp simp: object_clean_fields_def split: cdl_object.splits)
+
+lemma object_clean_slots_idem [simp]:
+ "object_clean_slots (object_clean_slots obj cmp) cmp = object_clean_slots obj cmp"
+ apply (case_tac "has_slots obj")
+ apply (clarsimp simp: object_clean_slots_def clean_slots_def)+
+ done
+
+lemma object_clean_fields_object_clean_slots [simp]:
+ "object_clean_fields (object_clean_slots obj gs) gs = object_clean_slots (object_clean_fields obj gs) gs"
+ by (clarsimp simp: object_clean_fields_def object_clean_slots_def
+ clean_slots_def object_slots_def update_slots_def
+ split: cdl_object.splits)
+
+lemma object_clean_idem [simp]:
+ "object_clean (object_clean obj cmp) cmp = object_clean obj cmp"
+ by (clarsimp simp: object_clean_def)
+
+lemma has_slots_object_clean_slots:
+ "has_slots (object_clean_slots obj cmp) = has_slots obj"
+ by (clarsimp simp: has_slots_def object_clean_slots_def update_slots_def split: cdl_object.splits)
+
+lemma has_slots_object_clean_fields:
+ "has_slots (object_clean_fields obj cmp) = has_slots obj"
+ by (clarsimp simp: has_slots_def object_clean_fields_def split: cdl_object.splits)
+
+lemma has_slots_object_clean:
+ "has_slots (object_clean obj cmp) = has_slots obj"
+ by (clarsimp simp: object_clean_def has_slots_object_clean_slots has_slots_object_clean_fields)
+
+lemma object_slots_update_slots_object_clean_fields [simp]:
+ "object_slots (update_slots slots (object_clean_fields obj cmp)) = object_slots (update_slots slots obj)"
+ apply (case_tac "has_slots obj")
+ apply (clarsimp simp: has_slots_object_clean_fields)+
+ done
+
+lemma object_clean_fields_update_slots [simp]:
+ "object_clean_fields (update_slots slots obj) cmp = update_slots slots (object_clean_fields obj cmp)"
+ by (clarsimp simp: object_clean_fields_def update_slots_def split: cdl_object.splits)
+
+lemma object_clean_fields_twice [simp]:
+ "(object_clean_fields (object_clean_fields obj cmp') cmp) = object_clean_fields obj (cmp \<inter> cmp')"
+ by (clarsimp simp: object_clean_fields_def split: cdl_object.splits)
+
+lemma update_slots_object_clean_fields:
+ "\<lbrakk>None \<notin> cmps; None \<notin> cmps'; object_type obj = object_type obj'\<rbrakk>
+ \<Longrightarrow> update_slots slots (object_clean_fields obj cmps) =
+ update_slots slots (object_clean_fields obj' cmps')"
+ by (fastforce simp: update_slots_def object_clean_fields_def object_type_def split: cdl_object.splits)
+
+lemma object_clean_fields_no_slots:
+ "\<lbrakk>None \<notin> cmps; None \<notin> cmps'; object_type obj = object_type obj'; \<not> has_slots obj; \<not> has_slots obj'\<rbrakk>
+ \<Longrightarrow> object_clean_fields obj cmps = object_clean_fields obj' cmps'"
+ by (fastforce simp: object_clean_fields_def object_type_def has_slots_def split: cdl_object.splits)
+
+lemma update_slots_object_clean:
+ "\<lbrakk>None \<notin> cmps; None \<notin> cmps'; object_type obj = object_type obj'\<rbrakk>
+ \<Longrightarrow> update_slots slots (object_clean obj cmps) = update_slots slots (object_clean obj' cmps')"
+ apply (clarsimp simp: object_clean_def object_clean_slots_def)
+ apply (erule (2) update_slots_object_clean_fields)
+ done
+
+lemma cdl_heap_add_assoc':
+ "\<forall>obj_id. not_conflicting_objects x z obj_id \<and>
+ not_conflicting_objects y z obj_id \<and>
+ not_conflicting_objects x z obj_id \<Longrightarrow>
+ cdl_heap_add (SepState (cdl_heap_add x y) (cdl_ghost_state_add x y)) z =
+ cdl_heap_add x (SepState (cdl_heap_add y z) (cdl_ghost_state_add y z))"
+ apply (rule ext)
+ apply (rename_tac obj_id)
+ apply (erule_tac x=obj_id in allE)
+ apply (clarsimp simp: cdl_heap_add_def cdl_ghost_state_add_def not_conflicting_objects_def)
+ apply (simp add: Let_unfold split: option.splits)
+ apply (rename_tac obj_y obj_x obj_z)
+ apply (clarsimp simp: object_add_def clean_slots_def object_clean_def object_clean_slots_def Let_unfold)
+ apply (case_tac "has_slots obj_z")
+ apply (subgoal_tac "has_slots obj_y")
+ apply (subgoal_tac "has_slots obj_x")
+ apply ((clarsimp simp: has_slots_object_clean_fields has_slots_object_clean_slots has_slots_object_clean
+ map_add_restrict union_intersection |
+ drule inter_empty_not_both |
+ erule update_slots_object_clean_fields |
+ erule object_type_has_slots, simp |
+ simp | safe)+)[3]
+ apply (subgoal_tac "\<not> has_slots obj_y")
+ apply (subgoal_tac "\<not> has_slots obj_x")
+ apply ((clarsimp simp: has_slots_object_clean_fields has_slots_object_clean_slots has_slots_object_clean
+ map_add_restrict union_intersection |
+ drule inter_empty_not_both |
+ erule object_clean_fields_no_slots |
+ erule object_type_has_slots, simp |
+ simp | safe)+)
+ apply (fastforce simp: object_type_has_slots)+
+ done
+
+lemma cdl_heap_add_assoc:
+ "\<lbrakk>sep_state_disj x y; sep_state_disj y z; sep_state_disj x z\<rbrakk>
+ \<Longrightarrow> cdl_heap_add (SepState (cdl_heap_add x y) (cdl_ghost_state_add x y)) z =
+ cdl_heap_add x (SepState (cdl_heap_add y z) (cdl_ghost_state_add y z))"
+ apply (clarsimp simp: sep_state_disj_def)
+ apply (cut_tac cdl_heap_add_assoc')
+ apply fast
+ apply fastforce
+ done
+
+lemma cdl_ghost_state_add_assoc:
+ "cdl_ghost_state_add (SepState (cdl_heap_add x y) (cdl_ghost_state_add x y)) z =
+ cdl_ghost_state_add x (SepState (cdl_heap_add y z) (cdl_ghost_state_add y z))"
+ apply (rule ext)
+ apply (fastforce simp: cdl_heap_add_def cdl_ghost_state_add_def Let_unfold)
+ done
+
+lemma clean_slots_map_add_comm:
+ "cmps_a \<inter> cmps_b = {}
+ \<Longrightarrow> clean_slots slots_a cmps_a ++ clean_slots slots_b cmps_b =
+ clean_slots slots_b cmps_b ++ clean_slots slots_a cmps_a"
+ apply (clarsimp simp: clean_slots_def)
+ apply (drule the_set_inter_empty)
+ apply (erule map_add_restrict_comm)
+ done
+
+lemma object_clean_all:
+ "object_type obj_a = object_type obj_b \<Longrightarrow> object_clean obj_b {} = object_clean obj_a {}"
+ apply (clarsimp simp: object_clean_def object_clean_slots_def clean_slots_def the_set_def)
+ apply (rule_tac cmps'1="{}" and obj'1="obj_a" in trans [OF update_slots_object_clean_fields], fastforce+)
+ done
+
+lemma object_add_comm:
+ "\<lbrakk>object_type obj_a = object_type obj_b; cmps_a \<inter> cmps_b = {}\<rbrakk>
+ \<Longrightarrow> object_add obj_a obj_b cmps_a cmps_b = object_add obj_b obj_a cmps_b cmps_a"
+ apply (clarsimp simp: object_add_def Let_unfold)
+ apply (rule conjI | clarsimp)+
+ apply fastforce
+ apply (rule conjI | clarsimp)+
+ apply (drule_tac slots_a = "object_slots obj_a" and slots_b = "object_slots obj_b" in clean_slots_map_add_comm)
+ apply fastforce
+ apply (rule conjI | clarsimp)+
+ apply (drule_tac slots_a = "object_slots obj_a" and slots_b = "object_slots obj_b" in clean_slots_map_add_comm)
+ apply fastforce
+ apply (rule conjI | clarsimp)+
+ apply (erule object_clean_all)
+ apply (clarsimp)
+ apply (rule_tac cmps'1=cmps_b and obj'1=obj_b in trans [OF update_slots_object_clean], assumption+)
+ apply (drule_tac slots_a = "object_slots obj_a" and slots_b = "object_slots obj_b" in clean_slots_map_add_comm)
+ apply fastforce
+ done
+
+lemma sep_state_add_comm:
+ "sep_state_disj x y \<Longrightarrow> sep_state_add x y = sep_state_add y x"
+ apply (clarsimp simp: sep_state_add_def sep_state_disj_def)
+ apply (rule conjI)
+ apply (case_tac x, case_tac y, clarsimp)
+ apply (rename_tac heap_a gs_a heap_b gs_b)
+ apply (clarsimp simp: cdl_heap_add_def Let_unfold)
+ apply (rule ext)
+ apply (case_tac "heap_a obj_id")
+ apply (case_tac "heap_b obj_id", simp_all add: slots_of_heap_def)
+ apply (case_tac "heap_b obj_id", simp_all add: slots_of_heap_def)
+ apply (rename_tac obj_a obj_b)
+ apply (erule_tac x=obj_id in allE)
+ apply (rule object_add_comm)
+ apply (clarsimp simp: not_conflicting_objects_def)
+ apply (clarsimp simp: not_conflicting_objects_def)
+ apply (rule ext, fastforce simp: cdl_ghost_state_add_def Let_unfold Un_commute)
+ done
+
+lemma add_to_slots_comm:
+ "\<lbrakk>object_slots y_obj \<bottom> object_slots z_obj; update_slots empty y_obj = update_slots empty z_obj \<rbrakk>
+ \<Longrightarrow> add_to_slots (object_slots z_obj) y_obj = add_to_slots (object_slots y_obj) z_obj"
+ by (fastforce simp: add_to_slots_def update_slots_def object_slots_def
+ cdl_tcb.splits cdl_cnode.splits
+ dest!: map_add_com
+ split: cdl_object.splits)
+
+lemma cdl_heap_add_none1:
+ "cdl_heap_add x y obj_id = None \<Longrightarrow> (sep_heap x) obj_id = None"
+ by (clarsimp simp: cdl_heap_add_def Let_unfold split:option.splits split_if_asm)
+
+lemma cdl_heap_add_none2:
+ "cdl_heap_add x y obj_id = None \<Longrightarrow> (sep_heap y) obj_id = None"
+ by (clarsimp simp: cdl_heap_add_def Let_unfold split:option.splits split_if_asm)
+
+lemma object_type_object_addL:
+ "object_type obj = object_type obj'
+ \<Longrightarrow> object_type (object_add obj obj' cmp cmp') = object_type obj"
+ by (clarsimp simp: object_add_def Let_unfold)
+
+lemma object_type_object_addR:
+ "object_type obj = object_type obj'
+ \<Longrightarrow> object_type (object_add obj obj' cmp cmp') = object_type obj'"
+ by (clarsimp simp: object_add_def Let_unfold)
+
+lemma sep_state_add_disjL:
+ "\<lbrakk>sep_state_disj y z; sep_state_disj x (sep_state_add y z)\<rbrakk> \<Longrightarrow> sep_state_disj x y"
+ apply (clarsimp simp: sep_state_disj_def sep_state_add_def)
+ apply (rename_tac obj_id)
+ apply (clarsimp simp: not_conflicting_objects_def)
+ apply (erule_tac x=obj_id in allE)+
+ apply (fastforce simp: cdl_heap_add_def cdl_ghost_state_add_def object_type_object_addR
+ split: option.splits)
+ done
+
+lemma sep_state_add_disjR:
+ "\<lbrakk>sep_state_disj y z; sep_state_disj x (sep_state_add y z)\<rbrakk> \<Longrightarrow> sep_state_disj x z"
+ apply (clarsimp simp: sep_state_disj_def sep_state_add_def)
+ apply (rename_tac obj_id)
+ apply (clarsimp simp: not_conflicting_objects_def)
+ apply (erule_tac x=obj_id in allE)+
+ apply (fastforce simp: cdl_heap_add_def cdl_ghost_state_add_def object_type_object_addR
+ split: option.splits)
+ done
+
+lemma sep_state_add_disj:
+ "\<lbrakk>sep_state_disj y z; sep_state_disj x y; sep_state_disj x z\<rbrakk> \<Longrightarrow> sep_state_disj x (sep_state_add y z)"
+ apply (clarsimp simp: sep_state_disj_def sep_state_add_def)
+ apply (rename_tac obj_id)
+ apply (clarsimp simp: not_conflicting_objects_def)
+ apply (erule_tac x=obj_id in allE)+
+ apply (fastforce simp: cdl_heap_add_def cdl_ghost_state_add_def object_type_object_addR
+ split: option.splits)
+ done
+
+
+
+
+(*********************************************)
+(* Definition of separation logic for capDL. *)
+(*********************************************)
+
+instantiation "sep_state" :: zero
+begin
+ definition "0 \<equiv> SepState empty (\<lambda>obj_id. {})"
+ instance ..
+end
+
+instantiation "sep_state" :: stronger_sep_algebra
+begin
+
+definition "(op ##) \<equiv> sep_state_disj"
+definition "(op +) \<equiv> sep_state_add"
+
+
+
+(**********************************************
+ * The proof that this is a separation logic. *
+ **********************************************)
+
+instance
+ apply default
+(* x ## 0 *)
+ apply (simp add: sep_disj_sep_state_def sep_state_disj_def zero_sep_state_def)
+(* x ## y \<Longrightarrow> y ## x *)
+ apply (clarsimp simp: not_conflicting_objects_comm sep_disj_sep_state_def sep_state_disj_def Let_unfold
+ map_disj_com not_conflicting_objects_comm Int_commute)
+(* x + 0 = x *)
+ apply (simp add: plus_sep_state_def sep_state_add_def zero_sep_state_def)
+ apply (case_tac x)
+ apply (clarsimp simp: cdl_heap_add_def)
+ apply (rule ext)
+ apply (clarsimp simp: cdl_ghost_state_add_def split:split_if_asm)
+(* x ## y \<Longrightarrow> x + y = y + x *)
+ apply (clarsimp simp: plus_sep_state_def sep_disj_sep_state_def)
+ apply (erule sep_state_add_comm)
+(* (x + y) + z = x + (y + z) *)
+ apply (simp add: plus_sep_state_def sep_state_add_def)
+ apply (rule conjI)
+ apply (clarsimp simp: sep_disj_sep_state_def)
+ apply (erule (2) cdl_heap_add_assoc)
+ apply (rule cdl_ghost_state_add_assoc)
+(* x ## y + z = (x ## y \<and> x ## z) *)
+ apply (clarsimp simp: plus_sep_state_def sep_disj_sep_state_def)
+ apply (rule iffI)
+ (* x ## y + z \<Longrightarrow> (x ## y \<and> x ## z) *)
+ apply (rule conjI)
+ (* x ## y + z \<Longrightarrow> (x ## y) *)
+ apply (erule (1) sep_state_add_disjL)
+ (* x ## y + z \<Longrightarrow> (x ## z) *)
+ apply (erule (1) sep_state_add_disjR)
+ (* x ## y + z \<Longleftarrow> (x ## y \<and> x ## z) *)
+ apply clarsimp
+ apply (erule (2) sep_state_add_disj)
+ done
+
+end
+
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/capDL/Separation_D.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,72 @@
+(* Author: Andrew Boyton, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Defining some separation logic maps-to predicates on top of the instantiation."
+
+theory Separation_D
+imports Abstract_Separation_D
+begin
+
+type_synonym sep_pred = "sep_state \<Rightarrow> bool"
+
+definition
+ state_sep_projection :: "cdl_state \<Rightarrow> sep_state"
+where
+ "state_sep_projection \<equiv> \<lambda>s. SepState (cdl_objects s) (cdl_ghost_state s)"
+
+(* This turns a separation logic predicate into a predicate on the capDL state. *)
+abbreviation
+ lift' :: "(sep_state \<Rightarrow> 'a) \<Rightarrow> cdl_state \<Rightarrow> 'a" ("<_>")
+where
+ "<P> s \<equiv> P (state_sep_projection s)"
+
+(* The generalisation of the maps to operator for separation logic. *)
+definition
+ sep_map_general :: "cdl_object_id \<Rightarrow> cdl_object \<Rightarrow> cdl_components \<Rightarrow> sep_pred"
+where
+ "sep_map_general p obj gs \<equiv> \<lambda>s. sep_heap s = [p \<mapsto> obj] \<and> sep_ghost_state s p = gs"
+
+(* Alternate definition without the [p \<mapsto> obj] notation. *)
+lemma sep_map_general_def2:
+ "sep_map_general p obj gs s =
+ (dom (sep_heap s) = {p} \<and> ko_at obj p (sep_heap s) \<and> sep_ghost_state s p = gs)"
+ apply (clarsimp simp: sep_map_general_def object_at_def)
+ apply (rule)
+ apply clarsimp
+ apply (clarsimp simp: fun_upd_def)
+ apply (rule ext)
+ apply (fastforce simp: dom_def split:split_if)
+ done
+
+(* There is an object there. *)
+definition
+ sep_map_i :: "cdl_object_id \<Rightarrow> cdl_object \<Rightarrow> sep_pred" ("_ \<mapsto>i _" [76,71] 76)
+where
+ "p \<mapsto>i obj \<equiv> sep_map_general p obj UNIV"
+
+(* The fields are there (and there are no caps). *)
+definition
+ sep_map_f :: "cdl_object_id \<Rightarrow> cdl_object \<Rightarrow> sep_pred" ("_ \<mapsto>f _" [76,71] 76)
+where
+ "p \<mapsto>f obj \<equiv> sep_map_general p (update_slots empty obj) {None}"
+
+(* There is that cap there. *)
+definition
+ sep_map_c :: "cdl_cap_ref \<Rightarrow> cdl_cap \<Rightarrow> sep_pred" ("_ \<mapsto>c _" [76,71] 76)
+where
+ "p \<mapsto>c cap \<equiv> \<lambda>s. let (obj_id, slot) = p; heap = sep_heap s in
+ \<exists>obj. sep_map_general obj_id obj {Some slot} s \<and> object_slots obj = [slot \<mapsto> cap]"
+
+definition
+ sep_any :: "('a \<Rightarrow> 'b \<Rightarrow> sep_pred) \<Rightarrow> ('a \<Rightarrow> sep_pred)" where
+ "sep_any m \<equiv> (\<lambda>p s. \<exists>v. (m p v) s)"
+
+abbreviation "sep_any_map_i \<equiv> sep_any sep_map_i"
+notation sep_any_map_i ("_ \<mapsto>i -" 76)
+
+abbreviation "sep_any_map_c \<equiv> sep_any sep_map_c"
+notation sep_any_map_c ("_ \<mapsto>c -" 76)
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/capDL/Types_D.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,233 @@
+(* Author: Andrew Boyton, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "A simplified version of the actual capDL specification."
+
+theory Types_D
+imports "~~/src/HOL/Word/Word"
+begin
+
+(*
+ * Objects are named by 32 bit words.
+ * This name may correspond to the memory address of the object.
+ *)
+type_synonym cdl_object_id = "32 word"
+
+type_synonym cdl_object_set = "cdl_object_id set"
+
+(* The type we use to represent object sizes. *)
+type_synonym cdl_size_bits = nat
+
+(* An index into a CNode, TCB, or other kernel object that contains caps. *)
+type_synonym cdl_cnode_index = nat
+
+(* A reference to a capability slot. *)
+type_synonym cdl_cap_ref = "cdl_object_id \<times> cdl_cnode_index"
+
+(* The possible access-control rights that exist in the system. *)
+datatype cdl_right = AllowRead | AllowWrite | AllowGrant
+
+
+(*
+ * Kernel capabilities.
+ *
+ * Such capabilities (or "caps") give the holder particular rights to
+ * a kernel object or system hardware.
+ *
+ * Caps have attributes such as the object they point to, the rights
+ * they give the holder, or how the holder is allowed to interact with
+ * the target object.
+ *
+ * This is a simplified, cut-down version of this datatype for
+ * demonstration purposes.
+ *)
+datatype cdl_cap =
+ NullCap
+ | EndpointCap cdl_object_id "cdl_right set"
+ | CNodeCap cdl_object_id
+ | TcbCap cdl_object_id
+
+(* A mapping from capability identifiers to capabilities. *)
+type_synonym cdl_cap_map = "cdl_cnode_index \<Rightarrow> cdl_cap option"
+
+translations
+ (type) "cdl_cap_map" <= (type) "nat \<Rightarrow> cdl_cap option"
+ (type) "cdl_cap_ref" <= (type) "cdl_object_id \<times> nat"
+
+(* A user cap pointer. *)
+type_synonym cdl_cptr = "32 word"
+
+(* Kernel objects *)
+record cdl_tcb =
+ cdl_tcb_caps :: cdl_cap_map
+ cdl_tcb_fault_endpoint :: cdl_cptr
+
+record cdl_cnode =
+ cdl_cnode_caps :: cdl_cap_map
+ cdl_cnode_size_bits :: cdl_size_bits
+
+(*
+ * Kernel objects.
+ *
+ * These are in-memory objects that may, over the course of the system
+ * execution, be created or deleted by users.
+ *
+ * Again, a simplified version of the real datatype.
+ *)
+datatype cdl_object =
+ Endpoint
+ | Tcb cdl_tcb
+ | CNode cdl_cnode
+
+(*
+ * The current state of the system.
+ *
+ * The state record contains the following primary pieces of information:
+ *
+ * objects:
+ * The objects that currently exist in the system.
+ *
+ * current_thread:
+ * The currently running thread. Operations will always be performed
+ * on behalf of this thread.
+ *
+ * ghost_state: (Used for separation logic)
+ * Which fields are owned by an object.
+ * In capDL this is all of the fields (or none of them).
+ * In any concrete state, this will be all of the fields.
+ *)
+
+
+(* The ghost state tracks which components (fields and slots) are owned by an object.
+ * Fields + slots are encoded as None + Some nat.
+ *)
+type_synonym cdl_heap = "cdl_object_id \<Rightarrow> cdl_object option"
+type_synonym cdl_component = "nat option"
+type_synonym cdl_components = "cdl_component set"
+type_synonym cdl_ghost_state = "cdl_object_id \<Rightarrow> cdl_components"
+
+translations
+ (type) "cdl_heap" <= (type) "cdl_object_id \<Rightarrow> cdl_object option"
+ (type) "cdl_ghost_state" <= (type) "cdl_object_id \<Rightarrow> nat option set"
+
+record cdl_state =
+ cdl_objects :: "cdl_heap"
+ cdl_current_thread :: "cdl_object_id option"
+ cdl_ghost_state :: "cdl_ghost_state"
+
+
+(* Kernel objects types. *)
+datatype cdl_object_type =
+ EndpointType
+ | TcbType
+ | CNodeType
+
+(* Return the type of an object. *)
+definition
+ object_type :: "cdl_object \<Rightarrow> cdl_object_type"
+where
+ "object_type x \<equiv>
+ case x of
+ Endpoint \<Rightarrow> EndpointType
+ | Tcb _ \<Rightarrow> TcbType
+ | CNode _ \<Rightarrow> CNodeType"
+
+(*
+ * Getters and setters for various data types.
+ *)
+
+(* Capability getters / setters *)
+
+definition cap_objects :: "cdl_cap \<Rightarrow> cdl_object_id set"
+where
+ "cap_objects cap \<equiv>
+ case cap of
+ TcbCap x \<Rightarrow> {x}
+ | CNodeCap x \<Rightarrow> {x}
+ | EndpointCap x _ \<Rightarrow> {x}"
+
+definition cap_has_object :: "cdl_cap \<Rightarrow> bool"
+where
+ "cap_has_object cap \<equiv>
+ case cap of
+ NullCap \<Rightarrow> False
+ | _ \<Rightarrow> True"
+
+definition cap_object :: "cdl_cap \<Rightarrow> cdl_object_id"
+where
+ "cap_object cap \<equiv>
+ if cap_has_object cap
+ then THE obj_id. cap_objects cap = {obj_id}
+ else undefined "
+
+lemma cap_object_simps:
+ "cap_object (TcbCap x) = x"
+ "cap_object (CNodeCap x) = x"
+ "cap_object (EndpointCap x j) = x"
+ by (simp_all add:cap_object_def cap_objects_def cap_has_object_def)
+
+definition
+ cap_rights :: "cdl_cap \<Rightarrow> cdl_right set"
+where
+ "cap_rights c \<equiv> case c of
+ EndpointCap _ x \<Rightarrow> x
+ | _ \<Rightarrow> UNIV"
+
+definition
+ update_cap_rights :: "cdl_right set \<Rightarrow> cdl_cap \<Rightarrow> cdl_cap"
+where
+ "update_cap_rights r c \<equiv> case c of
+ EndpointCap f1 _ \<Rightarrow> EndpointCap f1 r
+ | _ \<Rightarrow> c"
+
+(* Kernel object getters / setters *)
+definition
+ object_slots :: "cdl_object \<Rightarrow> cdl_cap_map"
+where
+ "object_slots obj \<equiv> case obj of
+ CNode x \<Rightarrow> cdl_cnode_caps x
+ | Tcb x \<Rightarrow> cdl_tcb_caps x
+ | _ \<Rightarrow> empty"
+
+definition
+ update_slots :: "cdl_cap_map \<Rightarrow> cdl_object \<Rightarrow> cdl_object"
+where
+ "update_slots new_val obj \<equiv> case obj of
+ CNode x \<Rightarrow> CNode (x\<lparr>cdl_cnode_caps := new_val\<rparr>)
+ | Tcb x \<Rightarrow> Tcb (x\<lparr>cdl_tcb_caps := new_val\<rparr>)
+ | _ \<Rightarrow> obj"
+
+(* Adds new caps to an object. It won't overwrite on a collision. *)
+definition
+ add_to_slots :: "cdl_cap_map \<Rightarrow> cdl_object \<Rightarrow> cdl_object"
+where
+ "add_to_slots new_val obj \<equiv> update_slots (new_val ++ (object_slots obj)) obj"
+
+definition
+ slots_of :: "cdl_heap \<Rightarrow> cdl_object_id \<Rightarrow> cdl_cap_map"
+where
+ "slots_of h \<equiv> \<lambda>obj_id.
+ case h obj_id of
+ None \<Rightarrow> empty
+ | Some obj \<Rightarrow> object_slots obj"
+
+
+definition
+ has_slots :: "cdl_object \<Rightarrow> bool"
+where
+ "has_slots obj \<equiv> case obj of
+ CNode _ \<Rightarrow> True
+ | Tcb _ \<Rightarrow> True
+ | _ \<Rightarrow> False"
+
+definition
+ object_at :: "(cdl_object \<Rightarrow> bool) \<Rightarrow> cdl_object_id \<Rightarrow> cdl_heap \<Rightarrow> bool"
+where
+ "object_at P p s \<equiv> \<exists>object. s p = Some object \<and> P object"
+
+abbreviation
+ "ko_at k \<equiv> object_at (op = k)"
+
+end
--- a/Separation_Algebra/sep_tactics.ML Fri Sep 12 00:47:15 2014 +0800
+++ b/Separation_Algebra/sep_tactics.ML Sat Sep 13 10:07:14 2014 +0800
@@ -121,7 +121,7 @@
(* simp add: sep_conj_ac *)
val sep_conj_ac_tac = Simplifier.asm_full_simp_tac
- (put_simpset HOL_basic_ss ctxt addsimps SepConj.sep_conj_ac);
+ (HOL_basic_ss addsimps SepConj.sep_conj_ac);
in
(* XXX: normally you'd want to keep track of what variables we want to make
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/Advanced.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,46 @@
+theory Advanced
+imports Essential
+begin
+
+lemma "True"
+proof -
+ ML_prf {* Variable.dest_fixes @{context} *}
+ fix x y
+ ML_prf {* Variable.dest_fixes @{context} *}
+ show ?thesis by auto
+qed
+
+lemma "True"
+proof -
+ fix x y
+ { fix z w
+ ML_prf {* Variable.dest_fixes @{context} *}
+ }
+ ML_prf {* Variable.dest_fixes @{context} *}
+ show ?thesis by auto
+qed
+
+ML {*
+val ctxt0 = @{context};
+val ([x, y], ctxt1) = Variable.add_fixes ["x", "y"] ctxt0;
+val ([z, w], ctxt2) = Variable.add_fixes ["z", "w"] ctxt1;
+val trm = @{term "(x, y, z, w)"};
+
+ pwriteln (Pretty.chunks
+ [ pretty_term ctxt0 trm,
+ pretty_term ctxt1 trm,
+ pretty_term ctxt2 trm ])
+*}
+
+ML {*
+ let
+ val ctxt0 = @{context}
+ val (y, ctxt1) = Variable.add_fixes ["x"] ctxt0
+ val frees = replicate 2 ("x", @{typ nat})
+ in
+ (Variable.variant_frees ctxt0 [] frees,
+ Variable.variant_frees ctxt1 [] frees, y)
+ end
+*}
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/Advanced.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,2 @@
+theory Advanced
+imports Essential
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/Essential.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,197 @@
+theory Essential
+imports FirstStep
+begin
+
+ML {*
+fun pretty_helper aux env =
+ env |> Vartab.dest
+ |> map aux
+ |> map (fn (s1, s2) => Pretty.block [s1, Pretty.str " := ", s2])
+ |> Pretty.enum "," "[" "]"
+ |> pwriteln
+
+fun pretty_tyenv ctxt tyenv =
+let
+ fun get_typs (v, (s, T)) = (TVar (v, s), T)
+ val print = pairself (pretty_typ ctxt)
+in
+ pretty_helper (print o get_typs) tyenv
+end
+
+fun pretty_env ctxt env =
+let
+ fun get_trms (v, (T, t)) = (Var (v, T), t)
+ val print = pairself (pretty_term ctxt)
+in
+ pretty_helper (print o get_trms) env
+end
+
+fun prep_trm thy (x, (T, t)) =
+ (cterm_of thy (Var (x, T)), cterm_of thy t)
+
+fun prep_ty thy (x, (S, ty)) =
+ (ctyp_of thy (TVar (x, S)), ctyp_of thy ty)
+
+fun matcher_inst thy pat trm i =
+ let
+ val univ = Unify.matchers thy [(pat, trm)]
+ val env = nth (Seq.list_of univ) i
+ val tenv = Vartab.dest (Envir.term_env env)
+ val tyenv = Vartab.dest (Envir.type_env env)
+ in
+ (map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
+ end
+*}
+
+ML {*
+ let
+ val pat = Logic.strip_imp_concl (prop_of @{thm spec})
+ val trm = @{term "Trueprop (Q True)"}
+ val inst = matcher_inst @{theory} pat trm 1
+ in
+ Drule.instantiate_normalize inst @{thm spec}
+ end
+*}
+
+ML {*
+let
+ val c = Const (@{const_name "plus"}, dummyT)
+ val o = @{term "1::nat"}
+ val v = Free ("x", dummyT)
+in
+ Syntax.check_term @{context} (c $ o $ v)
+end
+*}
+
+ML {*
+ val my_thm =
+ let
+ val assm1 = @{cprop "\<And> (x::nat). P x ==> Q x"}
+ val assm2 = @{cprop "(P::nat => bool) t"}
+
+ val Pt_implies_Qt =
+ Thm.assume assm1
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> Thm.forall_elim @{cterm "t::nat"}
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+
+ val Qt = Thm.implies_elim Pt_implies_Qt (Thm.assume assm2)
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ in
+ Qt
+ |> Thm.implies_intr assm2
+ |> Thm.implies_intr assm1
+ end
+*}
+
+local_setup {*
+ Local_Theory.note ((@{binding "my_thm"}, []), [my_thm]) #> snd
+*}
+
+local_setup {*
+ Local_Theory.note ((@{binding "my_thm_simp"},
+ [Attrib.internal (K Simplifier.simp_add)]), [my_thm]) #> snd
+*}
+
+(* pp 62 *)
+
+ML {*
+ Thm.reflexive @{cterm "True"}
+ |> Simplifier.rewrite_rule [@{thm True_def}]
+ |> pretty_thm @{context}
+ |> pwriteln
+*}
+
+
+ML {*
+ val thm = @{thm list.induct} |> forall_intr_vars;
+ thm |> forall_intr_vars |> cprop_of |> Object_Logic.atomize
+ |> (fn x => Raw_Simplifier.rewrite_rule [x] thm)
+*}
+
+ML {*
+fun atomize_thm thm =
+let
+ val thm' = forall_intr_vars thm
+ val thm'' = Object_Logic.atomize (cprop_of thm')
+in
+ Raw_Simplifier.rewrite_rule [thm''] thm'
+end
+*}
+
+ML {*
+ @{thm list.induct} |> atomize_thm
+*}
+
+ML {*
+ Skip_Proof.make_thm @{theory} @{prop "True = False"}
+*}
+
+ML {*
+fun pthms_of (PBody {thms, ...}) = map #2 thms
+val get_names = map #1 o pthms_of
+val get_pbodies = map (Future.join o #3) o pthms_of
+*}
+
+lemma my_conjIa:
+shows "A \<and> B \<Longrightarrow> A \<and> B"
+apply(rule conjI)
+apply(drule conjunct1)
+apply(assumption)
+apply(drule conjunct2)
+apply(assumption)
+done
+
+lemma my_conjIb:
+shows "A \<and> B \<Longrightarrow> A \<and> B"
+apply(assumption)
+done
+
+lemma my_conjIc:
+shows "A \<and> B \<Longrightarrow> A \<and> B"
+apply(auto)
+done
+
+
+ML {*
+@{thm my_conjIa}
+ |> Thm.proof_body_of
+ |> get_names
+*}
+
+ML {*
+@{thm my_conjIa}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_names
+ |> List.concat
+*}
+
+ML {*
+@{thm my_conjIb}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_names
+ |> List.concat
+*}
+
+ML {*
+@{thm my_conjIc}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_names
+ |> List.concat
+*}
+
+ML {*
+@{thm my_conjIa}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_pbodies
+ |> (map o map) get_names
+ |> List.concat
+ |> List.concat
+ |> duplicates (op=)
+*}
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/Essential.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,213 @@
+theory Essential
+imports FirstStep
+begin
+
+ML {*
+fun pretty_helper aux env =
+ env |> Vartab.dest
+ |> map aux
+ |> map (fn (s1, s2) => Pretty.block [s1, Pretty.str " := ", s2])
+ |> Pretty.enum "," "[" "]"
+ |> pwriteln
+
+fun pretty_tyenv ctxt tyenv =
+let
+ fun get_typs (v, (s, T)) = (TVar (v, s), T)
+ val print = pairself (pretty_typ ctxt)
+in
+ pretty_helper (print o get_typs) tyenv
+end
+
+fun pretty_env ctxt env =
+let
+ fun get_trms (v, (T, t)) = (Var (v, T), t)
+ val print = pairself (pretty_term ctxt)
+in
+ pretty_helper (print o get_trms) env
+end
+
+fun prep_trm thy (x, (T, t)) =
+ (cterm_of thy (Var (x, T)), cterm_of thy t)
+
+fun prep_ty thy (x, (S, ty)) =
+ (ctyp_of thy (TVar (x, S)), ctyp_of thy ty)
+
+fun matcher_inst thy pat trm i =
+ let
+ val univ = Unify.matchers thy [(pat, trm)]
+ val env = nth (Seq.list_of univ) i
+ val tenv = Vartab.dest (Envir.term_env env)
+ val tyenv = Vartab.dest (Envir.type_env env)
+ in
+ (map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
+ end
+*}
+
+ML {*
+ let
+ val pat = Logic.strip_imp_concl (prop_of @{thm spec})
+ val trm = @{term "Trueprop (Q True)"}
+ val inst = matcher_inst @{theory} pat trm 1
+ in
+ Drule.instantiate_normalize inst @{thm spec}
+ end
+*}
+
+ML {*
+let
+ val c = Const (@{const_name "plus"}, dummyT)
+ val o = @{term "1::nat"}
+ val v = Free ("x", dummyT)
+in
+ Syntax.check_term @{context} (c $ o $ v)
+end
+*}
+
+ML {*
+ val my_thm =
+ let
+ val assm1 = @{cprop "\<And> (x::nat). P x ==> Q x"}
+ val assm2 = @{cprop "(P::nat => bool) t"}
+
+ val Pt_implies_Qt =
+ Thm.assume assm1
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> Thm.forall_elim @{cterm "t::nat"}
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+
+ val Qt = Thm.implies_elim Pt_implies_Qt (Thm.assume assm2)
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ in
+ Qt
+ |> Thm.implies_intr assm2
+ |> Thm.implies_intr assm1
+ end
+*}
+
+local_setup {*
+ Local_Theory.note ((@{binding "my_thm"}, []), [my_thm]) #> snd
+*}
+
+local_setup {*
+ Local_Theory.note ((@{binding "my_thm_simp"},
+ [Attrib.internal (K Simplifier.simp_add)]), [my_thm]) #> snd
+*}
+
+(* pp 62 *)
+
+lemma
+ shows foo_test1: "A \<Longrightarrow> B \<Longrightarrow> C"
+ and foo_test2: "A \<longrightarrow> B \<longrightarrow> C" sorry
+
+ML {*
+ Thm.reflexive @{cterm "True"}
+ |> Simplifier.rewrite_rule [@{thm True_def}]
+ |> pretty_thm @{context}
+ |> pwriteln
+*}
+
+ML {*
+Object_Logic.rulify @{thm foo_test2}
+*}
+
+
+ML {*
+ val thm = @{thm foo_test1};
+ thm
+ |> cprop_of
+ |> Object_Logic.atomize
+ |> (fn x => Raw_Simplifier.rewrite_rule [x] thm)
+*}
+
+ML {*
+ val thm = @{thm list.induct} |> forall_intr_vars;
+ thm |> forall_intr_vars |> cprop_of |> Object_Logic.atomize
+ |> (fn x => Raw_Simplifier.rewrite_rule [x] thm)
+*}
+
+ML {*
+fun atomize_thm thm =
+let
+ val thm' = forall_intr_vars thm
+ val thm'' = Object_Logic.atomize (cprop_of thm')
+in
+ Raw_Simplifier.rewrite_rule [thm''] thm'
+end
+*}
+
+ML {*
+ @{thm list.induct} |> atomize_thm
+*}
+
+ML {*
+ Skip_Proof.make_thm @{theory} @{prop "True = False"}
+*}
+
+ML {*
+fun pthms_of (PBody {thms, ...}) = map #2 thms
+val get_names = map #1 o pthms_of
+val get_pbodies = map (Future.join o #3) o pthms_of
+*}
+
+lemma my_conjIa:
+shows "A \<and> B \<Longrightarrow> A \<and> B"
+apply(rule conjI)
+apply(drule conjunct1)
+apply(assumption)
+apply(drule conjunct2)
+apply(assumption)
+done
+
+lemma my_conjIb:
+shows "A \<and> B \<Longrightarrow> A \<and> B"
+apply(assumption)
+done
+
+lemma my_conjIc:
+shows "A \<and> B \<Longrightarrow> A \<and> B"
+apply(auto)
+done
+
+
+ML {*
+@{thm my_conjIa}
+ |> Thm.proof_body_of
+ |> get_names
+*}
+
+ML {*
+@{thm my_conjIa}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_names
+ |> List.concat
+*}
+
+ML {*
+@{thm my_conjIb}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_names
+ |> List.concat
+*}
+
+ML {*
+@{thm my_conjIc}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_names
+ |> List.concat
+*}
+
+ML {*
+@{thm my_conjIa}
+ |> Thm.proof_body_of
+ |> get_pbodies
+ |> map get_pbodies
+ |> (map o map) get_names
+ |> List.concat
+ |> List.concat
+ |> duplicates (op=)
+*}
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/FirstStep.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,173 @@
+theory FirstStep
+imports Main
+begin
+
+ML {*
+val pretty_term = Syntax.pretty_term
+val pwriteln = Pretty.writeln
+fun pretty_terms ctxt trms =
+ Pretty.block (Pretty.commas (map (pretty_term ctxt) trms))
+val show_type_ctxt = Config.put show_types true @{context}
+val show_all_types_ctxt = Config.put show_all_types true @{context}
+fun pretty_cterm ctxt ctrm =
+ pretty_term ctxt (term_of ctrm)
+fun pretty_thm ctxt thm =
+ pretty_term ctxt (prop_of thm)
+fun pretty_thm_no_vars ctxt thm =
+let
+ val ctxt' = Config.put show_question_marks false ctxt
+in
+ pretty_term ctxt' (prop_of thm)
+end
+fun pretty_thms ctxt thms =
+ Pretty.block (Pretty.commas (map (pretty_thm ctxt) thms))
+fun pretty_thms_no_vars ctxt thms =
+ Pretty.block (Pretty.commas (map (pretty_thm_no_vars ctxt) thms))
+fun pretty_typ ctxt ty = Syntax.pretty_typ ctxt ty
+fun pretty_typs ctxt tys =
+ Pretty.block (Pretty.commas (map (pretty_typ ctxt) tys))
+fun pretty_ctyp ctxt cty = pretty_typ ctxt (typ_of cty)
+fun pretty_ctyps ctxt ctys =
+ Pretty.block (Pretty.commas (map (pretty_ctyp ctxt) ctys))
+fun `f = fn x => (f x, x)
+fun (x, y) |>> f = (f x, y)
+fun (x, y) ||> f = (x, f y)
+fun (x, y) |-> f = f x y
+*}
+
+ML {*
+ val _ = pretty_term @{context} @{term "x + y + z"} |> pwriteln
+ val _ = pretty_terms @{context} [@{term "x + y"}, @{term "x + y + z"}] |> pwriteln
+ val show_type_ctxt = Config.put show_types true @{context}
+ *}
+
+ML {*
+ pwriteln (pretty_term show_type_ctxt @{term "(1::nat, x)"})
+*}
+
+ML {*
+pwriteln (Pretty.str (cat_lines ["foo", "bar"]))
+*}
+
+ML {*
+ fun apply_fresh_args f ctxt =
+ f |> fastype_of
+ |> binder_types
+ |> map (pair "z")
+ |> Variable.variant_frees ctxt [f]
+ |> map Free
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> curry list_comb f
+*}
+
+ML {*
+let
+ val trm = @{term "P::nat => int => unit => bool"}
+ val ctxt = ML_Context.the_local_context ()
+in
+ apply_fresh_args trm ctxt
+ |> pretty_term ctxt
+ |> pwriteln
+end
+*}
+
+ML {*
+ fun inc_by_three x =
+ x |> (fn x => x + 1)
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> (fn x => x + 2)
+*}
+
+ML {*
+ fun `f = fn x => (f x, x)
+*}
+
+ML {*
+ fun inc_as_pair x =
+ x |> `(fn x => x + 1)
+ |> (fn (x, y) => (x, y + 1))
+*}
+
+ML {*
+ 3 |> inc_as_pair
+*}
+
+ML {*
+ fun acc_incs x =
+ x |> (fn x => (0, x))
+ ||>> (fn x => (x, x + 1))
+ ||>> (fn x => (x, x + 1))
+ ||>> (fn x => (x, x + 1))
+*}
+
+ML {*
+ 2 |> acc_incs
+*}
+
+ML {*
+let
+ val ((names1, names2), _) =
+ @{context}
+ |> Variable.variant_fixes (replicate 4 "x")
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ ||>> Variable.variant_fixes (replicate 5 "x")
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+in
+ (names1, names2)
+end
+*}
+
+ML {*
+ @{context}
+ |> Local_Defs.add_def ((@{binding "One"}, NoSyn), @{term "1::nat"})
+ ||>> Local_Defs.add_def ((@{binding "Two"}, NoSyn), @{term "2::nat"})
+ ||>> Local_Defs.add_def ((@{binding "Three"}, NoSyn), @{term "3::nat"})
+*}
+
+ML {*
+let
+ val ctxt = @{context}
+in
+ Syntax.parse_term ctxt "m + n"
+ |> singleton (Syntax.check_terms ctxt)
+ |> pretty_term ctxt
+ |> pwriteln
+end
+*}
+
+ML {*
+ val term_pat_setup =
+ let
+ val parser = Args.context -- Scan.lift Args.name_source
+ fun term_pat (ctxt, str) =
+ str |> Proof_Context.read_term_pattern ctxt
+ |> ML_Syntax.print_term
+ |> ML_Syntax.atomic
+ in
+ ML_Antiquote.inline @{binding "term_pat"} (parser >> term_pat)
+ end
+*}
+
+setup {* term_pat_setup *}
+
+
+ML {*
+val type_pat_setup =
+let
+ val parser = Args.context -- Scan.lift Args.name_source
+ fun typ_pat (ctxt, str) =
+ let
+ val ctxt' = Proof_Context.set_mode Proof_Context.mode_schematic ctxt
+ in
+ str |> Syntax.read_typ ctxt'
+ |> ML_Syntax.print_typ
+ |> ML_Syntax.atomic
+ end
+in
+ ML_Antiquote.inline @{binding "typ_pat"} (parser >> typ_pat)
+end
+*}
+
+setup {* type_pat_setup *}
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/FirstStep.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,173 @@
+theory FistStep
+imports Main
+begin
+
+ML {*
+val pretty_term = Syntax.pretty_term
+val pwriteln = Pretty.writeln
+fun pretty_terms ctxt trms =
+ Pretty.block (Pretty.commas (map (pretty_term ctxt) trms))
+val show_type_ctxt = Config.put show_types true @{context}
+val show_all_types_ctxt = Config.put show_all_types true @{context}
+fun pretty_cterm ctxt ctrm =
+ pretty_term ctxt (term_of ctrm)
+fun pretty_thm ctxt thm =
+ pretty_term ctxt (prop_of thm)
+fun pretty_thm_no_vars ctxt thm =
+let
+ val ctxt' = Config.put show_question_marks false ctxt
+in
+ pretty_term ctxt' (prop_of thm)
+end
+fun pretty_thms ctxt thms =
+ Pretty.block (Pretty.commas (map (pretty_thm ctxt) thms))
+fun pretty_thms_no_vars ctxt thms =
+ Pretty.block (Pretty.commas (map (pretty_thm_no_vars ctxt) thms))
+fun pretty_typ ctxt ty = Syntax.pretty_typ ctxt ty
+fun pretty_typs ctxt tys =
+ Pretty.block (Pretty.commas (map (pretty_typ ctxt) tys))
+fun pretty_ctyp ctxt cty = pretty_typ ctxt (typ_of cty)
+fun pretty_ctyps ctxt ctys =
+ Pretty.block (Pretty.commas (map (pretty_ctyp ctxt) ctys))
+fun `f = fn x => (f x, x)
+fun (x, y) |>> f = (f x, y)
+fun (x, y) ||> f = (x, f y)
+fun (x, y) |-> f = f x y
+*}
+
+ML {*
+ val _ = pretty_term @{context} @{term "x + y + z"} |> pwriteln
+ val _ = pretty_terms @{context} [@{term "x + y"}, @{term "x + y + z"}] |> pwriteln
+ val show_type_ctxt = Config.put show_types true @{context}
+ *}
+
+ML {*
+ pwriteln (pretty_term show_type_ctxt @{term "(1::nat, x)"})
+*}
+
+ML {*
+pwriteln (Pretty.str (cat_lines ["foo", "bar"]))
+*}
+
+ML {*
+ fun apply_fresh_args f ctxt =
+ f |> fastype_of
+ |> binder_types
+ |> map (pair "z")
+ |> Variable.variant_frees ctxt [f]
+ |> map Free
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> curry list_comb f
+*}
+
+ML {*
+let
+ val trm = @{term "P::nat => int => unit => bool"}
+ val ctxt = ML_Context.the_local_context ()
+in
+ apply_fresh_args trm ctxt
+ |> pretty_term ctxt
+ |> pwriteln
+end
+*}
+
+ML {*
+ fun inc_by_three x =
+ x |> (fn x => x + 1)
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> (fn x => x + 2)
+*}
+
+ML {*
+ fun `f = fn x => (f x, x)
+*}
+
+ML {*
+ fun inc_as_pair x =
+ x |> `(fn x => x + 1)
+ |> (fn (x, y) => (x, y + 1))
+*}
+
+ML {*
+ 3 |> inc_as_pair
+*}
+
+ML {*
+ fun acc_incs x =
+ x |> (fn x => (0, x))
+ ||>> (fn x => (x, x + 1))
+ ||>> (fn x => (x, x + 1))
+ ||>> (fn x => (x, x + 1))
+*}
+
+ML {*
+ 2 |> acc_incs
+*}
+
+ML {*
+let
+ val ((names1, names2), _) =
+ @{context}
+ |> Variable.variant_fixes (replicate 4 "x")
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ ||>> Variable.variant_fixes (replicate 5 "x")
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+in
+ (names1, names2)
+end
+*}
+
+ML {*
+ @{context}
+ |> Local_Defs.add_def ((@{binding "One"}, NoSyn), @{term "1::nat"})
+ ||>> Local_Defs.add_def ((@{binding "Two"}, NoSyn), @{term "2::nat"})
+ ||>> Local_Defs.add_def ((@{binding "Three"}, NoSyn), @{term "3::nat"})
+*}
+
+ML {*
+let
+ val ctxt = @{context}
+in
+ Syntax.parse_term ctxt "m + n"
+ |> singleton (Syntax.check_terms ctxt)
+ |> pretty_term ctxt
+ |> pwriteln
+end
+*}
+
+ML {*
+ val term_pat_setup =
+ let
+ val parser = Args.context -- Scan.lift Args.name_source
+ fun term_pat (ctxt, str) =
+ str |> Proof_Context.read_term_pattern ctxt
+ |> ML_Syntax.print_term
+ |> ML_Syntax.atomic
+ in
+ ML_Antiquote.inline @{binding "term_pat"} (parser >> term_pat)
+ end
+*}
+
+setup {* term_pat_setup *}
+
+
+ML {*
+val type_pat_setup =
+let
+ val parser = Args.context -- Scan.lift Args.name_source
+ fun typ_pat (ctxt, str) =
+ let
+ val ctxt' = Proof_Context.set_mode Proof_Context.mode_schematic ctxt
+ in
+ str |> Syntax.read_typ ctxt'
+ |> ML_Syntax.print_typ
+ |> ML_Syntax.atomic
+ end
+in
+ ML_Antiquote.inline @{binding "typ_pat"} (parser >> typ_pat)
+end
+*}
+
+setup {* type_pat_setup *}
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/Tactical.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,64 @@
+theory Tactical
+imports Advanced
+begin
+
+ML {*
+fun my_print_tac ctxt thm =
+let
+ val _ = tracing (Pretty.string_of (pretty_thm_no_vars ctxt thm))
+in
+ Seq.single thm
+end
+*}
+
+ML {*
+let
+ val ctxt = @{context}
+ val goal = @{prop "P \<or> Q \<Longrightarrow> Q \<or> P"}
+in
+ Goal.prove ctxt ["x", "y", "u", "v", "P", "Q"] [@{prop "x = y"}, @{prop "u = v"}] goal
+ (fn {prems = pms, context = ctxt} =>
+ (my_print_tac ctxt)
+ THEN etac @{thm disjE} 1 THEN
+ (my_print_tac ctxt)
+ THEN rtac @{thm disjI2} 1
+ THEN (my_print_tac ctxt)
+ THEN atac 1
+ THEN rtac @{thm disjI1} 1
+ THEN atac 1)
+end
+*}
+
+ML {*
+ Goal.prove
+*}
+
+ML {*
+fun pretty_cterms ctxt ctrms =
+ Pretty.block (Pretty.commas (map (pretty_cterm ctxt) ctrms))
+*}
+
+ML {*
+fun foc_tac {prems, params, asms, concl, context, schematics} =
+let
+ fun assgn1 f1 f2 xs =
+ let
+ val out = map (fn (x, y) => Pretty.enum ":=" "" "" [f1 x, f2 y]) xs
+ in
+ Pretty.list "" "" out
+ end
+ fun assgn2 f xs = assgn1 f f xs
+ val pps = map (fn (s, pp) => Pretty.block [Pretty.str s, pp])
+ [("params: ", assgn1 Pretty.str (pretty_cterm context) params),
+ ("assumptions: ", pretty_cterms context asms),
+ ("conclusion: ", pretty_cterm context concl),
+ ("premises: ", pretty_thms_no_vars context prems),
+ ("schematics: ", assgn2 (pretty_cterm context) (snd schematics))]
+in
+ tracing (Pretty.string_of (Pretty.chunks pps)); all_tac
+end
+*}
+
+notation (output) "prop" ("#_" [1000] 1000)
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/Tactical.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,76 @@
+theory Tactical
+imports Advanced
+begin
+
+
+
+
+ML {*
+fun my_print_tac ctxt thm =
+let
+ val _ = tracing (Pretty.string_of (pretty_thm_no_vars ctxt thm))
+in
+ Seq.single thm
+end
+*}
+
+ML {*
+let
+ val ctxt = @{context}
+ val goal = @{prop "P \<or> Q \<Longrightarrow> Q \<or> P"}
+in
+ Goal.prove ctxt ["x", "y", "u", "v", "P", "Q"] [@{prop "x = y"}, @{prop "u = v"}] goal
+ (fn {prems = pms, context = ctxt} =>
+ (my_print_tac ctxt)
+ THEN etac @{thm disjE} 1 THEN
+ (my_print_tac ctxt)
+ THEN rtac @{thm disjI2} 1
+ THEN (my_print_tac ctxt)
+ THEN atac 1
+ THEN rtac @{thm disjI1} 1
+ THEN atac 1)
+end
+*}
+
+ML {*
+ Goal.prove
+*}
+
+ML {*
+fun pretty_cterms ctxt ctrms =
+ Pretty.block (Pretty.commas (map (pretty_cterm ctxt) ctrms))
+*}
+
+ML {*
+fun foc_tac {prems, params, asms, concl, context, schematics} =
+let
+ fun assgn1 f1 f2 xs =
+ let
+ val out = map (fn (x, y) => Pretty.enum ":=" "" "" [f1 x, f2 y]) xs
+ in
+ Pretty.list "" "" out
+ end
+ fun assgn2 f xs = assgn1 f f xs
+ val pps = map (fn (s, pp) => Pretty.block [Pretty.str s, pp])
+ [("params: ", assgn1 Pretty.str (pretty_cterm context) params),
+ ("assumptions: ", pretty_cterms context asms),
+ ("conclusion: ", pretty_cterm context concl),
+ ("premises: ", pretty_thms_no_vars context prems),
+ ("schematics: ", assgn2 (pretty_cterm context) (snd schematics))]
+in
+ tracing (Pretty.string_of (Pretty.chunks pps)); all_tac
+end
+*}
+
+
+notation (output) "prop" ("#_" [1000] 1000)
+
+lemma
+ shows " \<lbrakk>A; B\<rbrakk> \<Longrightarrow> A \<and> B"
+apply(tactic {* my_print_tac @{context} *})
+apply(rule conjI)
+apply(tactic {* my_print_tac @{context} *})
+apply(assumption)
+apply(tactic {* my_print_tac @{context} *})
+apply(assumption)
+apply(tactic {* my_print_tac @{context} *})
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progtut/progtut.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,173 @@
+theory FistStep
+imports Main
+begin
+
+ML {*
+val pretty_term = Syntax.pretty_term
+val pwriteln = Pretty.writeln
+fun pretty_terms ctxt trms =
+ Pretty.block (Pretty.commas (map (pretty_term ctxt) trms))
+val show_type_ctxt = Config.put show_types true @{context}
+val show_all_types_ctxt = Config.put show_all_types true @{context}
+fun pretty_cterm ctxt ctrm =
+ pretty_term ctxt (term_of ctrm)
+fun pretty_thm ctxt thm =
+ pretty_term ctxt (prop_of thm)
+fun pretty_thm_no_vars ctxt thm =
+let
+ val ctxt' = Config.put show_question_marks false ctxt
+in
+ pretty_term ctxt' (prop_of thm)
+end
+fun pretty_thms ctxt thms =
+ Pretty.block (Pretty.commas (map (pretty_thm ctxt) thms))
+fun pretty_thms_no_vars ctxt thms =
+ Pretty.block (Pretty.commas (map (pretty_thm_no_vars ctxt) thms))
+fun pretty_typ ctxt ty = Syntax.pretty_typ ctxt ty
+fun pretty_typs ctxt tys =
+ Pretty.block (Pretty.commas (map (pretty_typ ctxt) tys))
+fun pretty_ctyp ctxt cty = pretty_typ ctxt (typ_of cty)
+fun pretty_ctyps ctxt ctys =
+ Pretty.block (Pretty.commas (map (pretty_ctyp ctxt) ctys))
+fun `f = fn x => (f x, x)
+fun (x, y) |>> f = (f x, y)
+fun (x, y) ||> f = (x, f y)
+fun (x, y) |-> f = f x y
+*}
+
+ML {*
+ val _ = pretty_term @{context} @{term "x + y + z"} |> pwriteln
+ val _ = pretty_terms @{context} [@{term "x + y"}, @{term "x + y + z"}] |> pwriteln
+ val show_type_ctxt = Config.put show_types true @{context}
+ *}
+
+ML {*
+ pwriteln (pretty_term show_type_ctxt @{term "(1::nat, x)"})
+*}
+
+ML {*
+pwriteln (Pretty.str (cat_lines ["foo", "bar"]))
+*}
+
+ML {*
+ fun apply_fresh_args f ctxt =
+ f |> fastype_of
+ |> binder_types
+ |> map (pair "z")
+ |> Variable.variant_frees ctxt [f]
+ |> map Free
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> curry list_comb f
+*}
+
+ML {*
+let
+ val trm = @{term "P::nat => int => unit => bool"}
+ val ctxt = ML_Context.the_local_context ()
+in
+ apply_fresh_args trm ctxt
+ |> pretty_term ctxt
+ |> pwriteln
+end
+*}
+
+ML {*
+ fun inc_by_three x =
+ x |> (fn x => x + 1)
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ |> (fn x => x + 2)
+*}
+
+ML {*
+ fun `f = fn x => (f x, x)
+*}
+
+ML {*
+ fun inc_as_pair x =
+ x |> `(fn x => x + 1)
+ |> (fn (x, y) => (x, y + 1))
+*}
+
+ML {*
+ 3 |> inc_as_pair
+*}
+
+ML {*
+ fun acc_incs x =
+ x |> (fn x => (0, x))
+ ||>> (fn x => (x, x + 1))
+ ||>> (fn x => (x, x + 1))
+ ||>> (fn x => (x, x + 1))
+*}
+
+ML {*
+ 2 |> acc_incs
+*}
+
+ML {*
+let
+ val ((names1, names2), _) =
+ @{context}
+ |> Variable.variant_fixes (replicate 4 "x")
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+ ||>> Variable.variant_fixes (replicate 5 "x")
+ |> tap (fn x => pwriteln (Pretty.str (@{make_string} x)))
+in
+ (names1, names2)
+end
+*}
+
+ML {*
+ @{context}
+ |> Local_Defs.add_def ((@{binding "One"}, NoSyn), @{term "1::nat"})
+ ||>> Local_Defs.add_def ((@{binding "Two"}, NoSyn), @{term "2::nat"})
+ ||>> Local_Defs.add_def ((@{binding "Three"}, NoSyn), @{term "3::nat"})
+*}
+
+ML {*
+let
+ val ctxt = @{context}
+in
+ Syntax.parse_term ctxt "m + n"
+ |> singleton (Syntax.check_terms ctxt)
+ |> pretty_term ctxt
+ |> pwriteln
+end
+*}
+
+ML {*
+ val term_pat_setup =
+ let
+ val parser = Args.context -- Scan.lift Args.name_source
+ fun term_pat (ctxt, str) =
+ str |> Proof_Context.read_term_pattern ctxt
+ |> ML_Syntax.print_term
+ |> ML_Syntax.atomic
+ in
+ ML_Antiquote.inline @{binding "term_pat"} (parser >> term_pat)
+ end
+*}
+
+setup {* term_pat_setup *}
+
+
+ML {*
+val type_pat_setup =
+let
+ val parser = Args.context -- Scan.lift Args.name_source
+ fun typ_pat (ctxt, str) =
+ let
+ val ctxt' = Proof_Context.set_mode Proof_Context.mode_schematic ctxt
+ in
+ str |> Syntax.read_typ ctxt'
+ |> ML_Syntax.print_typ
+ |> ML_Syntax.atomic
+ end
+in
+ ML_Antiquote.inline @{binding "typ_pat"} (parser >> typ_pat)
+end
+*}
+
+setup {* type_pat_setup *}
+
+end
\ No newline at end of file
Binary file progtut/progtutorial.pdf has changed
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/ROOT Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,24 @@
+session "Hoare_gen" = "HOL" +
+ options [document = pdf]
+ theories [document = false]
+ Hoare_gen
+
+session "Hoare_tm_basis" = "Hoare_gen" +
+ options [document = pdf]
+ theories [document = false, document_output = "output_tm", document_variants = "hoare_tm"]
+ Hoare_tm_basis
+ files
+ "document/root_tm.tex"
+
+session "Hoare_tm" = "Hoare_tm_basis" +
+ options [document = pdf]
+ theories [document = false, document_output = "output_tm", document_variants = "hoare_tm"]
+ Hoare_tm
+ files
+ "document/root_tm.tex"
+
+session "Hoare_abc" = "Hoare_tm" +
+ options [document = pdf]
+ theories [document = false, document_output = "./output_abc"]
+ Hoare_abc
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Data_slot.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,25 @@
+theory Data_slot
+imports Main
+begin
+
+ML {*
+ fun ML_exec prog = ML_Compiler.eval true Position.none
+ (ML_Lex.tokenize prog)
+
+ fun prog_data_slot name tp empty =
+ "structure " ^ name ^ " = Theory_Data ( " ^
+ "type T = "^ tp ^" " ^
+ "val empty = " ^ empty ^ " ; "^
+ "val extend = I; "^
+ "fun merge (x, y) = x) "^
+ "fun "^ name ^ "_store v = Context.>>(Context.map_theory (" ^ name ^".map (fn x => v))) "^
+ "fun "^ name ^ "_get () = Context.>>>(Context.map_theory_result (fn th => "^
+ " ("^ name ^".get th, th))) "
+
+ fun data_slot name tp empty = ML_exec (prog_data_slot name tp empty)
+ val empty_term = @{term "x"}
+ val empty_cterm = @{cterm "x"}
+ val empty_thm = @{thm ext}
+*}
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Hoare_abc.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,1223 @@
+header {*
+ {\em Abacus} defined as macros of TM
+ *}
+
+theory Hoare_abc
+imports Hoare_tm Finite_Set
+begin
+
+
+text {*
+ {\em Abacus} instructions
+*}
+
+(*
+text {* The following Abacus instructions will be replaced by TM macros. *}
+datatype abc_inst =
+ -- {* @{text "Inc n"} increments the memory cell (or register)
+ with address @{text "n"} by one.
+ *}
+ Inc nat
+ -- {*
+ @{text "Dec n label"} decrements the memory cell with address @{text "n"} by one.
+ If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
+ the instruction labeled by @{text "label"}.
+ *}
+ | Dec nat nat
+ -- {*
+ @{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
+ *}
+ | Goto nat
+
+*)
+
+datatype aresource =
+ M nat nat
+ (* | C nat abc_inst *) (* C resource is not needed because there is no Abacus code any more *)
+ | At nat
+ | Faults nat
+
+
+section {* An interpretation from Abacus to Turing Machine *}
+
+fun recse_map :: "nat list \<Rightarrow> aresource \<Rightarrow> tassert" where
+ "recse_map ks (M a v) = <(a < length ks \<and> ks!a = v \<or> a \<ge> length ks \<and> v = 0)>" |
+ "recse_map ks (At l) = st l" |
+ "recse_map ks (Faults n) = sg {TFaults n}"
+
+definition "IA ars = (EXS ks i. ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* (reps 2 i ks) \<and>*
+ fam_conj {i<..} zero \<and>*
+ fam_conj ars (recse_map ks))"
+
+
+section {* A virtually defined Abacus *}
+
+text {* The following Abacus instructions are to be defined as TM macros *}
+
+definition "pc l = sg {At l}"
+
+definition "mm a v =sg ({M a v})"
+
+type_synonym assert = "aresource set \<Rightarrow> bool"
+
+lemma tm_hoare_inc1:
+ assumes h: "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0"
+ shows "
+ \<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[Inc a ]: j
+ \<lbrace>st j \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
+ using h
+proof
+ assume hh: "a < length ks \<and> ks ! a = v"
+ hence "a < length ks" by simp
+ from list_ext_lt [OF this] tm_hoare_inc00[OF hh]
+ show ?thesis by simp
+next
+ assume "length ks \<le> a \<and> v = 0"
+ from tm_hoare_inc01[OF this]
+ show ?thesis by simp
+qed
+
+lemma tm_hoare_inc2:
+ assumes "mm a v sr"
+ shows "
+ \<lbrace> (fam_conj sr (recse_map ks) \<and>*
+ st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<rbrace>
+ i:[ (Inc a) ]:j
+ \<lbrace> (fam_conj {M a (Suc v)} (recse_map (list_ext a ks[a := Suc v])) \<and>*
+ st j \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero)\<rbrace>"
+proof -
+ from `mm a v sr` have eq_sr: "sr = {M a v}" by (auto simp:mm_def sg_def)
+ from tm_hoare_inc1[where u = 2]
+ have "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0 \<Longrightarrow>
+ \<lbrace>st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[Inc a ]: j
+ \<lbrace>(st j \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero)\<rbrace>" by simp
+ thus ?thesis
+ apply (unfold eq_sr)
+ apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len)
+ by (rule tm.pre_condI, blast)
+qed
+
+locale IA_disjoint =
+ fixes s s' s1 cnf
+ assumes h_IA: "IA (s + s') s1"
+ and h_disj: "s ## s'"
+ and h_conf: "s1 \<subseteq> trset_of cnf"
+begin
+
+lemma at_disj1:
+ assumes at_in: "At i \<in> s"
+ shows "At j \<notin> s'"
+proof
+ from h_IA[unfolded IA_def]
+ obtain ks idx
+ where "((ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
+ reps 2 idx ks \<and>* fam_conj {idx<..} zero) \<and>*
+ fam_conj (s + s') (recse_map ks)) s1" (is "(?P \<and>* ?Q) s1")
+ by (auto elim!:EXS_elim simp:sep_conj_ac)
+ then obtain ss1 ss2 where "s1 = ss1 + ss2" "ss1 ## ss2" "?P ss1" "?Q ss2"
+ by (auto elim:sep_conjE)
+ from `?Q ss2`[unfolded fam_conj_disj_simp[OF h_disj]]
+ obtain tt1 tt2
+ where "ss2 = tt1 + tt2" "tt1 ## tt2"
+ "(fam_conj s (recse_map ks)) tt1"
+ "(fam_conj s' (recse_map ks)) tt2"
+ by (auto elim:sep_conjE)
+ assume "At j \<in> s'"
+ from `(fam_conj s' (recse_map ks)) tt2` [unfolded fam_conj_elm_simp[OF this]]
+ `ss2 = tt1 + tt2` `s1 = ss1 + ss2` h_conf
+ have "TAt j \<in> trset_of cnf"
+ by (auto elim!:sep_conjE simp: st_def sg_def tpn_set_def set_ins_def)
+ moreover from `(fam_conj s (recse_map ks)) tt1` [unfolded fam_conj_elm_simp[OF at_in]]
+ `ss2 = tt1 + tt2` `s1 = ss1 + ss2` h_conf
+ have "TAt i \<in> trset_of cnf"
+ by (auto elim!:sep_conjE simp: st_def sg_def tpn_set_def set_ins_def)
+ ultimately have "i = j"
+ by (cases cnf, simp add:trset_of.simps tpn_set_def)
+ from at_in `At j \<in> s'` h_disj
+ show False
+ by (unfold `i = j`, auto simp:set_ins_def)
+qed
+
+lemma at_disj2: "At i \<in> s' \<Longrightarrow> At j \<notin> s"
+ by (metis at_disj1)
+
+lemma m_disj1:
+ assumes m_in: "M a v \<in> s"
+ shows "M a v' \<notin> s'"
+proof
+ from h_IA[unfolded IA_def]
+ obtain ks idx
+ where "((ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
+ reps 2 idx ks \<and>* fam_conj {idx<..} zero) \<and>*
+ fam_conj (s + s') (recse_map ks)) s1" (is "(?P \<and>* ?Q) s1")
+ by (auto elim!:EXS_elim simp:sep_conj_ac)
+ then obtain ss1 ss2 where "s1 = ss1 + ss2" "ss1 ## ss2" "?P ss1" "?Q ss2"
+ by (auto elim:sep_conjE)
+ from `?Q ss2`[unfolded fam_conj_disj_simp[OF h_disj]]
+ obtain tt1 tt2
+ where "ss2 = tt1 + tt2" "tt1 ## tt2"
+ "(fam_conj s (recse_map ks)) tt1"
+ "(fam_conj s' (recse_map ks)) tt2"
+ by (auto elim:sep_conjE)
+ assume "M a v' \<in> s'"
+ from `(fam_conj s' (recse_map ks)) tt2` [unfolded fam_conj_elm_simp[OF this]
+ recse_map.simps]
+ have "(a < length ks \<and> ks ! a = v' \<or> length ks \<le> a \<and> v' = 0)"
+ by (auto simp:pasrt_def)
+ moreover from `(fam_conj s (recse_map ks)) tt1` [unfolded fam_conj_elm_simp[OF m_in]
+ recse_map.simps]
+ have "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0"
+ by (auto simp:pasrt_def)
+ moreover note m_in `M a v' \<in> s'` h_disj
+ ultimately show False
+ by (auto simp:set_ins_def)
+qed
+
+lemma m_disj2: "M a v \<in> s' \<Longrightarrow> M a v' \<notin> s"
+ by (metis m_disj1)
+
+end
+
+lemma EXS_elim1:
+ assumes "((EXS x. P(x)) \<and>* r) s"
+ obtains x where "(P(x) \<and>* r) s"
+ by (metis EXS_elim assms sep_conj_exists1)
+
+lemma hoare_inc[step]: "IA. \<lbrace> pc i ** mm a v \<rbrace>
+ i:[ (Inc a) ]:j
+ \<lbrace> pc j ** mm a (Suc v)\<rbrace>"
+ (is "IA. \<lbrace> pc i ** ?P \<rbrace>
+ i:[ ?code ?e ]:j
+ \<lbrace> pc ?e ** ?Q\<rbrace>")
+proof(induct rule:tm.IHoareI)
+ case (IPre s' s r cnf)
+ let ?cnf = "(trset_of cnf)"
+ from IPre
+ have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
+ by (metis condD)+
+ from h(1) obtain sr where
+ eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
+ by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def)
+ hence "At i \<in> s" by auto
+ from h(3) obtain s1 s2 s3
+ where hh: "?cnf = s1 + s2 + s3"
+ "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
+ "IA (s + s') s1"
+ "(i :[ ?code ?e ]: j) s2"
+ "r s3"
+ apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
+ by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
+ interpret ia_disj: IA_disjoint s s' s1 cnf
+ proof
+ from `IA (s + s') s1` show "IA (s + s') s1" .
+ next
+ from `s ## s'` show "s ## s'" .
+ next
+ from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ qed
+ from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ from hh(3)
+ have "(EXS ks ia.
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 ia ks \<and>*
+ fam_conj {ia<..} zero \<and>*
+ (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
+ s1"
+ apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
+ apply (unfold eq_s)
+ by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
+ then obtain ks ia
+ where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
+ reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
+ (is "(?PP \<and>* ?QQ) s1")
+ by (unfold pred_ex_def, auto simp:sep_conj_ac)
+ then obtain ss1 ss2 where pres:
+ "s1 = ss1 + ss2" "ss1 ## ss2"
+ "?PP ss1"
+ "?QQ ss2"
+ by (auto elim!:sep_conjE intro!:sep_conjI)
+ from ia_disj.at_disj1 [OF `At i \<in> s`]
+ have at_fresh_s': "At ?e \<notin> s'" .
+ have at_fresh_sr: "At ?e \<notin> sr"
+ proof
+ assume at_in: "At ?e \<in> sr"
+ from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
+ have "TAt ?e \<in> trset_of cnf"
+ apply (elim EXS_elim1)
+ apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
+ fam_conj_elm_simp[OF at_in])
+ apply (erule_tac sep_conjE, unfold set_ins_def)+
+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
+ moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
+ apply(erule_tac sep_conjE)
+ apply(erule_tac sep_conjE)
+ by (auto simp:st_def tpc_set_def sg_def set_ins_def)
+ ultimately have "i = ?e"
+ by (cases cnf, auto simp:tpn_set_def trset_of.simps)
+ from eq_s[unfolded this] at_in
+ show "False" by (auto simp:set_ins_def)
+ qed
+ from pres(3) and hh(2, 4, 5) pres(2, 4)
+ have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
+ (trset_of cnf)"
+ apply (unfold hh(1) pres(1))
+ apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
+ by (auto simp:set_ins_def)
+ (*****************************************************************************)
+ let ?ks_f = "\<lambda> sr ks. list_ext a ks[a := Suc v]"
+ let ?elm_f = "\<lambda> sr. {M a (Suc v)}"
+ let ?idx_f = "\<lambda> sr ks ia. (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)"
+ (*----------------------------------------------------------------------------*)
+ (******************************************************************************)
+ from tm_hoare_inc2 [OF eq_s(3), unfolded tm.Hoare_gen_def, rule_format, OF pres1]
+ obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
+ st ?e \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
+ fam_conj {?idx_f sr ks ia<..} zero) \<and>*
+ i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
+ (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
+ (*----------------------------------------------------------------------------*)
+ moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
+ proof -
+ have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
+ (******************************************************************************)
+ moreover have "?Q (?elm_f sr)"
+ by (simp add:mm_def sg_def)
+ (*----------------------------------------------------------------------------*)
+ moreover
+ (******************************************************************************)
+ have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
+ (*----------------------------------------------------------------------------*)
+ ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
+ qed
+ moreover
+ (******************************************************************************)
+ from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
+ have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
+ (*----------------------------------------------------------------------------*)
+ with at_fresh_s'
+ have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
+ moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
+ (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ proof -
+ fix elm
+ assume elm_in: "elm \<in> s'"
+ show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ proof(cases elm)
+ (*******************************************************************)
+ case (M a' v')
+ from eq_s have "M a v \<in> s" by (auto simp:set_ins_def mm_def sg_def)
+ with elm_in ia_disj.m_disj1[OF this] M
+ have "a \<noteq> a'" by auto
+ thus ?thesis
+ apply (auto simp:M recse_map.simps pasrt_def list_ext_len)
+ apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt)
+ apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt)
+ by (metis (full_types) bot_nat_def
+ leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def)
+ (*-----------------------------------------------------------------*)
+ qed auto
+ qed
+ ultimately show ?case
+ apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
+ apply (unfold IA_def, intro condI, assumption+)
+ apply (rule_tac x = "?ks_f sr ks" in pred_exI)
+ apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
+ apply (unfold fam_conj_disj_simp[OF fresh_atm])
+ apply (auto simp:sep_conj_ac fam_conj_simps)
+ (***************************************************************************)
+ (* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *)
+ (*-------------------------------------------------------------------------*)
+ apply (sep_cancel)+
+ by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])
+qed
+
+lemma tm_hoare_dec_fail:
+ assumes "mm a 0 sr"
+ shows
+ "\<lbrace> fam_conj sr (recse_map ks) \<and>*
+ st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>
+ i:[ (Dec a e) ]:j
+ \<lbrace> fam_conj {M a 0} (recse_map (list_ext a ks[a := 0])) \<and>*
+ st e \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+proof -
+ from `mm a 0 sr` have eq_sr: "sr = {M a 0}" by (auto simp:mm_def sg_def)
+ { assume h: "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
+ from tm_hoare_dec_fail1[where u = 2, OF this]
+ have "\<lbrace>st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
+ reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks)<..} zero\<rbrace>"
+ by (simp)
+ }
+ thus ?thesis
+ apply (unfold eq_sr)
+ apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len)
+ by (rule tm.pre_condI, blast)
+qed
+
+lemma hoare_dec_fail: "IA. \<lbrace> pc i ** mm a 0 \<rbrace>
+ i:[ (Dec a e) ]:j
+ \<lbrace> pc e ** mm a 0 \<rbrace>"
+ (is "IA. \<lbrace> pc i ** ?P \<rbrace>
+ i:[ ?code ?e]:j
+ \<lbrace> pc ?e ** ?Q\<rbrace>")
+proof(induct rule:tm.IHoareI)
+ case (IPre s' s r cnf)
+ let ?cnf = "(trset_of cnf)"
+ from IPre
+ have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
+ by (metis condD)+
+ from h(1) obtain sr where
+ eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
+ by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def)
+ hence "At i \<in> s" by auto
+ from h(3) obtain s1 s2 s3
+ where hh: "?cnf = s1 + s2 + s3"
+ "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
+ "IA (s + s') s1"
+ "(i :[ ?code ?e ]: j) s2"
+ "r s3"
+ apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
+ by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
+ interpret ia_disj: IA_disjoint s s' s1 cnf
+ proof
+ from `IA (s + s') s1` show "IA (s + s') s1" .
+ next
+ from `s ## s'` show "s ## s'" .
+ next
+ from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ qed
+ from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ from hh(3)
+ have "(EXS ks ia.
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 ia ks \<and>*
+ fam_conj {ia<..} zero \<and>*
+ (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
+ s1"
+ apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
+ apply (unfold eq_s)
+ by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
+ then obtain ks ia
+ where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
+ reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
+ (is "(?PP \<and>* ?QQ) s1")
+ by (unfold pred_ex_def, auto simp:sep_conj_ac)
+ then obtain ss1 ss2 where pres:
+ "s1 = ss1 + ss2" "ss1 ## ss2"
+ "?PP ss1"
+ "?QQ ss2"
+ by (auto elim!:sep_conjE intro!:sep_conjI)
+ from ia_disj.at_disj1 [OF `At i \<in> s`]
+ have at_fresh_s': "At ?e \<notin> s'" .
+ have at_fresh_sr: "At ?e \<notin> sr"
+ proof
+ assume at_in: "At ?e \<in> sr"
+ from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
+ have "TAt ?e \<in> trset_of cnf"
+ apply (elim EXS_elim1)
+ apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
+ fam_conj_elm_simp[OF at_in])
+ apply (erule_tac sep_conjE, unfold set_ins_def)+
+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
+ moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
+ apply(erule_tac sep_conjE)
+ apply(erule_tac sep_conjE)
+ by (auto simp:st_def tpc_set_def sg_def set_ins_def)
+ ultimately have "i = ?e"
+ by (cases cnf, auto simp:tpn_set_def trset_of.simps)
+ from eq_s[unfolded this] at_in
+ show "False" by (auto simp:set_ins_def)
+ qed
+ from pres(3) and hh(2, 4, 5) pres(2, 4)
+ have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
+ (trset_of cnf)"
+ apply (unfold hh(1) pres(1))
+ apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
+ by (auto simp:set_ins_def)
+ (*****************************************************************************)
+ let ?ks_f = "\<lambda> sr ks. list_ext a ks[a:=0]"
+ let ?elm_f = "\<lambda> sr. {M a 0}"
+ let ?idx_f = "\<lambda> sr ks ia. (ia + int (reps_len (list_ext a ks)) - int (reps_len ks))"
+ (*----------------------------------------------------------------------------*)
+ (******************************************************************************)
+ from tm_hoare_dec_fail[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1]
+ obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
+ st ?e \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
+ fam_conj {?idx_f sr ks ia<..} zero) \<and>*
+ i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
+ (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
+ (*----------------------------------------------------------------------------*)
+ moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
+ proof -
+ have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
+ (******************************************************************************)
+ moreover have "?Q (?elm_f sr)"
+ by (simp add:mm_def sg_def)
+ (*----------------------------------------------------------------------------*)
+ moreover
+ (******************************************************************************)
+ have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
+ (*----------------------------------------------------------------------------*)
+ ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
+ qed
+ moreover
+ (******************************************************************************)
+ from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
+ have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
+ (*----------------------------------------------------------------------------*)
+ with at_fresh_s'
+ have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
+ moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
+ (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ proof -
+ fix elm
+ assume elm_in: "elm \<in> s'"
+ show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ proof(cases elm)
+ (*******************************************************************)
+ case (M a' v')
+ from eq_s have "M a 0 \<in> s" by (auto simp:set_ins_def mm_def sg_def)
+ with elm_in ia_disj.m_disj1[OF this] M
+ have "a \<noteq> a'" by auto
+ thus ?thesis
+ apply (auto simp:M recse_map.simps pasrt_def list_ext_len)
+ apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt)
+ apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt)
+ by (metis (full_types) bot_nat_def
+ leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def)
+ (*-----------------------------------------------------------------*)
+ qed auto
+ qed
+ ultimately show ?case
+ apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
+ apply (unfold IA_def, intro condI, assumption+)
+ apply (rule_tac x = "?ks_f sr ks" in pred_exI)
+ apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
+ apply (unfold fam_conj_disj_simp[OF fresh_atm])
+ apply (auto simp:sep_conj_ac fam_conj_simps)
+ (***************************************************************************)
+ (* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *)
+ (*-------------------------------------------------------------------------*)
+ apply (sep_cancel)+
+ by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])
+qed
+
+lemma hoare_dec_fail_gen[step]:
+ assumes "v = 0"
+ shows
+ "IA. \<lbrace> pc i ** mm a v \<rbrace>
+ i:[ (Dec a e) ]:j
+ \<lbrace> pc e ** mm a v \<rbrace>"
+ by (unfold assms, rule hoare_dec_fail)
+
+
+lemma tm_hoare_dec_suc2:
+ assumes "mm a (Suc v) sr"
+ shows "\<lbrace> fam_conj sr (recse_map ks) \<and>*
+ st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>
+ i:[(Dec a e)]:j
+ \<lbrace> fam_conj {M a v} (recse_map (list_ext a ks[a := v])) \<and>*
+ st j \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 (ia - 1) (list_ext a ks[a := v]) \<and>*
+ fam_conj {ia - 1<..} zero\<rbrace>"
+proof -
+ from `mm a (Suc v) sr` have eq_sr: "sr = {M a (Suc v)}" by (auto simp:mm_def sg_def)
+ thus ?thesis
+ apply (unfold eq_sr)
+ apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len)
+ apply (rule tm.pre_condI)
+ by (drule tm_hoare_dec_suc1[where u = "2"], simp)
+qed
+
+lemma hoare_dec_suc2:
+ "IA. \<lbrace>(pc i \<and>* mm a (Suc v))\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>pc j \<and>* mm a v\<rbrace>"
+ (is "IA. \<lbrace> pc i ** ?P \<rbrace>
+ i:[ ?code ?e]:j
+ \<lbrace> pc ?e ** ?Q\<rbrace>")
+proof(induct rule:tm.IHoareI)
+ case (IPre s' s r cnf)
+ let ?cnf = "(trset_of cnf)"
+ from IPre
+ have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
+ by (metis condD)+
+ from h(1) obtain sr where
+ eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
+ by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def)
+ hence "At i \<in> s" by auto
+ from h(3) obtain s1 s2 s3
+ where hh: "?cnf = s1 + s2 + s3"
+ "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
+ "IA (s + s') s1"
+ "(i :[ ?code ?e ]: j) s2"
+ "r s3"
+ apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
+ by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
+ interpret ia_disj: IA_disjoint s s' s1 cnf
+ proof
+ from `IA (s + s') s1` show "IA (s + s') s1" .
+ next
+ from `s ## s'` show "s ## s'" .
+ next
+ from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ qed
+ from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ from hh(3)
+ have "(EXS ks ia.
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 ia ks \<and>*
+ fam_conj {ia<..} zero \<and>*
+ (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
+ s1"
+ apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
+ apply (unfold eq_s)
+ by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
+ then obtain ks ia
+ where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
+ reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
+ (is "(?PP \<and>* ?QQ) s1")
+ by (unfold pred_ex_def, auto simp:sep_conj_ac)
+ then obtain ss1 ss2 where pres:
+ "s1 = ss1 + ss2" "ss1 ## ss2"
+ "?PP ss1"
+ "?QQ ss2"
+ by (auto elim!:sep_conjE intro!:sep_conjI)
+ from ia_disj.at_disj1 [OF `At i \<in> s`]
+ have at_fresh_s': "At ?e \<notin> s'" .
+ have at_fresh_sr: "At ?e \<notin> sr"
+ proof
+ assume at_in: "At ?e \<in> sr"
+ from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
+ have "TAt ?e \<in> trset_of cnf"
+ apply (elim EXS_elim1)
+ apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
+ fam_conj_elm_simp[OF at_in])
+ apply (erule_tac sep_conjE, unfold set_ins_def)+
+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
+ moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
+ apply(erule_tac sep_conjE)
+ apply(erule_tac sep_conjE)
+ by (auto simp:st_def tpc_set_def sg_def set_ins_def)
+ ultimately have "i = ?e"
+ by (cases cnf, auto simp:tpn_set_def trset_of.simps)
+ from eq_s[unfolded this] at_in
+ show "False" by (auto simp:set_ins_def)
+ qed
+ from pres(3) and hh(2, 4, 5) pres(2, 4)
+ have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
+ (trset_of cnf)"
+ apply (unfold hh(1) pres(1))
+ apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
+ by (auto simp:set_ins_def)
+ (*****************************************************************************)
+ let ?ks_f = "\<lambda> sr ks. list_ext a ks[a:=v]"
+ let ?elm_f = "\<lambda> sr. {M a v}"
+ let ?idx_f = "\<lambda> sr ks ia. ia - 1"
+ (*----------------------------------------------------------------------------*)
+ (******************************************************************************)
+ from tm_hoare_dec_suc2[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1]
+ obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
+ st ?e \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
+ fam_conj {?idx_f sr ks ia<..} zero) \<and>*
+ i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
+ (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
+ (*----------------------------------------------------------------------------*)
+ moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
+ proof -
+ have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
+ (******************************************************************************)
+ moreover have "?Q (?elm_f sr)"
+ by (simp add:mm_def sg_def)
+ (*----------------------------------------------------------------------------*)
+ moreover
+ (******************************************************************************)
+ have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
+ (*----------------------------------------------------------------------------*)
+ ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
+ qed
+ moreover
+ (******************************************************************************)
+ from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
+ have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
+ (*----------------------------------------------------------------------------*)
+ with at_fresh_s'
+ have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
+ moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
+ (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ proof -
+ fix elm
+ assume elm_in: "elm \<in> s'"
+ show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ proof(cases elm)
+ (*******************************************************************)
+ case (M a' v')
+ from eq_s have "M a (Suc v) \<in> s" by (auto simp:set_ins_def mm_def sg_def)
+ with elm_in ia_disj.m_disj1[OF this] M
+ have "a \<noteq> a'" by auto
+ thus ?thesis
+ apply (auto simp:M recse_map.simps pasrt_def list_ext_len)
+ apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt)
+ apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt)
+ by (metis (full_types) bot_nat_def
+ leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def)
+ (*-----------------------------------------------------------------*)
+ qed auto
+ qed
+ ultimately show ?case
+ apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
+ apply (unfold IA_def, intro condI, assumption+)
+ apply (rule_tac x = "?ks_f sr ks" in pred_exI)
+ apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
+ apply (unfold fam_conj_disj_simp[OF fresh_atm])
+ apply (auto simp:sep_conj_ac fam_conj_simps)
+ (***************************************************************************)
+ (* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *)
+ (*-------------------------------------------------------------------------*)
+ apply (sep_cancel)+
+ by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])
+qed
+
+lemma hoare_dec_suc2_gen[step]:
+ assumes "v > 0"
+ shows
+ "IA. \<lbrace>pc i \<and>* mm a v\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>pc j \<and>* mm a (v - 1)\<rbrace>"
+proof -
+ from assms obtain v' where "v = Suc v'"
+ by (metis gr_implies_not0 nat.exhaust)
+ show ?thesis
+ apply (unfold `v = Suc v'`, simp)
+ by (rule hoare_dec_suc2)
+qed
+
+definition [asmb]: "Goto e = jmp e"
+
+lemma hoare_jmp_reps2:
+ "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
+ i:[(jmp e)]:j
+ \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
+proof(cases "ks")
+ case Nil
+ thus ?thesis
+ by (simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp, hsteps)
+next
+ case (Cons k ks')
+ thus ?thesis
+ proof(cases "ks' = []")
+ case True with Cons
+ show ?thesis
+ apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
+ by (hgoto hoare_jmp[where p = u])
+ next
+ case False
+ show ?thesis
+ apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
+ by (hgoto hoare_jmp[where p = u])
+ qed
+qed
+
+lemma tm_hoare_goto_pre: (* ccc *)
+ assumes "(<True>) sr"
+ shows "\<lbrace> fam_conj sr (recse_map ks) \<and>*
+ st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>
+ i:[(Goto e)]:j
+ \<lbrace> fam_conj {} (recse_map ks) \<and>*
+ st e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>"
+ apply (unfold Goto_def)
+ apply (subst (1 2) fam_conj_interv_simp)
+ apply (unfold zero_def)
+ apply (hstep hoare_jmp_reps2)
+ apply (simp add:sep_conj_ac)
+ my_block
+ from assms have "sr = {}"
+ by (simp add:pasrt_def set_ins_def)
+ my_block_end
+ by (unfold this, sep_cancel+)
+
+lemma hoare_goto_pre:
+ "IA. \<lbrace> pc i \<and>* <True> \<rbrace>
+ i:[ (Goto e) ]:j
+ \<lbrace> pc e \<and>* <True> \<rbrace>"
+ (is "IA. \<lbrace> pc i ** ?P \<rbrace>
+ i:[ ?code ?e]:j
+ \<lbrace> pc ?e ** ?Q\<rbrace>")
+proof(induct rule:tm.IHoareI)
+ case (IPre s' s r cnf)
+ let ?cnf = "(trset_of cnf)"
+ from IPre
+ have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
+ by (metis condD)+
+ from h(1) obtain sr where
+ eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
+ by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def pasrt_def)
+ hence "At i \<in> s" by auto
+ from h(3) obtain s1 s2 s3
+ where hh: "?cnf = s1 + s2 + s3"
+ "s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
+ "IA (s + s') s1"
+ "(i :[ ?code ?e ]: j) s2"
+ "r s3"
+ apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
+ by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
+ interpret ia_disj: IA_disjoint s s' s1 cnf
+ proof
+ from `IA (s + s') s1` show "IA (s + s') s1" .
+ next
+ from `s ## s'` show "s ## s'" .
+ next
+ from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ qed
+ from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
+ from hh(3)
+ have "(EXS ks ia.
+ ps 2 \<and>*
+ zero 0 \<and>*
+ zero 1 \<and>*
+ reps 2 ia ks \<and>*
+ fam_conj {ia<..} zero \<and>*
+ (st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
+ s1"
+ apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
+ apply (unfold eq_s)
+ by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
+ then obtain ks ia
+ where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
+ reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
+ (is "(?PP \<and>* ?QQ) s1")
+ by (unfold pred_ex_def, auto simp:sep_conj_ac)
+ then obtain ss1 ss2 where pres:
+ "s1 = ss1 + ss2" "ss1 ## ss2"
+ "?PP ss1"
+ "?QQ ss2"
+ by (auto elim!:sep_conjE intro!:sep_conjI)
+ from ia_disj.at_disj1 [OF `At i \<in> s`]
+ have at_fresh_s': "At ?e \<notin> s'" .
+ have at_fresh_sr: "At ?e \<notin> sr"
+ proof
+ assume at_in: "At ?e \<in> sr"
+ from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
+ have "TAt ?e \<in> trset_of cnf"
+ apply (elim EXS_elim1)
+ apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
+ fam_conj_elm_simp[OF at_in])
+ apply (erule_tac sep_conjE, unfold set_ins_def)+
+ by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
+ moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
+ apply(erule_tac sep_conjE)
+ apply(erule_tac sep_conjE)
+ by (auto simp:st_def tpc_set_def sg_def set_ins_def)
+ ultimately have "i = ?e"
+ by (cases cnf, auto simp:tpn_set_def trset_of.simps)
+ from eq_s[unfolded this] at_in
+ show "False" by (auto simp:set_ins_def)
+ qed
+ from pres(3) and hh(2, 4, 5) pres(2, 4)
+ have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
+ (trset_of cnf)"
+ apply (unfold hh(1) pres(1))
+ apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
+ apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
+ by (auto simp:set_ins_def)
+ (*****************************************************************************)
+ let ?ks_f = "\<lambda> sr ks. ks"
+ let ?elm_f = "\<lambda> sr. {}"
+ let ?idx_f = "\<lambda> sr ks ia. ia"
+ (*----------------------------------------------------------------------------*)
+ (******************************************************************************)
+ from tm_hoare_goto_pre[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1]
+ obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
+ st ?e \<and>*
+ ps 2 \<and>*
+ zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
+ fam_conj {?idx_f sr ks ia<..} zero) \<and>*
+ i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
+ (trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
+ (*----------------------------------------------------------------------------*)
+ moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
+ proof -
+ have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
+ (******************************************************************************)
+ moreover have "?Q (?elm_f sr)"
+ by (simp add:pasrt_def set_ins_def)
+ (*----------------------------------------------------------------------------*)
+ moreover
+ (******************************************************************************)
+ have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
+ (*----------------------------------------------------------------------------*)
+ ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
+ qed
+ moreover
+ (******************************************************************************)
+ from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
+ have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
+ (*----------------------------------------------------------------------------*)
+ with at_fresh_s'
+ have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
+ moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
+ (recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ proof -
+ fix elm
+ assume elm_in: "elm \<in> s'"
+ show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
+ by simp
+ qed
+ ultimately show ?case
+ apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
+ apply (unfold IA_def, intro condI, assumption+)
+ apply (rule_tac x = "?ks_f sr ks" in pred_exI)
+ apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
+ apply (unfold fam_conj_disj_simp[OF fresh_atm])
+ by (auto simp:sep_conj_ac fam_conj_simps)
+qed
+
+lemma hoare_goto[step]: "IA. \<lbrace> pc i \<rbrace>
+ i:[ (Goto e) ]:j
+ \<lbrace> pc e \<rbrace>"
+proof(rule tm.I_hoare_adjust [OF hoare_goto_pre])
+ fix s assume "pc i s" thus "(pc i \<and>* <True>) s"
+ by (metis cond_true_eq2)
+next
+ fix s assume "(pc e \<and>* <True>) s" thus "pc e s"
+ by (metis cond_true_eq2)
+qed
+
+lemma I_hoare_sequence:
+ assumes h1: "\<And> i j. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j \<lbrace>pc j ** q\<rbrace>"
+ and h2: "\<And> j k. I. \<lbrace>pc j ** q\<rbrace> j:[c2]:k \<lbrace>pc k ** r\<rbrace>"
+ shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>pc k ** r\<rbrace>"
+proof(unfold tassemble_to.simps, intro tm.I_code_exI)
+ fix j'
+ show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k \<and>* r\<rbrace>"
+ proof(rule tm.I_sequencing)
+ from tm.I_code_extension[OF h1 [of i j'], of" j' :[ c2 ]: k"]
+ show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc j' \<and>* q\<rbrace>" .
+ next
+ from tm.I_code_extension[OF h2 [of j' k], of" i :[ c1 ]: j'"]
+ show "I.\<lbrace>pc j' \<and>* q\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k \<and>* r\<rbrace>"
+ by (auto simp:sep_conj_ac)
+ qed
+qed
+
+lemma I_hoare_seq1:
+ assumes h1: "\<And>j'. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j' \<lbrace>pc j' ** q\<rbrace>"
+ and h2: "\<And>j' . I. \<lbrace>pc j' ** q\<rbrace> j':[c2]:k \<lbrace>pc k' ** r\<rbrace>"
+ shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>pc k' ** r\<rbrace>"
+proof(unfold tassemble_to.simps, intro tm.I_code_exI)
+ fix j'
+ show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k' \<and>* r\<rbrace>"
+ proof(rule tm.I_sequencing)
+ from tm.I_code_extension[OF h1 [of j'], of "j' :[ c2 ]: k "]
+ show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc j' \<and>* q\<rbrace>" .
+ next
+ from tm.I_code_extension[OF h2 [of j'], of" i :[ c1 ]: j'"]
+ show "I.\<lbrace>pc j' \<and>* q\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k' \<and>* r\<rbrace>"
+ by (auto simp:sep_conj_ac)
+ qed
+qed
+
+lemma t_hoare_local1:
+ "(\<And>l. \<lbrace>p\<rbrace> i :[ c l ]: j \<lbrace>q\<rbrace>) \<Longrightarrow>
+ \<lbrace>p\<rbrace> i:[TLocal c]:j \<lbrace>q\<rbrace>"
+by (unfold tassemble_to.simps, rule tm.code_exI, auto)
+
+lemma I_hoare_local:
+ assumes h: "(\<And>l. I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>pc k \<and>* q\<rbrace>)"
+ shows "I. \<lbrace>pc i ** p\<rbrace> i:[TLocal c]:j \<lbrace>pc k ** q\<rbrace>"
+proof(unfold tassemble_to.simps, rule tm.I_code_exI)
+ fix l
+ from h[of l]
+ show " I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>pc k \<and>* q\<rbrace>" .
+qed
+
+lemma t_hoare_label1:
+ "(\<And>l. l = i \<Longrightarrow> \<lbrace>p\<rbrace> l :[ c (l::tstate) ]: j \<lbrace>q\<rbrace>) \<Longrightarrow>
+ \<lbrace>p \<rbrace>
+ i:[(TLabel l; c l)]:j
+ \<lbrace>q\<rbrace>"
+by
+(unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, case_tac l, auto)
+
+lemma I_hoare_label:
+ assumes h:"\<And>l. l = i \<Longrightarrow> I. \<lbrace>pc l \<and>* p\<rbrace> l :[ c (l::tstate) ]: j \<lbrace>pc k \<and>* q\<rbrace>"
+ shows "I. \<lbrace>pc i \<and>* p \<rbrace>
+ i:[(TLabel l; c l)]:j
+ \<lbrace>pc k \<and>* q\<rbrace>"
+proof(unfold tm.IHoare_def, default)
+ fix s'
+ show " \<lbrace>EXS s. <(pc i \<and>* p) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ (TLabel l ; c l) ]: j
+ \<lbrace>EXS s. <(pc k \<and>* q) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
+ proof(rule t_hoare_label1)
+ fix l assume "l = i"
+ from h[OF this, unfolded tm.IHoare_def]
+ show "\<lbrace>EXS s. <(pc i \<and>* p) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> l :[ c l ]: j
+ \<lbrace>EXS s. <(pc k \<and>* q) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
+ by (simp add:`l = i`)
+ qed
+qed
+
+lemma I_hoare_label_last:
+ assumes h1: "t_last_cmd c = Some (TLabel l)"
+ and h2: "l = j \<Longrightarrow> I. \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
+ shows "I. \<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
+proof(unfold tm.IHoare_def, default)
+ fix s'
+ show "\<lbrace>EXS s. <p s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ c ]: j
+ \<lbrace>EXS s. <q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
+ proof(rule t_hoare_label_last[OF h1])
+ assume "l = j"
+ from h2[OF this, unfolded tm.IHoare_def]
+ show "\<lbrace>EXS s. <p s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ t_blast_cmd c ]: j
+ \<lbrace>EXS s. <q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
+ by fast
+ qed
+qed
+
+lemma I_hoare_seq2:
+ assumes h: "\<And>j'. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j' \<lbrace>pc k' \<and>* r\<rbrace>"
+ shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>pc k' ** r\<rbrace>"
+ apply (unfold tassemble_to.simps, intro tm.I_code_exI)
+ apply (unfold tm.IHoare_def, default)
+ apply (rule tm.code_extension)
+ by (rule h[unfolded tm.IHoare_def, rule_format])
+
+lemma IA_pre_stren:
+ assumes h1: "IA. \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ and h2: "\<And>s. r s \<Longrightarrow> p s"
+ shows "IA. \<lbrace>r\<rbrace> c \<lbrace>q\<rbrace>"
+ by (rule tm.I_pre_stren[OF assms], simp)
+
+lemma IA_post_weaken:
+ assumes h1: "IA. \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ and h2: "\<And> s. q s \<Longrightarrow> r s"
+ shows "IA. \<lbrace>p\<rbrace> c \<lbrace>r\<rbrace>"
+ by (rule tm.I_post_weaken[OF assms], simp)
+
+section {* Making triple processor for IA *}
+
+ML {* (* Functions specific to Hoare triple: IA {P} c {Q} *)
+ fun get_pre ctxt t =
+ let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?P::aresource set \<Rightarrow> bool"}) end
+
+ fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)
+
+ fun get_post ctxt t =
+ let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?Q::aresource set \<Rightarrow> bool"}) end;
+
+ fun get_mid ctxt t =
+ let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;
+
+ fun is_pc_term (Const (@{const_name pc}, _) $ _) = true
+ | is_pc_term _ = false
+
+ fun mk_pc_term x =
+ Const (@{const_name pc}, @{typ "nat \<Rightarrow> aresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})
+
+ val sconj_term = term_of @{cterm "sep_conj::assert \<Rightarrow> assert \<Rightarrow> assert"}
+
+ val abc_triple = {binding = @{binding "abc_triple"},
+ can_process = can_process,
+ get_pre = get_pre,
+ get_mid = get_mid,
+ get_post = get_post,
+ is_pc_term = is_pc_term,
+ mk_pc_term = mk_pc_term,
+ sconj_term = sconj_term,
+ sep_conj_ac_tac = sep_conj_ac_tac,
+ hoare_seq1 = @{thm I_hoare_seq1},
+ hoare_seq2 = @{thm I_hoare_seq2},
+ pre_stren = @{thm IA_pre_stren},
+ post_weaken = @{thm IA_post_weaken},
+ frame_rule = @{thm tm.I_frame_rule}
+ }:HoareTriple
+
+ val _ = (HoareTriples_get ()) |> (fn orig => HoareTriples_store (abc_triple::orig))
+*}
+
+section {* Example proofs *}
+
+definition [asmb]: "clear a = (TL start exit. TLabel start; Dec a exit; Goto start; TLabel exit)"
+
+lemma hoare_clear[step]:
+ "IA. \<lbrace>pc i ** mm a v\<rbrace>
+ i:[clear a]:j
+ \<lbrace>pc j ** mm a 0\<rbrace>"
+proof(unfold clear_def, intro I_hoare_local I_hoare_label, simp,
+ rule I_hoare_label_last, simp+, prune)
+ show "IA.\<lbrace>pc i \<and>* mm a v\<rbrace> i :[ (Dec a j ; Goto i) ]: j \<lbrace>pc j \<and>* mm a 0\<rbrace>"
+ proof(induct v)
+ case 0
+ show ?case
+ by hgoto
+ next
+ case (Suc v)
+ show ?case
+ apply (rule_tac Q = "pc i \<and>* mm a v" in tm.I_sequencing)
+ by hsteps
+ qed
+qed
+
+definition [asmb]:
+ "dup a b c =
+ (TL start exit. TLabel start; Dec a exit; Inc b; Inc c; Goto start; TLabel exit)"
+
+lemma hoare_dup[step]:
+ "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace>
+ i:[dup a b c]:j
+ \<lbrace>pc j ** mm a 0 ** mm b (va + vb) ** mm c (va + vc)\<rbrace>"
+proof(unfold dup_def, intro I_hoare_local I_hoare_label, clarsimp,
+ rule I_hoare_label_last, simp+, prune)
+ show "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm b vb \<and>* mm c vc\<rbrace>
+ i :[ (Dec a j ; Inc b ; Inc c ; Goto i) ]: j
+ \<lbrace>pc j \<and>* mm a 0 \<and>* mm b (va + vb) \<and>* mm c (va + vc)\<rbrace>"
+ proof(induct va arbitrary: vb vc)
+ case (0 vb vc)
+ show ?case
+ by hgoto
+ next
+ case (Suc va vb vc)
+ show ?case
+ apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm b (Suc vb) \<and>* mm c (Suc vc)" in tm.I_sequencing)
+ by (hsteps Suc)
+ qed
+qed
+
+definition [asmb]:
+ "clear_add a b =
+ (TL start exit. TLabel start; Dec a exit; Inc b; Goto start; TLabel exit)"
+
+lemma hoare_clear_add[step]:
+ "IA. \<lbrace>pc i ** mm a va ** mm b vb \<rbrace>
+ i:[clear_add a b]:j
+ \<lbrace>pc j ** mm a 0 ** mm b (va + vb)\<rbrace>"
+proof(unfold clear_add_def, intro I_hoare_local I_hoare_label, clarsimp,
+ rule I_hoare_label_last, simp+, prune)
+ show "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm b vb\<rbrace>
+ i :[ (Dec a j ; Inc b ; Goto i) ]: j
+ \<lbrace>pc j \<and>* mm a 0 \<and>* mm b (va + vb)\<rbrace>"
+ proof(induct va arbitrary: vb)
+ case 0
+ show ?case
+ by hgoto
+ next
+ case (Suc va vb)
+ show ?case
+ apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm b (Suc vb)" in tm.I_sequencing)
+ by (hsteps Suc)
+ qed
+qed
+
+definition [asmb]:
+ "copy_to a b c = clear b; clear c; dup a b c; clear_add c a"
+
+lemma hoare_copy_to[step]:
+ "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace>
+ i:[copy_to a b c]:j
+ \<lbrace>pc j ** mm a va ** mm b va ** mm c 0\<rbrace>"
+ by (unfold copy_to_def, hsteps)
+
+definition [asmb]:
+ "preserve_add a b c = clear c; dup a b c; clear_add c a"
+
+lemma hoare_preserve_add[step]:
+ "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace>
+ i:[preserve_add a b c]:j
+ \<lbrace>pc j ** mm a va ** mm b (va + vb) ** mm c 0\<rbrace>"
+ by (unfold preserve_add_def, hsteps)
+
+definition [asmb]:
+ "mult a b c t1 t2 =
+ clear c;
+ copy_to a t2 t1;
+ (TL start exit.
+ TLabel start;
+ Dec a exit;
+ preserve_add b c t1;
+ Goto start;
+ TLabel exit
+ );
+ clear_add t2 a"
+
+lemma hoare_mult[step]:
+ "IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc ** mm t1 vt1 ** mm t2 vt2 \<rbrace>
+ i:[mult a b c t1 t2]:j
+ \<lbrace>pc j ** mm a va ** mm b vb ** mm c (va * vb) ** mm t1 0 ** mm t2 0 \<rbrace>"
+ apply (unfold mult_def, hsteps)
+ apply (rule_tac q = "mm a 0 \<and>* mm b vb \<and>* mm c (va * vb) \<and>* mm t1 0 \<and>* mm t2 va" in I_hoare_seq1)
+ apply (intro I_hoare_local I_hoare_label, clarify,
+ rule I_hoare_label_last, simp+, clarify, prune)
+ my_block
+ fix i j vc
+ have "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm t1 0 \<and>* mm c vc \<and>* mm b vb\<rbrace>
+ i :[ (Dec a j ; preserve_add b c t1 ; Goto i) ]: j
+ \<lbrace>pc j \<and>* mm a 0 \<and>* mm b vb \<and>* mm c (va * vb + vc) \<and>* mm t1 0 \<rbrace>"
+ proof(induct va arbitrary:vc)
+ case (0 vc)
+ show ?case
+ by hgoto
+ next
+ case (Suc va vc)
+ show ?case
+ apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm t1 0 \<and>* mm c (vb + vc) \<and>* mm b vb"
+ in tm.I_sequencing)
+ apply (hsteps Suc)
+ by (sep_cancel+, simp, smt)
+ qed
+ my_block_end
+ by (hsteps this)
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Hoare_gen.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,601 @@
+header {*
+ Generic Separation Logic
+*}
+
+theory Hoare_gen
+imports Main
+ "../progtut/Tactical" "../Separation_Algebra/Sep_Tactics"
+begin
+
+ML_file "../Separation_Algebra/sep_tactics.ML"
+
+definition pasrt :: "bool \<Rightarrow> (('a::sep_algebra) \<Rightarrow> bool)" ("<_>" [72] 71)
+where "pasrt b = (\<lambda> s . s = 0 \<and> b)"
+
+lemma sep_conj_cond1: "(p \<and>* <cond> \<and>* q) = (<cond> \<and>* p \<and>* q)"
+ by(simp add: sep_conj_ac)
+
+lemma sep_conj_cond2: "(p \<and>* <cond>) = (<cond> \<and>* p)"
+ by(simp add: sep_conj_ac)
+
+lemma sep_conj_cond3: "((<cond> \<and>* p) \<and>* r) = (<cond> \<and>* p \<and>* r)"
+ by (metis sep.mult_assoc)
+
+lemmas sep_conj_cond = sep_conj_cond1 sep_conj_cond2 sep_conj_cond3
+
+lemma cond_true_eq[simp]: "<True> = \<box>"
+ by(unfold sep_empty_def pasrt_def, auto)
+
+lemma cond_true_eq1: "(<True> \<and>* p) = p"
+ by(simp)
+
+lemma false_simp [simp]: "<False> = sep_false" (* move *)
+ by (simp add:pasrt_def)
+
+lemma cond_true_eq2: "(p \<and>* <True>) = p"
+ by simp
+
+lemma condD: "(<b> ** r) s \<Longrightarrow> b \<and> r s"
+by (unfold sep_conj_def pasrt_def, auto)
+
+locale sep_exec =
+ fixes step :: "'conf \<Rightarrow> 'conf"
+ and recse:: "'conf \<Rightarrow> 'a::sep_algebra"
+begin
+
+definition "run n = step ^^ n"
+
+lemma run_add: "run (n1 + n2) s = run n1 (run n2 s)"
+ apply (unfold run_def)
+ by (metis funpow_add o_apply)
+
+definition
+ Hoare_gen :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+ ("(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+where
+ "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace> \<equiv>
+ (\<forall> s r. (p**c**r) (recse s) \<longrightarrow> (\<exists> k. ((q ** c ** r) (recse (run (Suc k) s)))))"
+
+lemma HoareI [case_names Pre]:
+ assumes h: "\<And> r s. (p**c**r) (recse s) \<Longrightarrow> (\<exists> k. ((q ** c ** r) (recse (run (Suc k) s))))"
+ shows "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace>"
+ using h
+ by (unfold Hoare_gen_def, auto)
+
+lemma frame_rule:
+ assumes h: "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace>"
+ shows "\<lbrace> p ** r \<rbrace> c \<lbrace> q ** r \<rbrace>"
+proof(induct rule: HoareI)
+ case (Pre r' s')
+ hence "(p \<and>* c \<and>* r \<and>* r') (recse s')" by (auto simp:sep_conj_ac)
+ from h[unfolded Hoare_gen_def, rule_format, OF this]
+ show ?case
+ by (metis sep_conj_assoc sep_conj_left_commute)
+qed
+
+lemma sequencing:
+ assumes h1: "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ and h2: "\<lbrace>q\<rbrace> c \<lbrace>r\<rbrace>"
+ shows "\<lbrace>p\<rbrace> c \<lbrace>r\<rbrace>"
+proof(induct rule:HoareI)
+ case (Pre r' s')
+ from h1[unfolded Hoare_gen_def, rule_format, OF Pre]
+ obtain k1 where "(q \<and>* c \<and>* r') (recse (run (Suc k1) s'))" by auto
+ from h2[unfolded Hoare_gen_def, rule_format, OF this]
+ obtain k2 where "(r \<and>* c \<and>* r') (recse (run (Suc k2) (run (Suc k1) s')))" by auto
+ thus ?case
+ apply (rule_tac x = "Suc (k1 + k2)" in exI)
+ by (metis add_Suc_right nat_add_commute sep_exec.run_add)
+qed
+
+lemma pre_stren:
+ assumes h1: "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ and h2: "\<And>s. r s \<Longrightarrow> p s"
+ shows "\<lbrace>r\<rbrace> c \<lbrace>q\<rbrace>"
+proof(induct rule:HoareI)
+ case (Pre r' s')
+ with h2
+ have "(p \<and>* c \<and>* r') (recse s')"
+ by (metis sep_conj_impl1)
+ from h1[unfolded Hoare_gen_def, rule_format, OF this]
+ show ?case .
+qed
+
+lemma post_weaken:
+ assumes h1: "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ and h2: "\<And> s. q s \<Longrightarrow> r s"
+ shows "\<lbrace>p\<rbrace> c \<lbrace>r\<rbrace>"
+proof(induct rule:HoareI)
+ case (Pre r' s')
+ from h1[unfolded Hoare_gen_def, rule_format, OF this]
+ obtain k where "(q \<and>* c \<and>* r') (recse (run (Suc k) s'))" by blast
+ with h2
+ show ?case
+ by (metis sep_conj_impl1)
+qed
+
+lemma hoare_adjust:
+ assumes h1: "\<lbrace>p1\<rbrace> c \<lbrace>q1\<rbrace>"
+ and h2: "\<And>s. p s \<Longrightarrow> p1 s"
+ and h3: "\<And>s. q1 s \<Longrightarrow> q s"
+ shows "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ using h1 h2 h3 post_weaken pre_stren
+ by (metis)
+
+lemma code_exI:
+ assumes h: "\<And> k. \<lbrace>p\<rbrace> c(k) \<lbrace>q\<rbrace>"
+ shows "\<lbrace>p\<rbrace> EXS k. c(k) \<lbrace>q\<rbrace>"
+proof(unfold pred_ex_def, induct rule:HoareI)
+ case (Pre r' s')
+ then obtain k where "(p \<and>* (\<lambda> s. c k s) \<and>* r') (recse s')"
+ by (auto elim!:sep_conjE intro!:sep_conjI)
+ from h[unfolded Hoare_gen_def, rule_format, OF this]
+ show ?case
+ by (auto elim!:sep_conjE intro!:sep_conjI)
+qed
+
+lemma code_extension:
+ assumes h: "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace>"
+ shows "\<lbrace> p \<rbrace> c ** e \<lbrace> q \<rbrace>"
+proof(induct rule:HoareI)
+ case (Pre r' s')
+ hence "(p \<and>* c \<and>* e \<and>* r') (recse s')" by (auto simp:sep_conj_ac)
+ from h[unfolded Hoare_gen_def, rule_format, OF this]
+ show ?case
+ by (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
+qed
+
+lemma code_extension1:
+ assumes h: "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace>"
+ shows "\<lbrace> p \<rbrace> e ** c \<lbrace> q \<rbrace>"
+ by (metis code_extension h sep.mult_commute)
+
+lemma composition:
+ assumes h1: "\<lbrace>p\<rbrace> c1 \<lbrace>q\<rbrace>"
+ and h2: "\<lbrace>q\<rbrace> c2 \<lbrace>r\<rbrace>"
+ shows "\<lbrace>p\<rbrace> c1 ** c2 \<lbrace>r\<rbrace>"
+proof(induct rule:HoareI)
+ case (Pre r' s')
+ hence "(p \<and>* c1 \<and>* c2 \<and>* r') (recse s')" by (auto simp:sep_conj_ac)
+ from h1[unfolded Hoare_gen_def, rule_format, OF this]
+ obtain k1 where "(q \<and>* c2 \<and>* c1 \<and>* r') (recse (run (Suc k1) s'))"
+ by (auto simp:sep_conj_ac)
+ from h2[unfolded Hoare_gen_def, rule_format, OF this, folded run_add]
+ show ?case
+ by (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
+qed
+
+
+definition
+ IHoare :: "('b::sep_algebra \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow>
+ ('b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool"
+ ("(1_).(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+where
+ "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> = (\<forall>s'. \<lbrace> EXS s. <P s> \<and>* <(s ## s')> \<and>* I(s + s')\<rbrace> c
+ \<lbrace> EXS s. <Q s> \<and>* <(s ## s')> \<and>* I(s + s')\<rbrace>)"
+
+lemma IHoareI [case_names IPre]:
+ assumes h: "\<And>s' s r cnf . (<P s> \<and>* <(s ## s')> \<and>* I(s + s') \<and>* c \<and>* r) (recse cnf) \<Longrightarrow>
+ (\<exists>k t. (<Q t> \<and>* <(t ## s')> \<and>* I(t + s') \<and>* c \<and>* r) (recse (run (Suc k) cnf)))"
+ shows "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ unfolding IHoare_def
+proof
+ fix s'
+ show " \<lbrace>EXS s. <P s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> c
+ \<lbrace>EXS s. <Q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
+ proof(unfold pred_ex_def, induct rule:HoareI)
+ case (Pre r s)
+ then obtain sa where "(<P sa> \<and>* <(sa ## s')> \<and>* I (sa + s') \<and>* c \<and>* r) (recse s)"
+ by (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
+ hence " (\<exists>k t. (<Q t> \<and>* <(t##s')> \<and>* I(t + s') \<and>* c \<and>* r) (recse (run (Suc k) s)))"
+ by (rule h)
+ then obtain k t where h2: "(<Q t> \<and>* <(t ## s')> \<and>* I(t + s') \<and>* c \<and>* r) (recse (run (Suc k) s))"
+ by auto
+ thus "\<exists>k. ((\<lambda>s. \<exists>sa. (<Q sa> \<and>* <(sa ## s')> \<and>* I (sa + s')) s) \<and>* c \<and>* r) (recse (run (Suc k) s))"
+ apply (rule_tac x = k in exI)
+ by (auto intro!:sep_conjI elim!:sep_conjE simp:sep_conj_ac)
+ qed
+ qed
+
+lemma I_frame_rule:
+ assumes h: "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ shows "I. \<lbrace>P \<and>* R\<rbrace> c \<lbrace>Q \<and>* R\<rbrace>"
+proof(induct rule:IHoareI)
+ case (IPre s' s r cnf)
+ hence "((<(P \<and>* R) s> \<and>* <(s##s')> \<and>* I (s + s')) \<and>* c \<and>* r) (recse cnf)"
+ by (auto simp:sep_conj_ac)
+ then obtain s1 s2
+ where h1: "((<P s1> \<and>* <((s1 + s2) ## s')> \<and>*I (s1 + s2 + s')) \<and>* c \<and>* r) (recse cnf)"
+ "s1 ## s2" "s1 + s2 ## s'" "P s1" "R s2"
+ by (unfold pasrt_def, auto elim!:sep_conjE intro!:sep_conjI)
+ hence "((EXS s. <P s> \<and>* <(s ## s2 +s')> \<and>*I (s + (s2 + s'))) \<and>* c \<and>* r) (recse cnf)"
+ apply (sep_cancel, unfold pred_ex_def, auto intro!:sep_conjI sep_disj_addI3 elim!:sep_conjE)
+ apply (rule_tac x = s1 in exI, unfold pasrt_def,
+ auto intro!:sep_conjI sep_disj_addI3 elim!:sep_conjE simp:sep_conj_ac)
+ by (metis sep_add_assoc sep_add_disjD)
+ from h[unfolded IHoare_def Hoare_gen_def, rule_format, OF this]
+ obtain k s where
+ "((<Q s> \<and>* <(s ## s2 + s')> \<and>* I (s + (s2 + s'))) \<and>* c \<and>* r) (recse (run (Suc k) cnf))"
+ by (unfold pasrt_def pred_ex_def, auto elim!:sep_conjE intro!:sep_conjI)
+ thus ?case
+ proof(rule_tac x = k in exI, rule_tac x = "s + s2" in exI, sep_cancel+)
+ fix h ha
+ assume hh: "(<Q s> \<and>* <(s ## s2 + s')> \<and>* I (s + (s2 + s'))) ha"
+ show " (<(Q \<and>* R) (s + s2)> \<and>* <(s + s2 ## s')> \<and>* I (s + s2 + s')) ha"
+ proof -
+ from hh have h0: "s ## s2 + s'"
+ by (metis pasrt_def sep_conjD)
+ with h1(2, 3)
+ have h2: "s + s2 ## s'"
+ by (metis sep_add_disjD sep_disj_addI1)
+ moreover from h1(2, 3) h2 have h3: "(s + (s2 + s')) = (s + s2 + s')"
+ by (metis `s ## s2 + s'` sep_add_assoc sep_add_disjD sep_disj_addD1)
+ moreover from hh have "Q s" by (metis pasrt_def sep_conjD)
+ moreover from h0 h1(2) h1(3) have "s ## s2"
+ by (metis sep_add_disjD sep_disj_addD)
+ moreover note h1(5)
+ ultimately show ?thesis
+ by (smt h0 hh sep_conjI)
+ qed
+ qed
+qed
+
+lemma I_sequencing:
+ assumes h1: "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ and h2: "I. \<lbrace>Q\<rbrace> c \<lbrace>R\<rbrace>"
+ shows "I. \<lbrace>P\<rbrace> c \<lbrace>R\<rbrace>"
+ using h1 h2 sequencing
+ by (smt IHoare_def)
+
+lemma I_pre_stren:
+ assumes h1: "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ and h2: "\<And>s. R s \<Longrightarrow> P s"
+ shows "I. \<lbrace>R\<rbrace> c \<lbrace>Q\<rbrace>"
+proof(unfold IHoare_def, default)
+ fix s'
+ show "\<lbrace>EXS s. <R s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> c
+ \<lbrace>EXS s. <Q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
+ proof(rule pre_stren)
+ from h1[unfolded IHoare_def, rule_format, of s']
+ show "\<lbrace>EXS s. <P s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> c
+ \<lbrace>EXS s. <Q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>" .
+ next
+ fix s
+ show "(EXS s. <R s> \<and>* <(s ## s')> \<and>* I (s + s')) s \<Longrightarrow>
+ (EXS s. <P s> \<and>* <(s ## s')> \<and>* I (s + s')) s"
+ apply (unfold pred_ex_def, clarify)
+ apply (rule_tac x = sa in exI, sep_cancel+)
+ by (insert h2, auto simp:pasrt_def)
+ qed
+qed
+
+lemma I_post_weaken:
+ assumes h1: "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ and h2: "\<And> s. Q s \<Longrightarrow> R s"
+ shows "I. \<lbrace>P\<rbrace> c \<lbrace>R\<rbrace>"
+proof(unfold IHoare_def, default)
+ fix s'
+ show "\<lbrace>EXS s. <P s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> c
+ \<lbrace>EXS s. <R s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
+ proof(rule post_weaken)
+ from h1[unfolded IHoare_def, rule_format, of s']
+ show "\<lbrace>EXS s. <P s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> c
+ \<lbrace>EXS s. <Q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>" .
+ next
+ fix s
+ show "(EXS s. <Q s> \<and>* <(s ## s')> \<and>* I (s + s')) s \<Longrightarrow>
+ (EXS s. <R s> \<and>* <(s ## s')> \<and>* I (s + s')) s"
+ apply (unfold pred_ex_def, clarify)
+ apply (rule_tac x = sa in exI, sep_cancel+)
+ by (insert h2, auto simp:pasrt_def)
+ qed
+qed
+
+lemma I_hoare_adjust:
+ assumes h1: "I. \<lbrace>P1\<rbrace> c \<lbrace>Q1\<rbrace>"
+ and h2: "\<And>s. P s \<Longrightarrow> P1 s"
+ and h3: "\<And>s. Q1 s \<Longrightarrow> Q s"
+ shows "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ using h1 h2 h3 I_post_weaken I_pre_stren
+ by (metis)
+
+lemma I_code_exI:
+ assumes h: "\<And> k. I. \<lbrace>P\<rbrace> c(k) \<lbrace>Q\<rbrace>"
+ shows "I. \<lbrace>P\<rbrace> EXS k. c(k) \<lbrace>Q\<rbrace>"
+using h
+by (smt IHoare_def code_exI)
+
+lemma I_code_extension:
+ assumes h: "I. \<lbrace> P \<rbrace> c \<lbrace> Q \<rbrace>"
+ shows "I. \<lbrace> P \<rbrace> c ** e \<lbrace> Q \<rbrace>"
+ using h
+ by (smt IHoare_def sep_exec.code_extension)
+
+lemma I_composition:
+ assumes h1: "I. \<lbrace>P\<rbrace> c1 \<lbrace>Q\<rbrace>"
+ and h2: "I. \<lbrace>Q\<rbrace> c2 \<lbrace>R\<rbrace>"
+ shows "I. \<lbrace>P\<rbrace> c1 ** c2 \<lbrace>R\<rbrace>"
+ using h1 h2
+by (smt IHoare_def sep_exec.composition)
+
+lemma pre_condI:
+ assumes h: "cond \<Longrightarrow> \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ shows "\<lbrace><cond> \<and>* p\<rbrace> c \<lbrace>q\<rbrace>"
+proof(induct rule:HoareI)
+ case (Pre r s)
+ hence "cond" "(p \<and>* c \<and>* r) (recse s)"
+ apply (metis pasrt_def sep_conjD)
+ by (smt Pre.hyps pasrt_def sep_add_zero sep_conj_commute sep_conj_def)
+ from h[OF this(1), unfolded Hoare_gen_def, rule_format, OF this(2)]
+ show ?case .
+qed
+
+lemma I_pre_condI:
+ assumes h: "cond \<Longrightarrow> I.\<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ shows "I.\<lbrace><cond> \<and>* P\<rbrace> c \<lbrace>Q\<rbrace>"
+ using h
+by (smt IHoareI condD cond_true_eq2 sep.mult_commute)
+
+lemma code_condI:
+ assumes h: "b \<Longrightarrow> \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
+ shows "\<lbrace>p\<rbrace> <b>**c \<lbrace>q\<rbrace>"
+proof(induct rule: HoareI)
+ case (Pre r s)
+ hence h1: "b" "(p \<and>* c \<and>* r) (recse s)"
+ apply (metis condD sep_conjD sep_conj_assoc)
+ by (smt Pre.hyps condD sep_conj_impl)
+ from h[OF h1(1), unfolded Hoare_gen_def, rule_format, OF h1(2)]
+ and h1(1)
+ show ?case
+ by (metis (full_types) cond_true_eq1)
+qed
+
+lemma I_code_condI:
+ assumes h: "b \<Longrightarrow> I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace>"
+ shows "I.\<lbrace>P\<rbrace> <b>**c \<lbrace>Q\<rbrace>"
+ using h
+by (smt IHoareI condD cond_true_eq2 sep.mult_commute sep_conj_cond1)
+
+lemma precond_exI:
+ assumes h:"\<And>x. \<lbrace>p x\<rbrace> c \<lbrace>q\<rbrace>"
+ shows "\<lbrace>EXS x. p x\<rbrace> c \<lbrace>q\<rbrace>"
+proof(induct rule:HoareI)
+ case (Pre r s)
+ then obtain x where "(p x \<and>* c \<and>* r) (recse s)"
+ by (unfold pred_ex_def, auto elim!:sep_conjE intro!:sep_conjI)
+ from h[of x, unfolded Hoare_gen_def, rule_format, OF this]
+ show ?case .
+qed
+
+lemma I_precond_exI:
+ assumes h:"\<And>x. I. \<lbrace>P x\<rbrace> c \<lbrace>Q\<rbrace>"
+ shows "I.\<lbrace>EXS x. P x\<rbrace> c \<lbrace>Q\<rbrace>"
+proof(induct rule:IHoareI)
+ case (IPre s' s r cnf)
+ then obtain x
+ where "((EXS s. <P x s> \<and>* <(s ## s')> \<and>* I (s + s')) \<and>* c \<and>* r) (recse cnf)"
+ by ( auto elim!:sep_conjE intro!:sep_conjI simp:pred_ex_def pasrt_def sep_conj_ac)
+ from h[unfolded IHoare_def Hoare_gen_def, rule_format, OF this]
+ obtain k t
+ where "((<Q t> \<and>* <(t ## s')> \<and>* I (t + s')) \<and>* c \<and>* r) (recse (run (Suc k) cnf))"
+ by (unfold pred_ex_def, auto elim!:sep_conjE intro!:sep_conjI)
+ thus ?case
+ by (auto simp:sep_conj_ac)
+qed
+
+lemma hoare_sep_false:
+ "\<lbrace>sep_false\<rbrace> c
+ \<lbrace>q\<rbrace>"
+ by(unfold Hoare_gen_def, clarify, simp)
+
+lemma I_hoare_sep_false:
+ "I. \<lbrace>sep_false\<rbrace> c
+ \<lbrace>Q\<rbrace>"
+by (smt IHoareI condD)
+
+end
+
+instantiation set :: (type)sep_algebra
+begin
+
+definition set_zero_def: "0 = {}"
+
+definition plus_set_def: "s1 + s2 = s1 \<union> s2"
+
+definition sep_disj_set_def: "sep_disj s1 s2 = (s1 \<inter> s2 = {})"
+
+lemmas set_ins_def = sep_disj_set_def plus_set_def set_zero_def
+
+instance
+ apply(default)
+ apply(simp add:set_ins_def)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis inf_commute)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis sup_commute)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis (lifting) Un_assoc)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis (lifting) Int_Un_distrib Un_empty inf_sup_distrib1 sup_eq_bot_iff)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ by (metis (lifting) Int_Un_distrib Int_Un_distrib2 sup_eq_bot_iff)
+end
+
+section {* A big operator of infinite separation conjunction *}
+
+definition "fam_conj I cpt s = (\<exists> p. (s = (\<Union> i \<in> I. p(i))) \<and>
+ (\<forall> i \<in> I. cpt i (p i)) \<and>
+ (\<forall> i \<in> I. \<forall> j \<in> I. i \<noteq> j \<longrightarrow> p(i) ## p(j)))"
+
+lemma fam_conj_zero_simp: "fam_conj {} cpt = <True>"
+proof
+ fix s
+ show "fam_conj {} cpt s = (<True>) s"
+ proof
+ assume "fam_conj {} cpt s"
+ then obtain p where "s = (\<Union> i \<in> {}. p(i))"
+ by (unfold fam_conj_def, auto)
+ hence "s = {}" by auto
+ thus "(<True>) s" by (metis pasrt_def set_zero_def)
+ next
+ assume "(<True>) s"
+ hence eq_s: "s = {}" by (metis pasrt_def set_zero_def)
+ let ?p = "\<lambda> i. {}"
+ have "(s = (\<Union> i \<in> {}. ?p(i)))" by (unfold eq_s, auto)
+ moreover have "(\<forall> i \<in> {}. cpt i (?p i))" by auto
+ moreover have "(\<forall> i \<in> {}. \<forall> j \<in> {}. i \<noteq> j \<longrightarrow> ?p(i) ## ?p(j))" by auto
+ ultimately show "fam_conj {} cpt s"
+ by (unfold eq_s fam_conj_def, auto)
+ qed
+qed
+
+lemma fam_conj_disj_simp_pre:
+ assumes h1: "I = I1 + I2"
+ and h2: "I1 ## I2"
+ shows "fam_conj I cpt = (fam_conj I1 cpt \<and>* fam_conj I2 cpt)"
+proof
+ fix s
+ let ?fm = "fam_conj I cpt" and ?fm1 = "fam_conj I1 cpt" and ?fm2 = "fam_conj I2 cpt"
+ show "?fm s = (?fm1 \<and>* ?fm2) s"
+ proof
+ assume "?fm s"
+ then obtain p where pre:
+ "s = (\<Union> i \<in> I. p(i))"
+ "(\<forall> i \<in> I. cpt i (p i))"
+ "(\<forall> i \<in> I. \<forall> j \<in> I. i \<noteq> j \<longrightarrow> p(i) ## p(j))"
+ unfolding fam_conj_def by metis
+ from pre(1) h1 h2 have "s = (\<Union> i \<in> I1. p(i)) + (\<Union> i \<in> I2. p(i))"
+ by (auto simp:set_ins_def)
+ moreover from pre h1 have "?fm1 (\<Union> i \<in> I1. p(i))"
+ by (unfold fam_conj_def, rule_tac x = p in exI, auto simp:set_ins_def)
+ moreover from pre h1 have "?fm2 (\<Union> i \<in> I2. p(i))"
+ by (unfold fam_conj_def, rule_tac x = p in exI, auto simp:set_ins_def)
+ moreover have "(\<Union> i \<in> I1. p(i)) ## (\<Union> i \<in> I2. p(i))"
+ proof -
+ { fix x xa xb
+ assume h: "I1 \<inter> I2 = {}"
+ "\<forall>i\<in>I1 \<union> I2. \<forall>j\<in>I1 \<union> I2. i \<noteq> j \<longrightarrow> p i \<inter> p j = {}"
+ "xa \<in> I1" "x \<in> p xa" "xb \<in> I2" "x \<in> p xb"
+ have "p xa \<inter> p xb = {}"
+ proof(rule h(2)[rule_format])
+ from h(1, 3, 5) show "xa \<in> I1 \<union> I2" by auto
+ next
+ from h(1, 3, 5) show "xb \<in> I1 \<union> I2" by auto
+ next
+ from h(1, 3, 5) show "xa \<noteq> xb" by auto
+ qed with h(4, 6) have False by auto
+ } with h1 h2 pre(3) show ?thesis by (auto simp:set_ins_def)
+ qed
+ ultimately show "(?fm1 \<and>* ?fm2) s" by (auto intro!:sep_conjI)
+ next
+ assume "(?fm1 \<and>* ?fm2) s"
+ then obtain s1 s2 where pre:
+ "s = s1 + s2" "s1 ## s2" "?fm1 s1" "?fm2 s2"
+ by (auto dest!:sep_conjD)
+ from pre(3) obtain p1 where pre1:
+ "s1 = (\<Union> i \<in> I1. p1(i))"
+ "(\<forall> i \<in> I1. cpt i (p1 i))"
+ "(\<forall> i \<in> I1. \<forall> j \<in> I1. i \<noteq> j \<longrightarrow> p1(i) ## p1(j))"
+ unfolding fam_conj_def by metis
+ from pre(4) obtain p2 where pre2:
+ "s2 = (\<Union> i \<in> I2. p2(i))"
+ "(\<forall> i \<in> I2. cpt i (p2 i))"
+ "(\<forall> i \<in> I2. \<forall> j \<in> I2. i \<noteq> j \<longrightarrow> p2(i) ## p2(j))"
+ unfolding fam_conj_def by metis
+ let ?p = "\<lambda> i. if i \<in> I1 then p1 i else p2 i"
+ from h2 pre(2)
+ have "s = (\<Union> i \<in> I. ?p(i))"
+ apply (unfold h1 pre(1) pre1(1) pre2(1) set_ins_def, auto split:if_splits)
+ by (metis disjoint_iff_not_equal)
+ moreover from h2 pre1(2) pre2(2) have "(\<forall> i \<in> I. cpt i (?p i))"
+ by (unfold h1 set_ins_def, auto split:if_splits)
+ moreover from pre1(1, 3) pre2(1, 3) pre(2) h2
+ have "(\<forall> i \<in> I. \<forall> j \<in> I. i \<noteq> j \<longrightarrow> ?p(i) ## ?p(j))"
+ apply (unfold h1 set_ins_def, auto split:if_splits)
+ by (metis IntI empty_iff)
+ ultimately show "?fm s" by (unfold fam_conj_def, auto)
+ qed
+qed
+
+lemma fam_conj_disj_simp:
+ assumes h: "I1 ## I2"
+ shows "fam_conj (I1 + I2) cpt = (fam_conj I1 cpt \<and>* fam_conj I2 cpt)"
+proof -
+ from fam_conj_disj_simp_pre[OF _ h, of "I1 + I2"]
+ show ?thesis by simp
+qed
+
+lemma fam_conj_elm_simp:
+ assumes h: "i \<in> I"
+ shows "fam_conj I cpt = (cpt(i) \<and>* fam_conj (I - {i}) cpt)"
+proof
+ fix s
+ show "fam_conj I cpt s = (cpt i \<and>* fam_conj (I - {i}) cpt) s"
+ proof
+ assume pre: "fam_conj I cpt s"
+ show "(cpt i \<and>* fam_conj (I - {i}) cpt) s"
+ proof -
+ from pre obtain p where pres:
+ "s = (\<Union> i \<in> I. p(i))"
+ "(\<forall> i \<in> I. cpt i (p i))"
+ "(\<forall> i \<in> I. \<forall> j \<in> I. i \<noteq> j \<longrightarrow> p(i) ## p(j))"
+ unfolding fam_conj_def by metis
+ let ?s = "(\<Union>i\<in>(I - {i}). p i)"
+ from pres(3) h have disj: "(p i) ## ?s"
+ by (auto simp:set_ins_def)
+ moreover from pres(1) h have eq_s: "s = (p i) + ?s"
+ by (auto simp:set_ins_def)
+ moreover from pres(2) h have "cpt i (p i)" by auto
+ moreover from pres have "(fam_conj (I - {i}) cpt) ?s"
+ by (unfold fam_conj_def, rule_tac x = p in exI, auto)
+ ultimately show ?thesis by (auto intro!:sep_conjI)
+ qed
+ next
+ let ?fam = "fam_conj (I - {i}) cpt"
+ assume "(cpt i \<and>* ?fam) s"
+ then obtain s1 s2 where pre:
+ "s = s1 + s2" "s1 ## s2" "cpt i s1" "?fam s2"
+ by (auto dest!:sep_conjD)
+ from pre(4) obtain p where pres:
+ "s2 = (\<Union> ia \<in> I - {i}. p(ia))"
+ "(\<forall> ia \<in> I - {i}. cpt ia (p ia))"
+ "(\<forall> ia \<in> I - {i}. \<forall> j \<in> I - {i}. ia \<noteq> j \<longrightarrow> p(ia) ## p(j))"
+ unfolding fam_conj_def by metis
+ let ?p = "p(i:=s1)"
+ from h pres(3) pre(2)[unfolded pres(1)]
+ have " \<forall>ia\<in>I. \<forall>j\<in>I. ia \<noteq> j \<longrightarrow> ?p ia ## ?p j" by (auto simp:set_ins_def)
+ moreover from pres(1) pre(1) h pre(2)
+ have "(s = (\<Union> i \<in> I. ?p(i)))" by (auto simp:set_ins_def split:if_splits)
+ moreover from pre(3) pres(2) h
+ have "(\<forall> i \<in> I. cpt i (?p i))" by (auto simp:set_ins_def split:if_splits)
+ ultimately show "fam_conj I cpt s"
+ by (unfold fam_conj_def, auto)
+ qed
+qed
+
+lemma fam_conj_insert_simp:
+ assumes h:"i \<notin> I"
+ shows "fam_conj (insert i I) cpt = (cpt(i) \<and>* fam_conj I cpt)"
+proof -
+ have "i \<in> insert i I" by auto
+ from fam_conj_elm_simp[OF this] and h
+ show ?thesis by auto
+qed
+
+lemmas fam_conj_simps = fam_conj_insert_simp fam_conj_zero_simp
+
+lemma "fam_conj {0, 2, 3} cpt = (cpt 2 \<and>* cpt (0::int) \<and>* cpt 3)"
+ by (simp add:fam_conj_simps sep_conj_ac)
+
+lemma fam_conj_ext_eq:
+ assumes h: "\<And> i . i \<in> I \<Longrightarrow> f i = g i"
+ shows "fam_conj I f = fam_conj I g"
+proof
+ fix s
+ show "fam_conj I f s = fam_conj I g s"
+ by (unfold fam_conj_def, auto simp:h)
+qed
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Hoare_tm.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,5438 @@
+header {*
+ Separation logic for TM
+*}
+
+theory Hoare_tm
+imports Hoare_tm_basis My_block Data_slot
+begin
+
+
+section {* Aux lemmas *}
+
+lemma int_add_C :"x + (y::int) = y + x"
+ by simp
+
+lemma int_add_A : "(x + y) + z = x + (y + (z::int))"
+ by simp
+
+lemma int_add_LC: "x + (y + (z::int)) = y + (x + z)"
+ by simp
+
+lemmas int_add_ac = int_add_A int_add_C int_add_LC
+
+method_setup prune = {* Scan.succeed (SIMPLE_METHOD' o (K (K prune_params_tac))) *}
+ "pruning parameters"
+
+ML {*
+structure StepRules = Named_Thms
+ (val name = @{binding "step"}
+ val description = "Theorems for hoare rules for every step")
+*}
+
+ML {*
+structure FwdRules = Named_Thms
+ (val name = @{binding "fwd"}
+ val description = "Theorems for fwd derivation of seperation implication")
+*}
+
+setup {* StepRules.setup *}
+
+setup {* FwdRules.setup *}
+
+section {* Operational Semantics of TM *}
+
+type_synonym tconf = "nat \<times> (nat \<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int \<rightharpoonup> Block)"
+
+fun next_tape :: "taction \<Rightarrow> (int \<times> (int \<rightharpoonup> Block)) \<Rightarrow> (int \<times> (int \<rightharpoonup> Block))"
+where "next_tape W0 (pos, m) = (pos, m(pos \<mapsto> Bk))" |
+ "next_tape W1 (pos, m) = (pos, m(pos \<mapsto> Oc))" |
+ "next_tape L (pos, m) = (pos - 1, m)" |
+ "next_tape R (pos, m) = (pos + 1, m)"
+
+fun tstep :: "tconf \<Rightarrow> tconf"
+ where "tstep (faults, prog, pc, pos, m) =
+ (case (prog pc) of
+ Some ((action0, St pc0), (action1, St pc1)) \<Rightarrow>
+ case (m pos) of
+ Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
+ Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
+ None \<Rightarrow> (faults + 1, prog, pc, pos, m)
+ | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"
+
+(* lemma tstep_splits:
+ "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1.
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
+ (\<forall> faults prog pc pos m action0 pc0 action1 pc1.
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
+ (\<forall> faults prog pc pos m action0 pc0 action1 pc1.
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
+ (\<forall> faults prog pc pos m .
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog pc = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
+ )"
+ apply (case_tac s, auto split:option.splits Block.splits)
+*)
+
+definition "tprog_set prog = {TC i inst | i inst. prog i = Some inst}"
+definition "tpc_set pc = {TAt pc}"
+definition "tmem_set m = {TM i n | i n. m (i) = Some n}"
+definition "tpos_set pos = {TPos pos}"
+definition "tfaults_set faults = {TFaults faults}"
+
+lemmas tpn_set_def = tprog_set_def tpc_set_def tmem_set_def tfaults_set_def tpos_set_def
+
+fun trset_of :: "tconf \<Rightarrow> tresource set"
+ where "trset_of (faults, prog, pc, pos, m) =
+ tprog_set prog \<union> tpc_set pc \<union> tpos_set pos \<union> tmem_set m \<union> tfaults_set faults"
+
+interpretation tm: sep_exec tstep trset_of .
+
+section {* Hoare logic for TM *}
+
+abbreviation t_hoare ::
+ "tassert \<Rightarrow> tassert \<Rightarrow> tassert \<Rightarrow> bool" ("(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+ where "\<lbrace> p \<rbrace> c \<lbrace> q \<rbrace> == sep_exec.Hoare_gen tstep trset_of p c q"
+
+abbreviation it_hoare ::
+ "(('a::sep_algebra) \<Rightarrow> tresource set \<Rightarrow> bool) \<Rightarrow>
+ ('a \<Rightarrow> bool) \<Rightarrow> (tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+ ("(1_).(\<lbrace>(1_)\<rbrace> / (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+where "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> == sep_exec.IHoare tstep trset_of I P c Q"
+
+(*
+primrec tpg_len :: "tpg \<Rightarrow> nat" where
+ "tpg_len (TInstr ai) = 1" |
+ "tpg_len (TSeq p1 p2) = tpg_len p1 + tpg_len " |
+ "tpg_len (TLocal fp) = tpg_len (fp 0)" |
+ "tpg_len (TLabel l) = 0" *)
+
+lemma tpg_fold_sg: "tpg_fold [tpg] = tpg"
+ by (simp add:tpg_fold_def)
+
+lemma tpg_fold_cons:
+ assumes h: "tpgs \<noteq> []"
+ shows "tpg_fold (tpg#tpgs) = (tpg; (tpg_fold tpgs))"
+ using h
+proof(induct tpgs arbitrary:tpg)
+ case (Cons tpg1 tpgs1)
+ thus ?case
+ proof(cases "tpgs1 = []")
+ case True
+ thus ?thesis by (simp add:tpg_fold_def)
+ next
+ case False
+ show ?thesis
+ proof -
+ have eq_1: "butlast (tpg # tpg1 # tpgs1) = tpg # (butlast (tpg1 # tpgs1))"
+ by simp
+ from False have eq_2: "last (tpg # tpg1 # tpgs1) = last (tpg1 # tpgs1)"
+ by simp
+ have eq_3: "foldr (op ;) (tpg # butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1)) =
+ (tpg ; (foldr (op ;) (butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1))))"
+ by simp
+ show ?thesis
+ apply (subst (1) tpg_fold_def, unfold eq_1 eq_2 eq_3)
+ by (fold tpg_fold_def, simp)
+ qed
+ qed
+qed auto
+
+lemmas tpg_fold_simps = tpg_fold_sg tpg_fold_cons
+
+lemma tpg_fold_app:
+ assumes h1: "tpgs1 \<noteq> []"
+ and h2: "tpgs2 \<noteq> []"
+ shows "i:[(tpg_fold (tpgs1 @ tpgs2))]:j = i:[(tpg_fold (tpgs1); tpg_fold tpgs2)]:j"
+ using h1 h2
+proof(induct tpgs1 arbitrary: i j tpgs2)
+ case (Cons tpg1' tpgs1')
+ thus ?case (is "?L = ?R")
+ proof(cases "tpgs1' = []")
+ case False
+ from h2 have "(tpgs1' @ tpgs2) \<noteq> []"
+ by (metis Cons.prems(2) Nil_is_append_conv)
+ have "?L = (i :[ tpg_fold (tpg1' # (tpgs1' @ tpgs2)) ]: j )" by simp
+ also have "\<dots> = (i:[(tpg1'; (tpg_fold (tpgs1' @ tpgs2)))]:j )"
+ by (simp add:tpg_fold_cons[OF `(tpgs1' @ tpgs2) \<noteq> []`])
+ also have "\<dots> = ?R"
+ proof -
+ have "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) =
+ (EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j)"
+ proof(default+)
+ fix s
+ assume "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ thus "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) s"
+ proof(elim EXS_elim)
+ fix j'
+ assume "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ from this[unfolded Cons(1)[OF False Cons(3)] tassemble_to.simps]
+ show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) s"
+ proof(elim sep_conjE EXS_elim)
+ fix x y j'a xa ya
+ assume h: "(i :[ tpg1' ]: j') x"
+ "x ## y" "s = x + y"
+ "(j' :[ tpg_fold tpgs1' ]: j'a) xa"
+ "(j'a :[ tpg_fold tpgs2 ]: j) ya"
+ " xa ## ya" "y = xa + ya"
+ show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>*
+ j'a :[ tpg_fold tpgs1' ]: j') \<and>* j' :[ tpg_fold tpgs2 ]: j) s"
+ (is "(EXS j'. (?P j' \<and>* ?Q j')) s")
+ proof(rule EXS_intro[where x = "j'a"])
+ from `(j'a :[ tpg_fold tpgs2 ]: j) ya` have "(?Q j'a) ya" .
+ moreover have "(?P j'a) (x + xa)"
+ proof(rule EXS_intro[where x = j'])
+ have "x + xa = x + xa" by simp
+ moreover from `x ## y` `y = xa + ya` `xa ## ya`
+ have "x ## xa" by (metis sep_disj_addD)
+ moreover note `(i :[ tpg1' ]: j') x` `(j' :[ tpg_fold tpgs1' ]: j'a) xa`
+ ultimately show "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold tpgs1' ]: j'a) (x + xa)"
+ by (auto intro!:sep_conjI)
+ qed
+ moreover from `x##y` `y = xa + ya` `xa ## ya`
+ have "(x + xa) ## ya"
+ by (metis sep_disj_addI1 sep_disj_commuteI)
+ moreover from `s = x + y` `y = xa + ya`
+ have "s = (x + xa) + ya"
+ by (metis h(2) h(6) sep_add_assoc sep_disj_addD1 sep_disj_addD2)
+ ultimately show "(?P j'a \<and>* ?Q j'a) s"
+ by (auto intro!:sep_conjI)
+ qed
+ qed
+ qed
+ next
+ fix s
+ assume "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) s"
+ thus "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ proof(elim EXS_elim sep_conjE)
+ fix j' x y j'a xa ya
+ assume h: "(j' :[ tpg_fold tpgs2 ]: j) y"
+ "x ## y" "s = x + y" "(i :[ tpg1' ]: j'a) xa"
+ "(j'a :[ tpg_fold tpgs1' ]: j') ya" "xa ## ya" "x = xa + ya"
+ show "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ proof(rule EXS_intro[where x = j'a])
+ from `(i :[ tpg1' ]: j'a) xa` have "(i :[ tpg1' ]: j'a) xa" .
+ moreover have "(j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) (ya + y)"
+ proof(unfold Cons(1)[OF False Cons(3)] tassemble_to.simps)
+ show "(EXS j'. j'a :[ tpg_fold tpgs1' ]: j' \<and>* j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
+ proof(rule EXS_intro[where x = "j'"])
+ from `x ## y` `x = xa + ya` `xa ## ya`
+ have "ya ## y" by (metis sep_add_disjD)
+ moreover have "ya + y = ya + y" by simp
+ moreover note `(j'a :[ tpg_fold tpgs1' ]: j') ya`
+ `(j' :[ tpg_fold tpgs2 ]: j) y`
+ ultimately show "(j'a :[ tpg_fold tpgs1' ]: j' \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
+ by (auto intro!:sep_conjI)
+ qed
+ qed
+ moreover from `s = x + y` `x = xa + ya`
+ have "s = xa + (ya + y)"
+ by (metis h(2) h(6) sep_add_assoc sep_add_disjD)
+ moreover from `xa ## ya` `x ## y` `x = xa + ya`
+ have "xa ## (ya + y)" by (metis sep_disj_addI3)
+ ultimately show "(i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ by (auto intro!:sep_conjI)
+ qed
+ qed
+ qed
+ thus ?thesis
+ by (simp add:tassemble_to.simps, unfold tpg_fold_cons[OF False],
+ unfold tassemble_to.simps, simp)
+ qed
+ finally show ?thesis .
+ next
+ case True
+ thus ?thesis
+ by (simp add:tpg_fold_cons[OF Cons(3)] tpg_fold_sg)
+ qed
+qed auto
+
+
+subsection {* Assertions and program logic for this assembly language *}
+
+definition "st l = sg (tpc_set l)"
+definition "ps p = sg (tpos_set p)"
+definition "tm a v =sg ({TM a v})"
+definition "one i = tm i Oc"
+definition "zero i= tm i Bk"
+definition "any i = (EXS v. tm i v)"
+
+declare trset_of.simps[simp del]
+
+lemma stimes_sgD: "(sg x ** q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
+ apply(erule_tac sep_conjE)
+ apply(unfold set_ins_def sg_def)
+ by (metis Diff_Int2 Diff_Int_distrib2 Diff_Un Diff_cancel
+ Diff_empty Diff_idemp Diff_triv Int_Diff Un_Diff
+ Un_Diff_cancel inf_commute inf_idem sup_bot_right sup_commute sup_ge2)
+
+lemma stD: "(st i ** r) (trset_of (ft, prog, i', pos, mem))
+ \<Longrightarrow> i' = i"
+proof -
+ assume "(st i ** r) (trset_of (ft, prog, i', pos, mem))"
+ from stimes_sgD [OF this[unfolded st_def], unfolded trset_of.simps]
+ have "tpc_set i \<subseteq> tprog_set prog \<union> tpc_set i' \<union> tpos_set pos \<union>
+ tmem_set mem \<union> tfaults_set ft" by auto
+ thus ?thesis
+ by (unfold tpn_set_def, auto)
+qed
+
+lemma psD: "(ps p ** r) (trset_of (ft, prog, i', pos, mem))
+ \<Longrightarrow> pos = p"
+proof -
+ assume "(ps p ** r) (trset_of (ft, prog, i', pos, mem))"
+ from stimes_sgD [OF this[unfolded ps_def], unfolded trset_of.simps]
+ have "tpos_set p \<subseteq> tprog_set prog \<union> tpc_set i' \<union>
+ tpos_set pos \<union> tmem_set mem \<union> tfaults_set ft"
+ by simp
+ thus ?thesis
+ by (unfold tpn_set_def, auto)
+qed
+
+lemma codeD: "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))
+ \<Longrightarrow> prog i = Some inst"
+proof -
+ assume "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))"
+ thus ?thesis
+ apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def)
+ by auto
+qed
+
+lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem)) \<Longrightarrow> mem a = Some v"
+proof -
+ assume "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))"
+ from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
+ have "{TM a v} \<subseteq> {TC i inst |i inst. prog i = Some inst} \<union> {TAt i} \<union>
+ {TPos pos} \<union> {TM i n |i n. mem i = Some n} \<union> {TFaults ft}" by simp
+ thus ?thesis by auto
+qed
+
+lemma t_hoare_seq:
+ "\<lbrakk>\<And> i j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st j ** q\<rbrace>;
+ \<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>\<rbrakk> \<Longrightarrow> \<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k ** r\<rbrace>"
+proof -
+ assume h: "\<And> i j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st j ** q\<rbrace>"
+ "\<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>"
+ show "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k ** r\<rbrace>"
+ proof(subst tassemble_to.simps, rule tm.code_exI)
+ fix j'
+ show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>st k \<and>* r\<rbrace>"
+ proof(rule tm.composition)
+ from h(1) show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<lbrace> st j' \<and>* q \<rbrace>" by auto
+ next
+ from h(2) show "\<lbrace>st j' \<and>* q\<rbrace> j' :[ c2 ]: k \<lbrace>st k \<and>* r\<rbrace>" by auto
+ qed
+ qed
+qed
+
+lemma t_hoare_seq1:
+ "\<lbrakk>\<And>j'. \<lbrace>st i ** p\<rbrace> i:[c1]:j' \<lbrace>st j' ** q\<rbrace>;
+ \<And>j'. \<lbrace>st j' ** q\<rbrace> j':[c2]:k \<lbrace>st k' ** r\<rbrace>\<rbrakk> \<Longrightarrow>
+ \<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k' ** r\<rbrace>"
+proof -
+ assume h: "\<And>j'. \<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<lbrace>st j' \<and>* q\<rbrace>"
+ "\<And>j'. \<lbrace>st j' \<and>* q\<rbrace> j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>"
+ show "\<lbrace>st i \<and>* p\<rbrace> i :[ (c1 ; c2) ]: k \<lbrace>st k' \<and>* r\<rbrace>"
+ proof(subst tassemble_to.simps, rule tm.code_exI)
+ fix j'
+ show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>"
+ proof(rule tm.composition)
+ from h(1) show "\<lbrace>st i \<and>* p\<rbrace> i :[ c1 ]: j' \<lbrace> st j' \<and>* q \<rbrace>" by auto
+ next
+ from h(2) show " \<lbrace>st j' \<and>* q\<rbrace> j' :[ c2 ]: k \<lbrace>st k' \<and>* r\<rbrace>" by auto
+ qed
+ qed
+qed
+
+lemma t_hoare_seq2:
+ assumes h: "\<And>j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st k' \<and>* r\<rbrace>"
+ shows "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>st k' ** r\<rbrace>"
+ apply (unfold tassemble_to.simps, rule tm.code_exI)
+ by (rule tm.code_extension, rule h)
+
+lemma t_hoare_local:
+ assumes h: "(\<And> (l::nat). \<lbrace>st i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>)"
+ shows "\<lbrace>st i ** p\<rbrace> i:[TLocal c]:j \<lbrace>st k ** q\<rbrace>" using h
+ by (unfold tassemble_to.simps, intro tm.code_exI, case_tac l, simp)
+
+lemma t_hoare_label:
+ "(\<And>l. (l::nat) = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace> l :[ c (l::tstate) ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
+ \<lbrace>st i \<and>* p \<rbrace>
+ i:[(TLabel l; c l)]:j
+ \<lbrace>st k \<and>* q\<rbrace>"
+ by (cases l, unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
+
+primrec t_split_cmd :: "tpg \<Rightarrow> (tpg \<times> tpg option)"
+ where "t_split_cmd (\<guillemotright>inst) = (\<guillemotright>inst, None)" |
+ "t_split_cmd (TLabel l) = (TLabel l, None)" |
+ "t_split_cmd (TSeq c1 c2) = (case (t_split_cmd c2) of
+ (c21, Some c22) \<Rightarrow> (TSeq c1 c21, Some c22) |
+ (c21, None) \<Rightarrow> (c1, Some c21))" |
+ "t_split_cmd (TLocal c) = (TLocal c, None)"
+
+definition "t_last_cmd tpg = (snd (t_split_cmd tpg))"
+
+declare t_last_cmd_def [simp]
+
+definition "t_blast_cmd tpg = (fst (t_split_cmd tpg))"
+
+declare t_blast_cmd_def [simp]
+
+lemma "t_last_cmd (c1; c2; (TLabel l)) = (Some (TLabel l))"
+ by simp
+
+lemma "t_blast_cmd (c1; c2; TLabel l) = (c1; c2)"
+ by simp
+
+lemma t_split_cmd_eq:
+ assumes "t_split_cmd c = (c1, Some c2)"
+ shows "(i:[c]:j) = (i:[(c1; c2)]:j)"
+ using assms
+proof(induct c arbitrary: c1 c2 i j)
+ case (TSeq cx cy)
+ from `t_split_cmd (cx ; cy) = (c1, Some c2)`
+ show ?case
+ apply (simp split:prod.splits option.splits)
+ apply (cases cy, auto split:prod.splits option.splits)
+ proof -
+ fix a
+ assume h: "t_split_cmd cy = (a, Some c2)"
+ show "i :[ (cx ; cy) ]: j = i :[ ((cx ; a) ; c2) ]: j"
+ apply (simp only: tassemble_to.simps(2) TSeq(2)[OF h] sep_conj_exists)
+ apply (simp add:sep_conj_ac)
+ by (simp add:pred_ex_def, default, auto)
+ qed
+qed auto
+
+lemma t_hoare_label_last_pre:
+ fixes l
+ assumes h1: "t_split_cmd c = (c', Some (TLabel l))"
+ and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[c']:j \<lbrace>q\<rbrace>"
+ shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
+by (cases l, unfold t_split_cmd_eq[OF h1],
+ simp only:tassemble_to.simps sep_conj_cond,
+ intro tm.code_exI tm.code_condI, insert h2, auto)
+
+lemma t_hoare_label_last:
+ fixes l
+ assumes h1: "t_last_cmd c = Some (TLabel l)"
+ and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
+ shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
+proof -
+ have "t_split_cmd c = (t_blast_cmd c, t_last_cmd c)"
+ by simp
+ from t_hoare_label_last_pre[OF this[unfolded h1]] h2
+ show ?thesis by auto
+qed
+
+subsection {* Basic assertions for TM *}
+
+function ones :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+ "ones i j = (if j < i then <(i = j + 1)> else
+ (one i) ** ones (i + 1) j)"
+by auto
+termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma ones_base_simp: "j < i \<Longrightarrow> ones i j = <(i = j + 1)>"
+ by simp
+
+lemma ones_step_simp: "\<not> j < i \<Longrightarrow> ones i j = ((one i) ** ones (i + 1) j)"
+ by simp
+
+lemmas ones_simps = ones_base_simp ones_step_simp
+
+declare ones.simps [simp del] ones_simps [simp]
+
+lemma ones_induct [case_names Base Step]:
+ fixes P i j
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (ones (i + 1) j)\<rbrakk> \<Longrightarrow> P i j ((one i) ** ones (i + 1) j)"
+ shows "P i j (ones i j)"
+proof(induct i j rule:ones.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (ones (i + 1) j))"
+ show "P i j (ones i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (one i \<and>* ones (i + 1) j)" by blast
+ with False show ?thesis by auto
+ qed
+qed
+
+function ones' :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+ "ones' i j = (if j < i then <(i = j + 1)> else
+ ones' i (j - 1) ** one j)"
+by auto
+termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma ones_rev: "\<not> j < i \<Longrightarrow> (ones i j) = ((ones i (j - 1)) ** one j)"
+proof(induct i j rule:ones_induct)
+ case Base
+ thus ?case by auto
+next
+ case (Step i j)
+ show ?case
+ proof(cases "j < i + 1")
+ case True
+ with Step show ?thesis
+ by simp
+ next
+ case False
+ with Step show ?thesis
+ by (auto simp:sep_conj_ac)
+ qed
+qed
+
+lemma ones_rev_induct [case_names Base Step]:
+ fixes P i j
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (ones i (j - 1))\<rbrakk> \<Longrightarrow> P i j ((ones i (j - 1)) ** one j)"
+ shows "P i j (ones i j)"
+proof(induct i j rule:ones'.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (ones i (j - 1)))"
+ show "P i j (ones i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (ones i (j - 1) \<and>* one j)" by blast
+ with ones_rev and False
+ show ?thesis
+ by simp
+ qed
+qed
+
+function zeros :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+ "zeros i j = (if j < i then <(i = j + 1)> else
+ (zero i) ** zeros (i + 1) j)"
+by auto
+termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma zeros_base_simp: "j < i \<Longrightarrow> zeros i j = <(i = j + 1)>"
+ by simp
+
+lemma zeros_step_simp: "\<not> j < i \<Longrightarrow> zeros i j = ((zero i) ** zeros (i + 1) j)"
+ by simp
+
+declare zeros.simps [simp del]
+lemmas zeros_simps [simp] = zeros_base_simp zeros_step_simp
+
+lemma zeros_induct [case_names Base Step]:
+ fixes P i j
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (zeros (i + 1) j)\<rbrakk> \<Longrightarrow>
+ P i j ((zero i) ** zeros (i + 1) j)"
+ shows "P i j (zeros i j)"
+proof(induct i j rule:zeros.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (zeros (i + 1) j))"
+ show "P i j (zeros i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (zero i \<and>* zeros (i + 1) j)" by blast
+ with False show ?thesis by auto
+ qed
+qed
+
+lemma zeros_rev: "\<not> j < i \<Longrightarrow> (zeros i j) = ((zeros i (j - 1)) ** zero j)"
+proof(induct i j rule:zeros_induct)
+ case (Base i j)
+ thus ?case by auto
+next
+ case (Step i j)
+ show ?case
+ proof(cases "j < i + 1")
+ case True
+ with Step show ?thesis by auto
+ next
+ case False
+ with Step show ?thesis by (auto simp:sep_conj_ac)
+ qed
+qed
+
+lemma zeros_rev_induct [case_names Base Step]:
+ fixes P i j
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (zeros i (j - 1))\<rbrakk> \<Longrightarrow>
+ P i j ((zeros i (j - 1)) ** zero j)"
+ shows "P i j (zeros i j)"
+proof(induct i j rule:ones'.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (zeros i (j - 1)))"
+ show "P i j (zeros i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (zeros i (j - 1) \<and>* zero j)" by blast
+ with zeros_rev and False
+ show ?thesis by simp
+ qed
+qed
+
+definition "rep i j k = ((ones i (i + (int k))) ** <(j = i + int k)>)"
+
+fun reps :: "int \<Rightarrow> int \<Rightarrow> nat list\<Rightarrow> tassert"
+ where
+ "reps i j [] = <(i = j + 1)>" |
+ "reps i j [k] = (ones i (i + int k) ** <(j = i + int k)>)" |
+ "reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+
+lemma reps_simp3: "ks \<noteq> [] \<Longrightarrow>
+ reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+ by (cases ks, auto)
+
+definition "reps_sep_len ks = (if length ks \<le> 1 then 0 else (length ks) - 1)"
+
+definition "reps_ctnt_len ks = (\<Sum> k \<leftarrow> ks. (1 + k))"
+
+definition "reps_len ks = (reps_sep_len ks) + (reps_ctnt_len ks)"
+
+definition "splited xs ys zs = ((xs = ys @ zs) \<and> (ys \<noteq> []) \<and> (zs \<noteq> []))"
+
+lemma list_split:
+ assumes h: "k # ks = ys @ zs"
+ and h1: "ys \<noteq> []"
+ shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)"
+proof(cases ys)
+ case Nil
+ with h1 show ?thesis by auto
+next
+ case (Cons y' ys')
+ with h have "k#ks = y'#(ys' @ zs)" by simp
+ hence hh: "y' = k" "ks = ys' @ zs" by auto
+ show ?thesis
+ proof(cases "ys' = []")
+ case False
+ show ?thesis
+ proof(rule disjI2)
+ show " \<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
+ proof(rule exI[where x = ys'])
+ from False hh Cons show "ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" by auto
+ qed
+ qed
+ next
+ case True
+ show ?thesis
+ proof(rule disjI1)
+ from hh True Cons
+ show "ys = [k] \<and> zs = ks" by auto
+ qed
+ qed
+qed
+
+lemma splited_cons[elim_format]:
+ assumes h: "splited (k # ks) ys zs"
+ shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
+proof -
+ from h have "k # ks = ys @ zs" "ys \<noteq> [] " unfolding splited_def by auto
+ from list_split[OF this]
+ have "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" .
+ thus ?thesis
+ proof
+ assume " ys = [k] \<and> zs = ks" thus ?thesis by auto
+ next
+ assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
+ then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "ks = ys' @ zs" by auto
+ show ?thesis
+ proof(rule disjI2)
+ show "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
+ proof(rule exI[where x = ys'])
+ from h have "zs \<noteq> []" by (unfold splited_def, simp)
+ with hh(1) hh(3)
+ have "splited ks ys' zs"
+ by (unfold splited_def, auto)
+ with hh(1) hh(2) show "ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" by auto
+ qed
+ qed
+ qed
+qed
+
+lemma splited_cons_elim:
+ assumes h: "splited (k # ks) ys zs"
+ and h1: "\<lbrakk>ys = [k]; zs = ks\<rbrakk> \<Longrightarrow> P"
+ and h2: "\<And> ys'. \<lbrakk>ys' \<noteq> []; ys = k#ys'; splited ks ys' zs\<rbrakk> \<Longrightarrow> P"
+ shows P
+proof(rule splited_cons[OF h])
+ assume "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
+ thus P
+ proof
+ assume hh: "ys = [k] \<and> zs = ks"
+ show P
+ proof(rule h1)
+ from hh show "ys = [k]" by simp
+ next
+ from hh show "zs = ks" by simp
+ qed
+ next
+ assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
+ then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs" by auto
+ from h2[OF this]
+ show P .
+ qed
+qed
+
+lemma list_nth_expand:
+ "i < length xs \<Longrightarrow> xs = take i xs @ [xs!i] @ drop (Suc i) xs"
+ by (metis Cons_eq_appendI append_take_drop_id drop_Suc_conv_tl eq_Nil_appendI)
+
+lemma reps_len_nil: "reps_len [] = 0"
+ by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+
+lemma reps_len_sg: "reps_len [k] = 1 + k"
+ by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+
+lemma reps_len_cons: "ks \<noteq> [] \<Longrightarrow> (reps_len (k # ks)) = 2 + k + reps_len ks "
+proof(induct ks arbitrary:k)
+ case (Cons n ns)
+ thus ?case
+ by(cases "ns = []",
+ auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+qed auto
+
+lemma reps_len_correct:
+ assumes h: "(reps i j ks) s"
+ shows "j = i + int (reps_len ks) - 1"
+ using h
+proof(induct ks arbitrary:i j s)
+ case Nil
+ thus ?case
+ by (auto simp:reps_len_nil pasrt_def)
+next
+ case (Cons n ns)
+ thus ?case
+ proof(cases "ns = []")
+ case False
+ from Cons(2)[unfolded reps_simp3[OF False]]
+ obtain s' where "(reps (i + int n + 2) j ns) s'"
+ by (auto elim!:sep_conjE)
+ from Cons.hyps[OF this]
+ show ?thesis
+ by (unfold reps_len_cons[OF False], simp)
+ next
+ case True
+ with Cons(2)
+ show ?thesis
+ by (auto simp:reps_len_sg pasrt_def)
+ qed
+qed
+
+lemma reps_len_expand:
+ shows "(EXS j. (reps i j ks)) = (reps i (i + int (reps_len ks) - 1) ks)"
+proof(default+)
+ fix s
+ assume "(EXS j. reps i j ks) s"
+ with reps_len_correct show "reps i (i + int (reps_len ks) - 1) ks s"
+ by (auto simp:pred_ex_def)
+next
+ fix s
+ assume "reps i (i + int (reps_len ks) - 1) ks s"
+ thus "(EXS j. reps i j ks) s" by (auto simp:pred_ex_def)
+qed
+
+lemma reps_len_expand1: "(EXS j. (reps i j ks \<and>* r)) = (reps i (i + int (reps_len ks) - 1) ks \<and>* r)"
+by (metis reps_len_def reps_len_expand sep.mult_commute sep_conj_exists1)
+
+lemma reps_splited:
+ assumes h: "splited xs ys zs"
+ shows "reps i j xs = (reps i (i + int (reps_len ys) - 1) ys \<and>*
+ zero (i + int (reps_len ys)) \<and>*
+ reps (i + int (reps_len ys) + 1) j zs)"
+ using h
+proof(induct xs arbitrary: i j ys zs)
+ case Nil
+ thus ?case
+ by (unfold splited_def, auto)
+next
+ case (Cons k ks)
+ from Cons(2)
+ show ?case
+ proof(rule splited_cons_elim)
+ assume h: "ys = [k]" "zs = ks"
+ with Cons(2)
+ show ?thesis
+ proof(cases "ks = []")
+ case True
+ with Cons(2) have False
+ by (simp add:splited_def, cases ys, auto)
+ thus ?thesis by auto
+ next
+ case False
+ have ss: "i + int k + 1 = i + (1 + int k)"
+ "i + int k + 2 = 2 + (i + int k)" by auto
+ show ?thesis
+ by (unfold h(1), unfold reps_simp3[OF False] reps.simps(2)
+ reps_len_sg, auto simp:sep_conj_ac,
+ unfold ss h(2), simp)
+ qed
+ next
+ fix ys'
+ assume h: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs"
+ hence nnks: "ks \<noteq> []"
+ by (unfold splited_def, auto)
+ have ss: "i + int k + 2 + int (reps_len ys') =
+ i + (2 + (int k + int (reps_len ys')))" by auto
+ show ?thesis
+ by (simp add: reps_simp3[OF nnks] reps_simp3[OF h(1)]
+ Cons(1)[OF h(3)] h(2)
+ reps_len_cons[OF h(1)]
+ sep_conj_ac, subst ss, simp)
+ qed
+qed
+
+subsection {* A theory of list extension *}
+
+definition "list_ext n xs = xs @ replicate ((Suc n) - length xs) 0"
+
+lemma list_ext_len_eq: "length (list_ext a xs) = length xs + (Suc a - length xs)"
+ by (metis length_append length_replicate list_ext_def)
+
+lemma list_ext_len: "a < length (list_ext a xs)"
+ by (unfold list_ext_len_eq, auto)
+
+lemma list_ext_lt: "a < length xs \<Longrightarrow> list_ext a xs = xs"
+ by (smt append_Nil2 list_ext_def replicate_0)
+
+lemma list_ext_lt_get:
+ assumes h: "a' < length xs"
+ shows "(list_ext a xs)!a' = xs!a'"
+proof(cases "a < length xs")
+ case True
+ with h
+ show ?thesis by (auto simp:list_ext_lt)
+next
+ case False
+ with h show ?thesis
+ apply (unfold list_ext_def)
+ by (metis nth_append)
+qed
+
+lemma list_ext_get_upd: "((list_ext a xs)[a:=v])!a = v"
+ by (metis list_ext_len nth_list_update_eq)
+
+lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
+ by (metis not_less nth_append)
+
+lemma pred_exI:
+ assumes "(P(x) \<and>* r) s"
+ shows "((EXS x. P(x)) \<and>* r) s"
+ by (metis assms pred_ex_def sep_globalise)
+
+lemma list_ext_tail:
+ assumes h1: "length xs \<le> a"
+ and h2: "length xs \<le> a'"
+ and h3: "a' \<le> a"
+ shows "(list_ext a xs)!a' = 0"
+proof -
+ from h1 h2
+ have "a' - length xs < length (replicate (Suc a - length xs) 0)"
+ by (metis diff_less_mono h3 le_imp_less_Suc length_replicate)
+ moreover from h1 have "replicate (Suc a - length xs) 0 \<noteq> []"
+ by (smt empty_replicate)
+ ultimately have "(replicate (Suc a - length xs) 0)!(a' - length xs) = 0"
+ by (metis length_replicate nth_replicate)
+ moreover have "(xs @ (replicate (Suc a - length xs) 0))!a' =
+ (replicate (Suc a - length xs) 0)!(a' - length xs)"
+ by (rule nth_app[OF h2])
+ ultimately show ?thesis
+ by (auto simp:list_ext_def)
+qed
+
+lemmas list_ext_simps = list_ext_lt_get list_ext_lt list_ext_len list_ext_len_eq
+
+lemma listsum_upd_suc:
+ "a < length ks \<Longrightarrow> listsum (map Suc (ks[a := Suc (ks ! a)]))= (Suc (listsum (map Suc ks)))"
+by (smt Ex_list_of_length Skolem_list_nth elem_le_listsum_nat
+ length_induct length_list_update length_map length_splice
+ list_eq_iff_nth_eq list_ext_get_upd list_ext_lt_get list_update_beyond
+ list_update_id list_update_overwrite list_update_same_conv list_update_swap
+ listsum_update_nat map_eq_imp_length_eq map_update neq_if_length_neq
+ nth_equalityI nth_list_update nth_list_update_eq nth_list_update_neq nth_map reps_sep_len_def)
+
+lemma reps_len_suc:
+ assumes "a < length ks"
+ shows "reps_len (ks[a:=Suc(ks!a)]) = 1 + reps_len ks"
+proof(cases "length ks \<le> 1")
+ case True
+ with `a < length ks`
+ obtain k where "ks = [k]" "a = 0"
+ by (smt length_0_conv length_Suc_conv)
+ thus ?thesis
+ apply (unfold `ks = [k]` `a = 0`)
+ by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, auto)
+next
+ case False
+ have "Suc = (op + (Suc 0))"
+ by (default, auto)
+ with listsum_upd_suc[OF `a < length ks`] False
+ show ?thesis
+ by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, simp)
+qed
+
+lemma ks_suc_len:
+ assumes h1: "(reps i j ks) s"
+ and h2: "ks!a = v"
+ and h3: "a < length ks"
+ and h4: "(reps i j' (ks[a:=Suc v])) s'"
+ shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1"
+proof -
+ from reps_len_correct[OF h1, unfolded list_ext_len_eq]
+ reps_len_correct[OF h4, unfolded list_ext_len_eq]
+ reps_len_suc[OF `a < length ks`] h2 h3
+ show ?thesis
+ by (unfold list_ext_lt[OF `a < length ks`], auto)
+qed
+
+lemma ks_ext_len:
+ assumes h1: "(reps i j ks) s"
+ and h3: "length ks \<le> a"
+ and h4: "reps i j' (list_ext a ks) s'"
+ shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks)"
+proof -
+ from reps_len_correct[OF h1, unfolded list_ext_len_eq]
+ and reps_len_correct[OF h4, unfolded list_ext_len_eq]
+ h3
+ show ?thesis by auto
+qed
+
+definition
+ "reps' i j ks =
+ (if ks = [] then (<(i = j + 1)>) else (reps i (j - 1) ks \<and>* zero j))"
+
+lemma reps'_expand:
+ assumes h: "ks \<noteq> []"
+ shows "(EXS j. reps' i j ks) = reps' i (i + int (reps_len ks)) ks"
+proof -
+ show ?thesis
+ proof(default+)
+ fix s
+ assume "(EXS j. reps' i j ks) s"
+ with h have "(EXS j. reps i (j - 1) ks \<and>* zero j) s"
+ by (simp add:reps'_def)
+ hence "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
+ proof(elim EXS_elim)
+ fix j
+ assume "(reps i (j - 1) ks \<and>* zero j) s"
+ then obtain s1 s2 where "s = s1 + s2" "s1 ## s2" "reps i (j - 1) ks s1" "zero j s2"
+ by (auto elim!:sep_conjE)
+ from reps_len_correct[OF this(3)]
+ have "j = i + int (reps_len ks)" by auto
+ with `reps i (j - 1) ks s1` have "reps i (i + int (reps_len ks) - 1) ks s1"
+ by simp
+ moreover from `j = i + int (reps_len ks)` and `zero j s2`
+ have "zero (i + int (reps_len ks)) s2" by auto
+ ultimately show "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
+ using `s = s1 + s2` `s1 ## s2` by (auto intro!:sep_conjI)
+ qed
+ thus "reps' i (i + int (reps_len ks)) ks s"
+ by (simp add:h reps'_def)
+ next
+ fix s
+ assume "reps' i (i + int (reps_len ks)) ks s"
+ thus "(EXS j. reps' i j ks) s"
+ by (auto intro!:EXS_intro)
+ qed
+qed
+
+lemma reps'_len_correct:
+ assumes h: "(reps' i j ks) s"
+ and h1: "ks \<noteq> []"
+ shows "(j = i + int (reps_len ks))"
+proof -
+ from h1 have "reps' i j ks s = (reps i (j - 1) ks \<and>* zero j) s" by (simp add:reps'_def)
+ from h[unfolded this]
+ obtain s' where "reps i (j - 1) ks s'"
+ by (auto elim!:sep_conjE)
+ from reps_len_correct[OF this]
+ show ?thesis by simp
+qed
+
+lemma reps'_append:
+ "reps' i j (ks1 @ ks2) = (EXS m. (reps' i (m - 1) ks1 \<and>* reps' m j ks2))"
+proof(cases "ks1 = []")
+ case True
+ thus ?thesis
+ by (auto simp:reps'_def pred_ex_def pasrt_def set_ins_def sep_conj_def)
+next
+ case False
+ show ?thesis
+ proof(cases "ks2 = []")
+ case False
+ from `ks1 \<noteq> []` and `ks2 \<noteq> []`
+ have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
+ from reps_splited[OF this, of i "j - 1"]
+ have eq_1: "reps i (j - 1) (ks1 @ ks2) =
+ (reps i (i + int (reps_len ks1) - 1) ks1 \<and>*
+ zero (i + int (reps_len ks1)) \<and>*
+ reps (i + int (reps_len ks1) + 1) (j - 1) ks2)" .
+ from `ks1 \<noteq> []`
+ have eq_2: "reps' i j (ks1 @ ks2) = (reps i (j - 1) (ks1 @ ks2) \<and>* zero j)"
+ by (unfold reps'_def, simp)
+ show ?thesis
+ proof(default+)
+ fix s
+ assume "reps' i j (ks1 @ ks2) s"
+ show "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+ proof(rule EXS_intro[where x = "i + int(reps_len ks1) + 1"])
+ from `reps' i j (ks1 @ ks2) s`[unfolded eq_2 eq_1]
+ and `ks1 \<noteq> []` `ks2 \<noteq> []`
+ show "(reps' i (i + int (reps_len ks1) + 1 - 1) ks1 \<and>*
+ reps' (i + int (reps_len ks1) + 1) j ks2) s"
+ by (unfold reps'_def, simp, sep_cancel+)
+ qed
+ next
+ fix s
+ assume "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+ thus "reps' i j (ks1 @ ks2) s"
+ proof(elim EXS_elim)
+ fix m
+ assume "(reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+ then obtain s1 s2 where h:
+ "s = s1 + s2" "s1 ## s2" "reps' i (m - 1) ks1 s1"
+ " reps' m j ks2 s2" by (auto elim!:sep_conjE)
+ from reps'_len_correct[OF this(3) `ks1 \<noteq> []`]
+ have eq_m: "m = i + int (reps_len ks1) + 1" by simp
+ have "((reps i (i + int (reps_len ks1) - 1) ks1 \<and>* zero (i + int (reps_len ks1))) \<and>*
+ ((reps (i + int (reps_len ks1) + 1) (j - 1) ks2) \<and>* zero j)) s"
+ (is "(?P \<and>* ?Q) s")
+ proof(rule sep_conjI)
+ from h(3) eq_m `ks1 \<noteq> []` show "?P s1"
+ by (simp add:reps'_def)
+ next
+ from h(4) eq_m `ks2 \<noteq> []` show "?Q s2"
+ by (simp add:reps'_def)
+ next
+ from h(2) show "s1 ## s2" .
+ next
+ from h(1) show "s = s1 + s2" .
+ qed
+ thus "reps' i j (ks1 @ ks2) s"
+ by (unfold eq_2 eq_1, auto simp:sep_conj_ac)
+ qed
+ qed
+ next
+ case True
+ have "-1 + j = j - 1" by auto
+ with `ks1 \<noteq> []` True
+ show ?thesis
+ apply (auto simp:reps'_def pred_ex_def pasrt_def)
+ apply (unfold `-1 + j = j - 1`)
+ by (fold sep_empty_def, simp only:sep_conj_empty)
+ qed
+qed
+
+lemma reps'_sg:
+ "reps' i j [k] =
+ (<(j = i + int k + 1)> \<and>* ones i (i + int k) \<and>* zero j)"
+ apply (unfold reps'_def, default, auto simp:sep_conj_ac)
+ by (sep_cancel+, simp add:pasrt_def)+
+
+
+section {* Basic macros for TM *}
+
+lemma st_upd:
+ assumes pre: "(st i' ** r) (trset_of (f, x, i, y, z))"
+ shows "(st i'' ** r) (trset_of (f, x, i'', y, z))"
+proof -
+ from stimes_sgD[OF pre[unfolded st_def], unfolded trset_of.simps, unfolded stD[OF pre]]
+ have "r (tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i')"
+ by blast
+ moreover have
+ "(tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i') =
+ (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by (unfold tpn_set_def, auto)
+ ultimately have r_rest: "r (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by auto
+ show ?thesis
+ proof(rule sep_conjI[where Q = r, OF _ r_rest])
+ show "st i'' (tpc_set i'')"
+ by (unfold st_def sg_def, simp)
+ next
+ show "tpc_set i'' ## tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f"
+ by (unfold tpn_set_def sep_disj_set_def, auto)
+ next
+ show "trset_of (f, x, i'', y, z) =
+ tpc_set i'' + (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by (unfold trset_of.simps plus_set_def, auto)
+ qed
+qed
+
+lemma pos_upd:
+ assumes pre: "(ps i ** r) (trset_of (f, x, y, i', z))"
+ shows "(ps j ** r) (trset_of (f, x, y, j, z))"
+proof -
+ from stimes_sgD[OF pre[unfolded ps_def], unfolded trset_of.simps, unfolded psD[OF pre]]
+ have "r (tprog_set x \<union> tpc_set y \<union> tpos_set i \<union> tmem_set z \<union>
+ tfaults_set f - tpos_set i)" (is "r ?xs")
+ by blast
+ moreover have
+ "?xs = tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
+ by (unfold tpn_set_def, auto)
+ ultimately have r_rest: "r \<dots>"
+ by auto
+ show ?thesis
+ proof(rule sep_conjI[where Q = r, OF _ r_rest])
+ show "ps j (tpos_set j)"
+ by (unfold ps_def sg_def, simp)
+ next
+ show "tpos_set j ## tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
+ by (unfold tpn_set_def sep_disj_set_def, auto)
+ next
+ show "trset_of (f, x, y, j, z) =
+ tpos_set j + (tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by (unfold trset_of.simps plus_set_def, auto)
+ qed
+qed
+
+lemma TM_in_simp: "({TM a v} \<subseteq>
+ tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f) =
+ ({TM a v} \<subseteq> tmem_set mem)"
+ by (unfold tpn_set_def, auto)
+
+lemma tmem_set_upd:
+ "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow>
+ tmem_set (mem(a:=Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
+ by (unfold tpn_set_def, auto)
+
+lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow>
+ {TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}"
+ by (unfold tpn_set_def, auto)
+
+lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem)) \<Longrightarrow>
+ ((tm a v') ** r) (trset_of (f, x, y, z, mem(a := Some v')))"
+proof -
+ have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
+ (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+ by (unfold tpn_set_def, auto)
+ assume g: "(tm a v \<and>* r) (trset_of (f, x, y, z, mem))"
+ from this[unfolded trset_of.simps tm_def]
+ have h: "(sg {TM a v} \<and>* r) (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f)" .
+ hence h0: "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+ by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
+ from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
+ by(sep_drule stimes_sgD, auto)
+ from tmem_set_upd [OF this] tmem_set_disj[OF this]
+ have h2: "tmem_set (mem(a \<mapsto> v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})"
+ "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
+ show ?thesis
+ proof -
+ have "(tm a v' ** r) (tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
+ proof(rule sep_conjI)
+ show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
+ next
+ from h0 show "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" .
+ next
+ show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
+ proof -
+ from g have " mem a = Some v"
+ by(sep_frule memD, simp)
+ thus "?thesis"
+ by(unfold tpn_set_def set_ins_def, auto)
+ qed
+ next
+ show "tmem_set (mem(a \<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
+ {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+ by (unfold h2(1) set_ins_def eq_s, auto)
+ qed
+ thus ?thesis
+ apply (unfold trset_of.simps)
+ by (metis sup_commute sup_left_commute)
+ qed
+qed
+
+lemma hoare_write_zero:
+ "\<lbrace>st i ** ps p ** tm p v\<rbrace>
+ i:[write_zero]:j
+ \<lbrace>st j ** ps p ** tm p Bk\<rbrace>"
+proof(unfold write_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i :[ \<guillemotright> ((W0, j), W0, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Bk\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp)
+ assume eq_j: "j = Suc i"
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> sg {TC i ((W0, Suc i), W0, Suc i)}
+ \<lbrace>st (Suc i) \<and>* ps p \<and>* tm p Bk\<rbrace>"
+ proof(fold eq_j, unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog i = Some ((W0, j), W0, j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i'\<mapsto> Bk))" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ by(cases v, unfold tm.run_def, auto)
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
+ apply(auto simp: sep_conj_ac)
+ done
+ thus "\<exists>k. (r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_write_zero_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v\<rbrace>
+ i:[write_zero]:j
+ \<lbrace>st j ** ps p ** tm q Bk\<rbrace>"
+ by (unfold assms, rule hoare_write_zero)
+
+lemma hoare_write_one:
+ "\<lbrace>st i ** ps p ** tm p v\<rbrace>
+ i:[write_one]:j
+ \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
+proof(unfold write_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i :[ \<guillemotright> ((W1, j), W1, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ rule_tac tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p v\<rbrace> sg {TC i ((W1, ?j), W1, ?j)}
+ \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog i = Some ((W1, ?j), W1, ?j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) =
+ (ft, prog, ?j, i', mem(i'\<mapsto> Oc))" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ by(cases v, unfold tm.run_def, auto)
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
+ apply(auto simp: sep_conj_ac)
+ done
+ thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_write_one_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v\<rbrace>
+ i:[write_one]:j
+ \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
+ by (unfold assms, rule hoare_write_one)
+
+lemma hoare_move_left:
+ "\<lbrace>st i ** ps p ** tm p v2\<rbrace>
+ i:[move_left]:j
+ \<lbrace>st j ** ps (p - 1) ** tm p v2\<rbrace>"
+proof(unfold move_left_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v2\<rbrace> i :[ \<guillemotright> ((L, l), L, l) ]: l
+ \<lbrace>st l \<and>* ps (p - 1) \<and>* tm p v2\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p v2\<rbrace> sg {TC i ((L, ?j), L, ?j)}
+ \<lbrace>st ?j \<and>* tm p v2 \<and>* ps (p - 1)\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog i = Some ((L, ?j), L, ?j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i' - 1, mem)" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ apply(unfold tm.run_def, case_tac v2, auto)
+ done
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, simp)
+ proof -
+ assume "(st ?j \<and>* ps (p - 1) \<and>* r \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (ft, prog, ?j, p - 1, mem))"
+ thus "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (ft, prog, ?j, p - 1, mem))"
+ by(simp add: sep_conj_ac)
+ qed
+ thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_move_left_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v2\<rbrace>
+ i:[move_left]:j
+ \<lbrace>st j ** ps (p - 1) ** tm q v2\<rbrace>"
+ by (unfold assms, rule hoare_move_left)
+
+lemma hoare_move_right:
+ "\<lbrace>st i ** ps p ** tm p v1 \<rbrace>
+ i:[move_right]:j
+ \<lbrace>st j ** ps (p + 1) ** tm p v1 \<rbrace>"
+proof(unfold move_right_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v1\<rbrace> i :[ \<guillemotright> ((R, l), R, l) ]: l
+ \<lbrace>st l \<and>* ps (p + 1) \<and>* tm p v1\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p v1\<rbrace> sg {TC i ((R, ?j), R, ?j)}
+ \<lbrace>st ?j \<and>* tm p v1 \<and>* ps (p + 1)\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog i = Some ((R, ?j), R, ?j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i'+ 1, mem)" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ apply(unfold tm.run_def, case_tac v1, auto)
+ done
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>*
+ sg {TC i ((R, ?j), R, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, simp)
+ proof -
+ assume "(st ?j \<and>* ps (p + 1) \<and>* r \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (ft, prog, ?j, p + 1, mem))"
+ thus "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (ft, prog, ?j, p + 1, mem))"
+ by (simp add: sep_conj_ac)
+ qed
+ thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_move_right_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v1 \<rbrace>
+ i:[move_right]:j
+ \<lbrace>st j ** ps (p + 1) ** tm q v1 \<rbrace>"
+ by (unfold assms, rule hoare_move_right)
+
+lemma hoare_if_one_true:
+ "\<lbrace>st i ** ps p ** one p\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps p ** one p\<rbrace>"
+proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show " \<lbrace>st i \<and>* ps p \<and>* one p\<rbrace> i :[ \<guillemotright> ((W0, l), W1, e) ]: l \<lbrace>st e \<and>* ps p \<and>* one p\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>one p \<and>* ps p \<and>* st i\<rbrace> sg {TC i ((W0, ?j), W1, e)} \<lbrace>one p \<and>* ps p \<and>* st e\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog i = Some ((W0, ?j), W1, e)"
+ apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem pc = Some Oc"
+ apply(unfold one_def)
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ by(unfold tm.run_def, auto)
+ from h k2
+ have "(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists>k.(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+text {*
+ The following problematic lemma is not provable now
+ lemma hoare_self: "\<lbrace>p\<rbrace> i :[ap]: j \<lbrace>p\<rbrace>"
+ apply(simp add: tm.Hoare_gen_def, clarify)
+ apply(rule_tac x = 0 in exI, simp add: tm.run_def)
+ done
+*}
+
+lemma hoare_if_one_true_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** one q\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps p ** one q\<rbrace>"
+ by (unfold assms, rule hoare_if_one_true)
+
+lemma hoare_if_one_true1:
+ "\<lbrace>st i ** ps p ** one p\<rbrace>
+ i:[(if_one e; c)]:j
+ \<lbrace>st e ** ps p ** one p\<rbrace>"
+proof(unfold tassemble_to.simps, rule tm.code_exI,
+ simp add: sep_conj_ac tm.Hoare_gen_def, clarify)
+ fix j' ft prog cs pos mem r
+ assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j')
+ (trset_of (ft, prog, cs, pos, mem))"
+ from tm.frame_rule[OF hoare_if_one_true]
+ have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* one p \<and>* r\<rbrace> i :[ if_one e ]: j' \<lbrace>st e \<and>* ps p \<and>* one p \<and>* r\<rbrace>"
+ by(simp add: sep_conj_ac)
+ from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+ have "\<exists> k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* i :[ if_one e ]: j' \<and>* j' :[ c ]: j)
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(auto simp: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j')
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(simp add: sep_conj_ac)
+qed
+
+lemma hoare_if_one_true1_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** one q\<rbrace>
+ i:[(if_one e; c)]:j
+ \<lbrace>st e ** ps p ** one q\<rbrace>"
+ by (unfold assms, rule hoare_if_one_true1)
+
+lemma hoare_if_one_false:
+ "\<lbrace>st i ** ps p ** zero p\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st j ** ps p ** zero p\<rbrace>"
+proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace> i :[ (\<guillemotright> ((W0, j), W1, e)) ]: j
+ \<lbrace>st j \<and>* ps p \<and>* zero p\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace> sg {TC i ((W0, ?j), W1, e)} \<lbrace>ps p \<and>* zero p \<and>* st ?j \<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog i = Some ((W0, ?j), W1, e)"
+ apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem pc = Some Bk"
+ apply(unfold zero_def)
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ by (unfold tm.run_def, auto split:tstate.splits)
+ from h k2
+ have "(r \<and>* zero p \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)}) (trset_of ?x)"
+ apply (unfold stp)
+ by (sep_drule st_upd[where i''="?j"], auto simp:sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* zero p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ by(auto simp: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_if_one_false_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** zero q\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st j ** ps p ** zero q\<rbrace>"
+ by (unfold assms, rule hoare_if_one_false)
+
+lemma hoare_if_zero_true:
+ "\<lbrace>st i ** ps p ** zero p\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st e ** ps p ** zero p\<rbrace>"
+proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace> i :[ \<guillemotright> ((W0, e), W1, l) ]: l \<lbrace>st e \<and>* ps p \<and>* zero p\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace> sg {TC i ((W0, e), W1, ?j)} \<lbrace>ps p \<and>* st e \<and>* zero p\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog i = Some ((W0, e), W1, ?j)"
+ apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem pc = Some Bk"
+ apply(unfold zero_def)
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ by(unfold tm.run_def, auto)
+ from h k2
+ have "(r \<and>* zero p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, e), W1, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ by(auto simp: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_if_zero_true_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** zero q\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st e ** ps p ** zero q\<rbrace>"
+ by (unfold assms, rule hoare_if_zero_true)
+
+lemma hoare_if_zero_true1:
+ "\<lbrace>st i ** ps p ** zero p\<rbrace>
+ i:[(if_zero e; c)]:j
+ \<lbrace>st e ** ps p ** zero p\<rbrace>"
+ proof(unfold tassemble_to.simps, rule tm.code_exI, simp add: sep_conj_ac
+ tm.Hoare_gen_def, clarify)
+ fix j' ft prog cs pos mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')
+ (trset_of (ft, prog, cs, pos, mem))"
+ from tm.frame_rule[OF hoare_if_zero_true]
+ have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* zero p \<and>* r\<rbrace> i :[ if_zero e ]: j' \<lbrace>st e \<and>* ps p \<and>* zero p \<and>* r\<rbrace>"
+ by(simp add: sep_conj_ac)
+ from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+ have "\<exists> k. (r \<and>* zero p \<and>* ps p \<and>* st e \<and>* i :[ if_zero e ]: j' \<and>* j' :[ c ]: j)
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(auto simp: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(simp add: sep_conj_ac)
+qed
+
+lemma hoare_if_zero_true1_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** zero q\<rbrace>
+ i:[(if_zero e; c)]:j
+ \<lbrace>st e ** ps p ** zero q\<rbrace>"
+ by (unfold assms, rule hoare_if_zero_true1)
+
+lemma hoare_if_zero_false:
+ "\<lbrace>st i ** ps p ** tm p Oc\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
+proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p Oc\<rbrace> i :[ \<guillemotright> ((W0, e), W1, l) ]: l
+ \<lbrace>st l \<and>* ps p \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p Oc\<rbrace> sg {TC i ((W0, e), W1, ?j)}
+ \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog i = Some ((W0, e), W1, ?j)"
+ apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem pc = Some Oc"
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ by(unfold tm.run_def, auto split:tstate.splits)
+ from h k2
+ have "(r \<and>* tm p Oc \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, e), W1, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ by(auto simp: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_if_zero_false_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** tm q Oc\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
+ by (unfold assms, rule hoare_if_zero_false)
+
+lemma hoare_jmp:
+ "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
+proof(unfold jmp_def tm.Hoare_gen_def tassemble_to.simps sep_conj_ac, clarify)
+ fix ft prog cs pos mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
+ (trset_of (ft, prog, cs, pos, mem))"
+ from h have k1: "prog i = Some ((W0, e), W1, e)"
+ apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "p = pos"
+ by(sep_drule psD, simp)
+ from h k2 have k3: "mem pos = Some v"
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have
+ stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ by(unfold tm.run_def, cases "mem pos", simp, cases v, auto)
+ from h k2
+ have "(r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>*
+ sg {TC i ((W0, e), W1, e)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists> k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+qed
+
+lemma hoare_jmp_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
+ by (unfold assms, rule hoare_jmp)
+
+lemma hoare_jmp1:
+ "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>
+ i:[(jmp e; c)]:j
+ \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
+proof(unfold tassemble_to.simps, rule tm.code_exI, simp
+ add: sep_conj_ac tm.Hoare_gen_def, clarify)
+ fix j' ft prog cs pos mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')
+ (trset_of (ft, prog, cs, pos, mem))"
+ from tm.frame_rule[OF hoare_jmp]
+ have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* tm p v \<and>* r\<rbrace> i :[ jmp e ]: j' \<lbrace>st e \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>"
+ by(simp add: sep_conj_ac)
+ from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+ have "\<exists> k. (r \<and>* tm p v \<and>* ps p \<and>* st e \<and>* i :[ jmp e ]: j' \<and>* j' :[ c ]: j)
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(auto simp: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(simp add: sep_conj_ac)
+qed
+
+
+lemma hoare_jmp1_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace>
+ i:[(jmp e; c)]:j
+ \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
+ by (unfold assms, rule hoare_jmp1)
+
+
+lemma condI:
+ assumes h1: b
+ and h2: "b \<Longrightarrow> p s"
+ shows "(<b> \<and>* p) s"
+ by (metis (full_types) cond_true_eq1 h1 h2)
+
+lemma condE:
+ assumes "(<b> \<and>* p) s"
+ obtains "b" and "p s"
+proof(atomize_elim)
+ from condD[OF assms]
+ show "b \<and> p s" .
+qed
+
+
+section {* Tactics *}
+
+ML {*
+ val trace_step = Attrib.setup_config_bool @{binding trace_step} (K false)
+ val trace_fwd = Attrib.setup_config_bool @{binding trace_fwd} (K false)
+*}
+
+
+ML {*
+ val tracing = (fn ctxt => fn str =>
+ if (Config.get ctxt trace_step) then tracing str else ())
+ fun not_pred p = fn s => not (p s)
+ fun break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2 $ _) =
+ (break_sep_conj t1) @ (break_sep_conj t2)
+ | break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2) =
+ (break_sep_conj t1) @ (break_sep_conj t2)
+ (* dig through eta exanded terms: *)
+ | break_sep_conj (Abs (_, _, t $ Bound 0)) = break_sep_conj t
+ | break_sep_conj t = [t];
+
+ val empty_env = (Vartab.empty, Vartab.empty)
+
+ fun match_env ctxt pat trm env =
+ Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env
+
+ fun match ctxt pat trm = match_env ctxt pat trm empty_env;
+
+ val inst = Envir.subst_term;
+
+ fun term_of_thm thm = thm |> prop_of |> HOLogic.dest_Trueprop
+
+ fun get_cmd ctxt code =
+ let val pat = term_of @{cpat "_:[(?cmd)]:_"}
+ val pat1 = term_of @{cpat "?cmd::tpg"}
+ val env = match ctxt pat code
+ in inst env pat1 end
+
+ fun is_seq_term (Const (@{const_name TSeq}, _) $ _ $ _) = true
+ | is_seq_term _ = false
+
+ fun get_hcmd (Const (@{const_name TSeq}, _) $ hcmd $ _) = hcmd
+ | get_hcmd hcmd = hcmd
+
+ fun last [a] = a |
+ last (a::b) = last b
+
+ fun but_last [a] = [] |
+ but_last (a::b) = a::(but_last b)
+
+ fun foldr f [] = (fn x => x) |
+ foldr f (x :: xs) = (f x) o (foldr f xs)
+
+ fun concat [] = [] |
+ concat (x :: xs) = x @ concat xs
+
+ fun match_any ctxt pats tm =
+ fold
+ (fn pat => fn b => (b orelse Pattern.matches
+ (ctxt |> Proof_Context.theory_of) (pat, tm)))
+ pats false
+
+ fun is_ps_term (Const (@{const_name ps}, _) $ _) = true
+ | is_ps_term _ = false
+
+ fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
+ fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt
+ fun pterm ctxt t =
+ t |> string_of_term ctxt |> tracing ctxt
+ fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt
+ fun string_for_term ctxt t =
+ Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
+ (print_mode_value ())) (Syntax.string_of_term ctxt) t
+ |> String.translate (fn c => if Char.isPrint c then str c else "")
+ |> Sledgehammer_Util.simplify_spaces
+ fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt
+ fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty
+ fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st)
+ (* aux end *)
+*}
+
+ML {* (* Functions specific to Hoare triples *)
+ fun get_pre ctxt t =
+ let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?P::tresource set \<Rightarrow> bool"}) end
+
+ fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)
+
+ fun get_post ctxt t =
+ let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?Q::tresource set \<Rightarrow> bool"}) end;
+
+ fun get_mid ctxt t =
+ let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;
+
+ fun is_pc_term (Const (@{const_name st}, _) $ _) = true
+ | is_pc_term _ = false
+
+ fun mk_pc_term x =
+ Const (@{const_name st}, @{typ "nat \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})
+
+ val sconj_term = term_of @{cterm "sep_conj::tassert \<Rightarrow> tassert \<Rightarrow> tassert"}
+
+ fun mk_ps_term x =
+ Const (@{const_name ps}, @{typ "int \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "int"})
+
+ fun atomic tac = ((SOLVED' tac) ORELSE' (K all_tac))
+
+ fun pure_sep_conj_ac_tac ctxt =
+ (auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
+ |> SELECT_GOAL)
+
+
+ fun potential_facts ctxt prop = Facts.could_unify (Proof_Context.facts_of ctxt)
+ ((Term.strip_all_body prop) |> Logic.strip_imp_concl);
+
+ fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) =>
+ (Method.insert_tac (potential_facts ctxt goal) i) THEN
+ (pure_sep_conj_ac_tac ctxt i));
+
+ fun sep_conj_ac_tac ctxt =
+ (SOLVED' (auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
+ |> SELECT_GOAL)) ORELSE' (atomic (some_fact_tac ctxt))
+*}
+
+ML {*
+type HoareTriple = {
+ binding: binding,
+ can_process: Proof.context -> term -> bool,
+ get_pre: Proof.context -> term -> term,
+ get_mid: Proof.context -> term -> term,
+ get_post: Proof.context -> term -> term,
+ is_pc_term: term -> bool,
+ mk_pc_term: string -> term,
+ sconj_term: term,
+ sep_conj_ac_tac: Proof.context -> int -> tactic,
+ hoare_seq1: thm,
+ hoare_seq2: thm,
+ pre_stren: thm,
+ post_weaken: thm,
+ frame_rule: thm
+}
+
+ val tm_triple = {binding = @{binding "tm_triple"},
+ can_process = can_process,
+ get_pre = get_pre,
+ get_mid = get_mid,
+ get_post = get_post,
+ is_pc_term = is_pc_term,
+ mk_pc_term = mk_pc_term,
+ sconj_term = sconj_term,
+ sep_conj_ac_tac = sep_conj_ac_tac,
+ hoare_seq1 = @{thm t_hoare_seq1},
+ hoare_seq2 = @{thm t_hoare_seq2},
+ pre_stren = @{thm tm.pre_stren},
+ post_weaken = @{thm tm.post_weaken},
+ frame_rule = @{thm tm.frame_rule}
+ }:HoareTriple
+*}
+
+ML {*
+ val _ = data_slot "HoareTriples" "HoareTriple list" "[]"
+*}
+
+ML {*
+ val _ = HoareTriples_store [tm_triple]
+*}
+
+ML {* (* aux1 functions *)
+
+fun focus_params t ctxt =
+ let
+ val (xs, Ts) =
+ split_list (Term.variant_frees t (Term.strip_all_vars t)); (*as they are printed :-*)
+ (* val (xs', ctxt') = variant_fixes xs ctxt; *)
+ (* val ps = xs' ~~ Ts; *)
+ val ps = xs ~~ Ts
+ val (_, ctxt'') = ctxt |> Variable.add_fixes xs
+ in ((xs, ps), ctxt'') end
+
+fun focus_concl ctxt t =
+ let
+ val ((xs, ps), ctxt') = focus_params t ctxt
+ val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t);
+ in (t' |> Logic.strip_imp_concl, ctxt') end
+
+ fun get_concl ctxt (i, state) =
+ nth (Thm.prems_of state) (i - 1)
+ |> focus_concl ctxt |> (fn (x, _) => x |> HOLogic.dest_Trueprop)
+ (* aux1 end *)
+*}
+
+ML {*
+ fun indexing xs = upto (0, length xs - 1) ~~ xs
+ fun select_idxs idxs ps =
+ map_index (fn (i, e) => if (member (op =) idxs i) then [e] else []) ps |> flat
+ fun select_out_idxs idxs ps =
+ map_index (fn (i, e) => if (member (op =) idxs i) then [] else [e]) ps |> flat
+ fun match_pres ctxt mf env ps qs =
+ let fun sel_match mf env [] qs = [(env, [])]
+ | sel_match mf env (p::ps) qs =
+ let val pm = map (fn (i, q) => [(i,
+ let val _ = tracing ctxt "Matching:"
+ val _ = [p, q] |>
+ (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val r = mf p q env
+ in r end)]
+ handle _ => (
+ let val _ = tracing ctxt "Failed matching:"
+ val _ = [p, q] |>
+ (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ in [] end)) qs |> flat
+ val r = pm |> map (fn (i, env') =>
+ let val qs' = filter_out (fn (j, q) => j = i) qs
+ in sel_match mf env' ps qs' |>
+ map (fn (env'', idxs) => (env'', i::idxs)) end)
+ |> flat
+ in r end
+ in sel_match mf env ps (indexing qs) end
+
+ fun provable tac ctxt goal =
+ let
+ val _ = tracing ctxt "Provable trying to prove:"
+ val _ = [goal] |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ in
+ (Goal.prove ctxt [] [] goal (fn {context, ...} => tac context 1); true)
+ handle exn => false
+ end
+ fun make_sense tac ctxt thm_assms env =
+ thm_assms |> map (inst env) |> forall (provable tac ctxt)
+*}
+
+ML {*
+ fun triple_for ctxt goal =
+ filter (fn trpl => (#can_process trpl) ctxt goal) (HoareTriples.get (Proof_Context.theory_of ctxt)) |> hd
+
+ fun step_terms_for thm goal ctxt =
+ let
+ val _ = tracing ctxt "This is the new version of step_terms_for!"
+ val _ = tracing ctxt "Tring to find triple processor: TP"
+ val TP = triple_for ctxt goal
+ val _ = #binding TP |> Binding.name_of |> tracing ctxt
+ fun mk_sep_conj tms = foldr (fn tm => fn rtm =>
+ ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
+ val thm_concl = thm |> prop_of
+ |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop
+ val thm_assms = thm |> prop_of
+ |> Logic.strip_imp_prems
+ val cmd_pat = thm_concl |> #get_mid TP ctxt |> get_cmd ctxt
+ val cmd = goal |> #get_mid TP ctxt |> get_cmd ctxt
+ val _ = tracing ctxt "matching command ... "
+ val _ = tracing ctxt "cmd_pat = "
+ val _ = pterm ctxt cmd_pat
+ val (hcmd, env1, is_last) = (cmd, match ctxt cmd_pat cmd, true)
+ handle exn => (cmd |> get_hcmd, match ctxt cmd_pat (cmd |> get_hcmd), false)
+ val _ = tracing ctxt "hcmd ="
+ val _ = pterm ctxt hcmd
+ val _ = tracing ctxt "match command succeed! "
+ val _ = tracing ctxt "pres ="
+ val pres = goal |> #get_pre TP ctxt |> break_sep_conj
+ val _ = pres |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "pre_pats ="
+ val pre_pats = thm_concl |> #get_pre TP ctxt |> inst env1 |> break_sep_conj
+ val _ = pre_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "post_pats ="
+ val post_pats = thm_concl |> #get_post TP ctxt |> inst env1 |> break_sep_conj
+ val _ = post_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "Calculating sols"
+ val sols = match_pres ctxt (match_env ctxt) env1 pre_pats pres
+ val _ = tracing ctxt "End calculating sols, sols ="
+ val _ = tracing ctxt (@{make_string} sols)
+ val _ = tracing ctxt "Calulating env2 and idxs"
+ val (env2, idxs) = filter (fn (env, idxs) => make_sense (#sep_conj_ac_tac TP)
+ ctxt thm_assms env) sols |> hd
+ val _ = tracing ctxt "End calculating env2 and idxs"
+ val _ = tracing ctxt "mterms ="
+ val mterms = select_idxs idxs pres |> map (inst env2)
+ val _ = mterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "nmterms = "
+ val nmterms = select_out_idxs idxs pres |> map (inst env2)
+ val _ = nmterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val pre_cond = pre_pats |> map (inst env2) |> mk_sep_conj
+ val post_cond = post_pats |> map (inst env2) |> mk_sep_conj
+ val post_cond_npc =
+ post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP))
+ |> (fn x => x @ nmterms) |> mk_sep_conj |> cterm_of (Proof_Context.theory_of ctxt)
+ fun mk_frame cond rest =
+ if rest = [] then cond else ((#sconj_term TP)$ cond) $ (mk_sep_conj rest)
+ val pre_cond_frame = mk_frame pre_cond nmterms |> cterm_of (Proof_Context.theory_of ctxt)
+ fun post_cond_frame j' = post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP))
+ |> (fn x => [#mk_pc_term TP j']@x) |> mk_sep_conj
+ |> (fn x => mk_frame x nmterms)
+ |> cterm_of (Proof_Context.theory_of ctxt)
+ val need_frame = (nmterms <> [])
+ in
+ (post_cond_npc,
+ pre_cond_frame,
+ post_cond_frame, need_frame, is_last)
+ end
+*}
+
+ML {*
+ fun step_tac ctxt thm i state =
+ let
+ val _ = tracing ctxt "This is the new version of step_tac"
+ val (goal, ctxt) = nth (Thm.prems_of state) (i - 1)
+ |> focus_concl ctxt
+ |> (apfst HOLogic.dest_Trueprop)
+ val _ = tracing ctxt "step_tac: goal = "
+ val _ = goal |> pterm ctxt
+ val _ = tracing ctxt "Start to calculate intermediate terms ... "
+ val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last)
+ = step_terms_for thm goal ctxt
+ val _ = tracing ctxt "Tring to find triple processor: TP"
+ val TP = triple_for ctxt goal
+ val _ = #binding TP |> Binding.name_of |> tracing ctxt
+ fun mk_sep_conj tms = foldr (fn tm => fn rtm =>
+ ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
+ val _ = tracing ctxt "Calculate intermediate terms finished! "
+ val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
+ val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
+ val _ = tracing ctxt "step_tac: post_cond_npc = "
+ val _ = post_cond_npc |> pcterm ctxt
+ val _ = tracing ctxt "step_tac: pre_cond_frame = "
+ val _ = pre_cond_frame |> pcterm ctxt
+ fun tac1 i state =
+ if is_last then (K all_tac) i state else
+ res_inst_tac ctxt [(("q", 0), post_cond_npc_str)]
+ (#hoare_seq1 TP) i state
+ fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)]
+ (#pre_stren TP) i state
+ fun foc_tac post_cond_frame ctxt i state =
+ let
+ val goal = get_concl ctxt (i, state)
+ val pc_term = goal |> #get_post TP ctxt |> break_sep_conj
+ |> filter (#is_pc_term TP) |> hd
+ val (_$Free(j', _)) = pc_term
+ val psd = post_cond_frame j'
+ val str_psd = psd |> string_for_cterm ctxt
+ val _ = tracing ctxt "foc_tac: psd = "
+ val _ = psd |> pcterm ctxt
+ in
+ res_inst_tac ctxt [(("q", 0), str_psd)]
+ (#post_weaken TP) i state
+ end
+ val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
+ val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
+ val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN'
+ (tac2 THEN' (K (print_tac "tac2 success"))) THEN'
+ ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN'
+ (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN'
+ (((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt)) THEN' (K (print_tac "rtac thm success"))) THEN'
+ (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
+ (* (#sep_conj_ac_tac TP ctxt) THEN' (#sep_conj_ac_tac TP ctxt) THEN' *)
+ (K prune_params_tac)
+ in
+ tac i state
+ end
+
+ fun unfold_cell_tac ctxt = (Local_Defs.unfold_tac ctxt @{thms one_def zero_def})
+ fun fold_cell_tac ctxt = (Local_Defs.fold_tac ctxt @{thms one_def zero_def})
+*}
+
+ML {*
+ fun sg_step_tac thms ctxt =
+ let val sg_step_tac' = (map (fn thm => attemp (step_tac ctxt thm)) thms)
+ (* @ [attemp (goto_tac ctxt)] *)
+ |> FIRST'
+ val sg_step_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_step_tac' THEN' (K (fold_cell_tac ctxt))
+ in
+ sg_step_tac' ORELSE' sg_step_tac''
+ end
+ fun steps_tac thms ctxt i = REPEAT (sg_step_tac thms ctxt i) THEN (prune_params_tac)
+*}
+
+ML {*
+ open StackMonad
+*}
+
+method_setup hstep = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ sg_step_tac (thms@(StepRules.get ctxt)) ctxt i)))
+ *}
+ "One step symbolic execution using step theorems."
+
+method_setup hsteps = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ steps_tac (thms@(StepRules.get ctxt)) ctxt i)))
+ *}
+ "Sequential symbolic execution using step theorems."
+
+ML {*
+ fun goto_tac ctxt thm i state =
+ let
+ val (goal, ctxt) = nth (Thm.prems_of state) (i - 1)
+ |> focus_concl ctxt |> (apfst HOLogic.dest_Trueprop)
+ val _ = tracing ctxt "goto_tac: goal = "
+ val _ = goal |> string_of_term ctxt |> tracing ctxt
+ val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last)
+ = step_terms_for thm goal ctxt
+ val _ = tracing ctxt "Tring to find triple processor: TP"
+ val TP = triple_for ctxt goal
+ val _ = #binding TP |> Binding.name_of |> tracing ctxt
+ val _ = tracing ctxt "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
+ val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
+ val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
+ val _ = tracing ctxt "goto_tac: post_cond_npc = "
+ val _ = post_cond_npc_str |> tracing ctxt
+ val _ = tracing ctxt "goto_tac: pre_cond_frame = "
+ val _ = pre_cond_frame_str |> tracing ctxt
+ fun tac1 i state =
+ if is_last then (K all_tac) i state else
+ res_inst_tac ctxt []
+ (#hoare_seq2 TP) i state
+ fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)]
+ (#pre_stren TP) i state
+ fun foc_tac post_cond_frame ctxt i state =
+ let
+ val goal = get_concl ctxt (i, state)
+ val pc_term = goal |> #get_post TP ctxt |> break_sep_conj
+ |> filter (#is_pc_term TP) |> hd
+ val (_$Free(j', _)) = pc_term
+ val psd = post_cond_frame j'
+ val str_psd = psd |> string_for_cterm ctxt
+ val _ = tracing ctxt "goto_tac: psd = "
+ val _ = str_psd |> tracing ctxt
+ in
+ res_inst_tac ctxt [(("q", 0), str_psd)]
+ (#post_weaken TP) i state
+ end
+ val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
+ val _ = tracing ctxt "goto_tac: starting to apply tacs"
+ val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
+ val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN'
+ (tac2 THEN' (K (print_tac "tac2 success"))) THEN'
+ ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN'
+ (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN'
+ ((((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt))) THEN'
+ (K (print_tac "rtac success"))
+ ) THEN'
+ (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
+ (K prune_params_tac)
+ in
+ tac i state
+ end
+*}
+
+ML {*
+ fun sg_goto_tac thms ctxt =
+ let val sg_goto_tac' = (map (fn thm => attemp (goto_tac ctxt thm)) thms)
+ |> FIRST'
+ val sg_goto_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_goto_tac' THEN' (K (fold_cell_tac ctxt))
+ in
+ sg_goto_tac' ORELSE' sg_goto_tac''
+ end
+ fun gotos_tac thms ctxt i = REPEAT (sg_goto_tac thms ctxt i) THEN (prune_params_tac)
+*}
+
+method_setup hgoto = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ sg_goto_tac (thms@(StepRules.get ctxt)) ctxt i)))
+ *}
+ "One step symbolic execution using goto theorems."
+
+subsection {* Tactic for forward reasoning *}
+
+ML {*
+fun mk_msel_rule ctxt conclusion idx term =
+let
+ val cjt_count = term |> break_sep_conj |> length
+ fun variants nctxt names = fold_map Name.variant names nctxt;
+
+ val (state, nctxt0) = Name.variant "s" (Variable.names_of ctxt);
+
+ fun sep_conj_prop cjts =
+ FunApp.fun_app_free
+ (FunApp.fun_app_foldr SepConj.sep_conj_term cjts) state
+ |> HOLogic.mk_Trueprop;
+
+ (* concatenate string and string of an int *)
+ fun conc_str_int str int = str ^ Int.toString int;
+
+ (* make the conjunct names *)
+ val (cjts, _) = ListExtra.range 1 cjt_count
+ |> map (conc_str_int "a") |> variants nctxt0;
+
+ fun skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2 $ y) =
+ (let val nm1 = take (length (break_sep_conj t1)) names
+ val nm2 = drop (length (break_sep_conj t1)) names
+ val t1' = skel_sep_conj nm1 t1
+ val t2' = skel_sep_conj nm2 t2
+ in (SepConj.sep_conj_term $ t1' $ t2' $ y) end)
+ | skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2) =
+ (let val nm1 = take (length (break_sep_conj t1)) names
+ val nm2 = drop (length (break_sep_conj t1)) names
+ val t1' = skel_sep_conj nm1 t1
+ val t2' = skel_sep_conj nm2 t2
+ in (SepConj.sep_conj_term $ t1' $ t2') end)
+ | skel_sep_conj names (Abs (x, y, t $ Bound 0)) =
+ let val t' = (skel_sep_conj names t)
+ val ty' = t' |> type_of |> domain_type
+ in (Abs (x, ty', (t' $ Bound 0))) end
+ | skel_sep_conj names t = Free (hd names, SepConj.sep_conj_term |> type_of |> domain_type);
+ val _ = tracing ctxt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
+ val oskel = skel_sep_conj cjts term;
+ val _ = tracing ctxt "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"
+ val ttt = oskel |> type_of
+ val _ = tracing ctxt "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
+ val orig = FunApp.fun_app_free oskel state |> HOLogic.mk_Trueprop
+ val _ = tracing ctxt "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu"
+ val is_selected = member (fn (x, y) => x = y) idx
+ val all_idx = ListExtra.range 0 cjt_count
+ val selected_idx = idx
+ val unselected_idx = filter_out is_selected all_idx
+ val selected = map (nth cjts) selected_idx
+ val unselected = map (nth cjts) unselected_idx
+
+ fun fun_app_foldr f [a,b] = FunApp.fun_app_free (FunApp.fun_app_free f a) b
+ | fun_app_foldr f [a] = Free (a, SepConj.sep_conj_term |> type_of |> domain_type)
+ | fun_app_foldr f (x::xs) = (FunApp.fun_app_free f x) $ (fun_app_foldr f xs)
+ | fun_app_foldr _ _ = raise Fail "fun_app_foldr";
+
+ val reordered_skel =
+ if unselected = [] then (fun_app_foldr SepConj.sep_conj_term selected)
+ else (SepConj.sep_conj_term $ (fun_app_foldr SepConj.sep_conj_term selected)
+ $ (fun_app_foldr SepConj.sep_conj_term unselected))
+
+ val reordered = FunApp.fun_app_free reordered_skel state |> HOLogic.mk_Trueprop
+ val goal = Logic.mk_implies
+ (if conclusion then (orig, reordered) else (reordered, orig));
+ val rule =
+ Goal.prove ctxt [] [] goal (fn _ =>
+ auto_tac (ctxt |> Simplifier.map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})))
+ |> Drule.export_without_context
+in
+ rule
+end
+*}
+
+lemma fwd_rule:
+ assumes "\<And> s . U s \<longrightarrow> V s"
+ shows "(U ** RR) s \<Longrightarrow> (V ** RR) s"
+ by (metis assms sep_globalise)
+
+ML {*
+ fun sg_sg_fwd_tac ctxt thm pos i state =
+ let
+
+ val tracing = (fn str =>
+ if (Config.get ctxt trace_fwd) then Output.tracing str else ())
+ fun pterm t =
+ t |> string_of_term ctxt |> tracing
+ fun pcterm ct = ct |> string_of_cterm ctxt |> tracing
+
+ fun atm thm =
+ let
+ (* val thm = thm |> Drule.forall_intr_vars *)
+ val res = thm |> cprop_of |> Object_Logic.atomize
+ val res' = Raw_Simplifier.rewrite_rule [res] thm
+ in res' end
+
+ fun find_idx ctxt pats terms =
+ let val result =
+ map (fn pat => (find_index (fn trm => ((match ctxt pat trm; true)
+ handle _ => false)) terms)) pats
+ in (assert_all (fn x => x >= 0) result (K "match of precondition failed"));
+ result
+ end
+
+ val goal = nth (Drule.cprems_of state) (i - 1) |> term_of
+ val _ = tracing "goal = "
+ val _ = goal |> pterm
+
+ val ctxt_orig = ctxt
+
+ val ((ps, goal), ctxt) = Variable.focus goal ctxt_orig
+
+ val prems = goal |> Logic.strip_imp_prems
+
+ val cprem = nth prems (pos - 1)
+ val (_ $ (the_prem $ _)) = cprem
+ val cjts = the_prem |> break_sep_conj
+ val thm_prems = thm |> cprems_of |> hd |> Thm.dest_arg |> Thm.dest_fun
+ val thm_assms = thm |> cprems_of |> tl |> map term_of
+ val thm_cjts = thm_prems |> term_of |> break_sep_conj
+ val thm_trm = thm |> prop_of
+
+ val _ = tracing "cjts = "
+ val _ = cjts |> map pterm
+ val _ = tracing "thm_cjts = "
+ val _ = thm_cjts |> map pterm
+
+ val _ = tracing "Calculating sols"
+ val sols = match_pres ctxt (match_env ctxt) empty_env thm_cjts cjts
+ val _ = tracing "End calculating sols, sols ="
+ val _ = tracing (@{make_string} sols)
+ val _ = tracing "Calulating env2 and idxs"
+ val (env2, idx) = filter (fn (env, idxs) => make_sense sep_conj_ac_tac ctxt thm_assms env) sols |> hd
+ val ([thm'_trm], ctxt') = thm_trm |> inst env2 |> single
+ |> (fn trms => Variable.import_terms true trms ctxt)
+ val thm'_prem = Logic.strip_imp_prems thm'_trm |> hd
+ val thm'_concl = Logic.strip_imp_concl thm'_trm
+ val thm'_prem = (Goal.prove ctxt' [] [thm'_prem] thm'_concl
+ (fn {context, prems = [prem]} =>
+ (rtac (prem RS thm) THEN_ALL_NEW (sep_conj_ac_tac ctxt)) 1))
+ val [thm'] = Variable.export ctxt' ctxt_orig [thm'_prem]
+ val trans_rule =
+ mk_msel_rule ctxt true idx the_prem
+ val _ = tracing "trans_rule = "
+ val _ = trans_rule |> cprop_of |> pcterm
+ val app_rule =
+ if (length cjts = length thm_cjts) then thm' else
+ ((thm' |> atm) RS @{thm fwd_rule})
+ val _ = tracing "app_rule = "
+ val _ = app_rule |> cprop_of |> pcterm
+ val print_tac = if (Config.get ctxt trace_fwd) then Tactical.print_tac else (K all_tac)
+ val the_tac = (dtac trans_rule THEN' (K (print_tac "dtac1 success"))) THEN'
+ ((dtac app_rule THEN' (K (print_tac "dtac2 success"))))
+in
+ (the_tac i state) handle _ => no_tac state
+end
+*}
+
+ML {*
+ fun sg_fwd_tac ctxt thm i state =
+ let
+ val goal = nth (Drule.cprems_of state) (i - 1)
+ val prems = goal |> term_of |> Term.strip_all_body |> Logic.strip_imp_prems
+ val posx = ListExtra.range 1 (length prems)
+ in
+ ((map (fn pos => attemp (sg_sg_fwd_tac ctxt thm pos)) posx) |> FIRST') i state
+ end
+
+ fun fwd_tac ctxt thms i state =
+ ((map (fn thm => sg_fwd_tac ctxt thm) thms) |> FIRST') i state
+*}
+
+method_setup fwd = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ fwd_tac ctxt (thms@(FwdRules.get ctxt)) i)))
+ *}
+ "Forward derivation of separation implication"
+
+text {* Testing the fwd tactic *}
+
+lemma ones_abs:
+ assumes "(ones u v \<and>* ones w x) s" "w = v + 1"
+ shows "ones u x s"
+ using assms(1) unfolding assms(2)
+proof(induct u v arbitrary: x s rule:ones_induct)
+ case (Base i j x s)
+ thus ?case by (auto elim!:condE)
+next
+ case (Step i j x s)
+ hence h: "\<And> x s. (ones (i + 1) j \<and>* ones (j + 1) x) s \<longrightarrow> ones (i + 1) x s"
+ by metis
+ hence "(ones (i + 1) x \<and>* one i) s"
+ by (rule fwd_rule, insert Step(3), auto simp:sep_conj_ac)
+ thus ?case
+ by (smt condD ones.simps sep_conj_commute)
+qed
+
+lemma one_abs: "(one m) s \<Longrightarrow> (ones m m) s"
+ by (smt cond_true_eq2 ones.simps)
+
+lemma ones_reps_abs:
+ assumes "ones m n s"
+ "m \<le> n"
+ shows "(reps m n [nat (n - m)]) s"
+ using assms
+ by simp
+
+lemma reps_reps'_abs:
+ assumes "(reps m n xs \<and>* zero u) s" "u = n + 1" "xs \<noteq> []"
+ shows "(reps' m u xs) s"
+ unfolding assms using assms
+ by (unfold reps'_def, simp)
+
+lemma reps'_abs:
+ assumes "(reps' m n xs \<and>* reps' u v ys) s" "u = n + 1"
+ shows "(reps' m v (xs @ ys)) s"
+ apply (unfold reps'_append, rule_tac x = u in EXS_intro)
+ by (insert assms, simp)
+
+lemmas abs_ones = one_abs ones_abs
+
+lemmas abs_reps' = ones_reps_abs reps_reps'_abs reps'_abs
+
+
+section {* Modular TM programming and verification *}
+
+lemma ones_false [simp]: "j < i - 1 \<Longrightarrow> (ones i j) = sep_false"
+ by (simp add:pasrt_def)
+
+lemma hoare_right_until_zero:
+ "\<lbrace>st i ** ps u ** ones u (v - 1) ** zero v \<rbrace>
+ i:[right_until_zero]:j
+ \<lbrace>st j ** ps v ** ones u (v - 1) ** zero v \<rbrace>"
+proof(unfold right_until_zero_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp, simp)
+ fix la
+ let ?body = "i :[ (if_zero la ; move_right ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps u \<and>* ones u (v - 1) \<and>* zero v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* ones u (v - 1) \<and>* zero v\<rbrace>" (is "?P u (v - 1) (ones u (v - 1))")
+ proof(induct "u" "v - 1" rule:ones_induct)
+ case (Base k)
+ moreover have "\<lbrace>st i \<and>* ps v \<and>* zero v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zero v\<rbrace>" by hsteps
+ ultimately show ?case by (auto intro!:tm.pre_condI simp:sep_conj_cond)
+ next
+ case (Step k)
+ moreover have "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
+ i :[ (if_zero ?j ; move_right ; jmp i) ]: ?j
+ \<lbrace>st ?j \<and>* ps v \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>"
+ proof -
+ have s1: "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
+ proof(cases "k + 1 \<ge> v")
+ case True
+ with Step(1) have "v = k + 1" by arith
+ thus ?thesis
+ apply(simp add: one_def)
+ by hsteps
+ next
+ case False
+ hence eq_ones: "ones (k + 1) (v - 1) =
+ (one (k + 1) \<and>* ones ((k + 1) + 1) (v - 1))"
+ by simp
+ show ?thesis
+ apply(simp only: eq_ones)
+ by hsteps
+ qed
+ note Step(2)[step]
+ have s2: "\<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
+ by hsteps
+ from tm.sequencing [OF s1 s2, step]
+ show ?thesis
+ by (auto simp:sep_conj_ac)
+ qed
+ ultimately show ?case by simp
+ qed
+qed
+
+lemma hoare_right_until_zero_gen[step]:
+ assumes "u = v" "w = x - 1"
+ shows "\<lbrace>st i ** ps u ** ones v w ** zero x \<rbrace>
+ i:[right_until_zero]:j
+ \<lbrace>st j ** ps x ** ones v w ** zero x \<rbrace>"
+ by (unfold assms, rule hoare_right_until_zero)
+
+lemma hoare_left_until_zero:
+ "\<lbrace>st i ** ps v ** zero u ** ones (u + 1) v \<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps u ** zero u ** ones (u + 1) v \<rbrace>"
+proof(unfold left_until_zero_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_zero la ; move_left ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* ones (u + 1) v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) v\<rbrace>"
+ proof(induct "u+1" v rule:ones_rev_induct)
+ case (Base k)
+ thus ?case
+ by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hstep)
+ next
+ case (Step k)
+ have "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
+ proof(rule tm.sequencing[where q =
+ "st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k"])
+ show "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
+ proof(induct "u + 1" "k - 1" rule:ones_rev_induct)
+ case Base with Step(1) have "k = u + 1" by arith
+ thus ?thesis
+ by (simp, hsteps)
+ next
+ case Step
+ show ?thesis
+ apply (unfold ones_rev[OF Step(1)], simp)
+ apply (unfold one_def)
+ by hsteps
+ qed
+ next
+ note Step(2) [step]
+ show "\<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" by hsteps
+ qed
+ thus ?case by (unfold ones_rev[OF Step(1)], simp)
+ qed
+qed
+
+lemma hoare_left_until_zero_gen[step]:
+ assumes "u = x" "w = v + 1"
+ shows "\<lbrace>st i ** ps u ** zero v ** ones w x \<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps v ** zero v ** ones w x \<rbrace>"
+ by (unfold assms, rule hoare_left_until_zero)
+
+lemma hoare_right_until_one:
+ "\<lbrace>st i ** ps u ** zeros u (v - 1) ** one v \<rbrace>
+ i:[right_until_one]:j
+ \<lbrace>st j ** ps v ** zeros u (v - 1) ** one v \<rbrace>"
+proof(unfold right_until_one_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_one la ; move_right ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps u \<and>* zeros u (v - 1) \<and>* one v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zeros u (v - 1) \<and>* one v\<rbrace>"
+ proof(induct u "v - 1" rule:zeros_induct)
+ case (Base k)
+ thus ?case
+ by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
+ next
+ case (Step k)
+ have "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+ proof(rule tm.sequencing[where q =
+ "st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v"])
+ show "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+ proof(induct "k + 1" "v - 1" rule:zeros_induct)
+ case Base
+ with Step(1) have eq_v: "k + 1 = v" by arith
+ from Base show ?thesis
+ apply (simp add:sep_conj_cond, intro tm.pre_condI, simp)
+ apply (hstep, clarsimp)
+ by hsteps
+ next
+ case Step
+ thus ?thesis
+ by (simp, hsteps)
+ qed
+ next
+ note Step(2)[step]
+ show "\<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+ by hsteps
+ qed
+ thus ?case by (auto simp: sep_conj_ac Step(1))
+ qed
+qed
+
+lemma hoare_right_until_one_gen[step]:
+ assumes "u = v" "w = x - 1"
+ shows
+ "\<lbrace>st i ** ps u ** zeros v w ** one x \<rbrace>
+ i:[right_until_one]:j
+ \<lbrace>st j ** ps x ** zeros v w ** one x \<rbrace>"
+ by (unfold assms, rule hoare_right_until_one)
+
+lemma hoare_left_until_one:
+ "\<lbrace>st i ** ps v ** one u ** zeros (u + 1) v \<rbrace>
+ i:[left_until_one]:j
+ \<lbrace>st j ** ps u ** one u ** zeros (u + 1) v \<rbrace>"
+proof(unfold left_until_one_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_one la ; move_left ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps v \<and>* one u \<and>* zeros (u + 1) v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* one u \<and>* zeros (u + 1) v\<rbrace>"
+ proof(induct u v rule: ones'.induct)
+ fix ia ja
+ assume h: "\<not> ja < ia \<Longrightarrow>
+ \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>"
+ show "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>"
+ proof(cases "ja < ia")
+ case False
+ note lt = False
+ from h[OF this] have [step]:
+ "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" .
+ show ?thesis
+ proof(cases "ja = ia")
+ case True
+ moreover
+ have "\<lbrace>st i \<and>* ps ja \<and>* one ja\<rbrace> ?body \<lbrace>st ?j \<and>* ps ja \<and>* one ja\<rbrace>"
+ by hsteps
+ ultimately show ?thesis by auto
+ next
+ case False
+ with lt have k1: "ia < ja" by auto
+ from zeros_rev[of "ja" "ia + 1"] this
+ have eq_zeros: "zeros (ia + 1) ja = (zeros (ia + 1) (ja - 1) \<and>* zero ja)"
+ by simp
+ have s1: "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
+ proof(cases "ia + 1 \<ge> ja")
+ case True
+ from k1 True have "ja = ia + 1" by arith
+ moreover have "\<lbrace>st i \<and>* ps (ia + 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>
+ i :[ (if_one ?j ; move_left ; jmp i) ]: ?j
+ \<lbrace>st i \<and>* ps (ia + 1 - 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>"
+ by (hsteps)
+ ultimately show ?thesis
+ by (simp)
+ next
+ case False
+ from zeros_rev[of "ja - 1" "ia + 1"] False
+ have k: "zeros (ia + 1) (ja - 1) =
+ (zeros (ia + 1) (ja - 1 - 1) \<and>* zero (ja - 1))"
+ by auto
+ show ?thesis
+ apply (unfold k, simp)
+ by hsteps
+ qed
+ have s2: "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
+ by hsteps
+ from tm.sequencing[OF s1 s2, step]
+ show ?thesis
+ apply (unfold eq_zeros)
+ by hstep
+ qed (* ccc *)
+ next
+ case True
+ thus ?thesis by (auto intro:tm.hoare_sep_false)
+ qed
+ qed
+qed
+
+lemma hoare_left_until_one_gen[step]:
+ assumes "u = x" "w = v + 1"
+ shows "\<lbrace>st i ** ps u ** one v ** zeros w x \<rbrace>
+ i:[left_until_one]:j
+ \<lbrace>st j ** ps v ** one v ** zeros w x \<rbrace>"
+ by (unfold assms, rule hoare_left_until_one)
+
+declare ones.simps[simp del]
+
+lemma reps_simps3: "ks \<noteq> [] \<Longrightarrow>
+ reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+by(case_tac ks, simp, simp add: reps.simps)
+
+lemma cond_eqI:
+ assumes h: "b \<Longrightarrow> r = s"
+ shows "(<b> ** r) = (<b> ** s)"
+proof(cases b)
+ case True
+ from h[OF this] show ?thesis by simp
+next
+ case False
+ thus ?thesis
+ by (unfold sep_conj_def set_ins_def pasrt_def, auto)
+qed
+
+lemma reps_rev: "ks \<noteq> []
+ \<Longrightarrow> reps i j (ks @ [k]) = (reps i (j - int (k + 1) - 1 ) ks \<and>*
+ zero (j - int (k + 1)) \<and>* ones (j - int k) j)"
+proof(induct ks arbitrary: i j)
+ case Nil
+ thus ?case by simp
+next
+ case (Cons a ks)
+ show ?case
+ proof(cases "ks = []")
+ case True
+ thus ?thesis
+ proof -
+ have eq_cond: "(j = i + int a + 2 + int k) = (-2 + (j - int k) = i + int a)" by auto
+ have "(<(-2 + (j - int k) = i + int a)> \<and>*
+ one i \<and>* ones (i + 1) (i + int a) \<and>*
+ zero (i + int a + 1) \<and>* one (i + int a + 2) \<and>* ones (3 + (i + int a)) (i + int a + 2 + int k))
+ =
+ (<(-2 + (j - int k) = i + int a)> \<and>* one i \<and>* ones (i + 1) (i + int a) \<and>*
+ zero (j - (1 + int k)) \<and>* one (j - int k) \<and>* ones (j - int k + 1) j)"
+ (is "(<?X> \<and>* ?L) = (<?X> \<and>* ?R)")
+ proof(rule cond_eqI)
+ assume h: "-2 + (j - int k) = i + int a"
+ hence eqs: "i + int a + 1 = j - (1 + int k)"
+ "i + int a + 2 = j - int k"
+ "3 + (i + int a) = j - int k + 1"
+ "(i + int a + 2 + int k) = j"
+ by auto
+ show "?L = ?R"
+ by (unfold eqs, auto simp:sep_conj_ac)
+ qed
+ with True
+ show ?thesis
+ apply (simp del:ones_simps reps.simps)
+ apply (simp add:sep_conj_cond eq_cond)
+ by (auto simp:sep_conj_ac)
+ qed
+ next
+ case False
+ from Cons(1)[OF False, of "i + int a + 2" j] this
+ show ?thesis
+ by(simp add: reps_simps3 sep_conj_ac)
+ qed
+qed
+
+lemma hoare_if_one_reps:
+ assumes nn: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps v ** reps u v ks\<rbrace>"
+proof(rule rev_exhaust[of ks])
+ assume "ks = []" with nn show ?thesis by simp
+next
+ fix y ys
+ assume eq_ks: "ks = ys @ [y]"
+ show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace> i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v ks\<rbrace>"
+ proof(cases "ys = []")
+ case False
+ have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace> i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
+ apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
+ by hstep
+ thus ?thesis
+ by (simp add:eq_ks)
+ next
+ case True
+ with eq_ks
+ show ?thesis
+ apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
+ by hstep
+ qed
+qed
+
+lemma hoare_if_one_reps_gen[step]:
+ assumes nn: "ks \<noteq> []" "u = w"
+ shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps u ** reps v w ks\<rbrace>"
+ by (unfold `u = w`, rule hoare_if_one_reps[OF `ks \<noteq> []`])
+
+lemma hoare_if_zero_ones_false[step]:
+ assumes "\<not> w < u" "v = w"
+ shows "\<lbrace>st i \<and>* ps v \<and>* ones u w\<rbrace>
+ i :[if_zero e]: j
+ \<lbrace>st j \<and>* ps v \<and>* ones u w\<rbrace>"
+ by (unfold `v = w` ones_rev[OF `\<not> w < u`], hstep)
+
+lemma hoare_left_until_double_zero_nil[step]:
+ assumes "u = v"
+ shows "\<lbrace>st i ** ps u ** zero v\<rbrace>
+ i:[left_until_double_zero]:j
+ \<lbrace>st j ** ps u ** zero v\<rbrace>"
+ apply (unfold `u = v` left_until_double_zero_def,
+ intro t_hoare_local t_hoare_label, clarsimp,
+ rule t_hoare_label_last, simp+)
+ by (hsteps)
+
+lemma hoare_if_zero_reps_false:
+ assumes nn: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps v ** reps u v ks\<rbrace>"
+proof(rule rev_exhaust[of ks])
+ assume "ks = []" with nn show ?thesis by simp
+next
+ fix y ys
+ assume eq_ks: "ks = ys @ [y]"
+ show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace> i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v ks\<rbrace>"
+ proof(cases "ys = []")
+ case False
+ have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace> i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
+ apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
+ by hstep
+ thus ?thesis
+ by (simp add:eq_ks)
+ next
+ case True
+ with eq_ks
+ show ?thesis
+ apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
+ by hstep
+ qed
+qed
+
+lemma hoare_if_zero_reps_false_gen[step]:
+ assumes "ks \<noteq> []" "u = w"
+ shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps u ** reps v w ks\<rbrace>"
+ by (unfold `u = w`, rule hoare_if_zero_reps_false[OF `ks \<noteq> []`])
+
+
+lemma hoare_if_zero_reps_false1:
+ assumes nn: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps u ** reps u v ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps u ** reps u v ks\<rbrace>"
+proof -
+ from nn obtain y ys where eq_ys: "ks = y#ys"
+ by (metis neq_Nil_conv)
+ show ?thesis
+ apply (unfold eq_ys)
+ by (case_tac ys, (simp, hsteps)+)
+qed
+
+lemma hoare_if_zero_reps_false1_gen[step]:
+ assumes nn: "ks \<noteq> []"
+ and h: "u = w"
+ shows "\<lbrace>st i ** ps u ** reps w v ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps u ** reps w v ks\<rbrace>"
+ by (unfold h, rule hoare_if_zero_reps_false1[OF `ks \<noteq> []`])
+
+lemma hoare_left_until_double_zero:
+ assumes h: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps v ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>
+ i:[left_until_double_zero]:j
+ \<lbrace>st j ** ps u ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>"
+proof(unfold left_until_double_zero_def,
+ intro t_hoare_local t_hoare_label, clarsimp,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_zero la ; left_until_zero ; move_left ; if_one i) ]: j"
+ let ?j = j
+ show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>"
+ using h
+ proof(induct ks arbitrary: v rule:rev_induct)
+ case Nil
+ with h show ?case by auto
+ next
+ case (snoc k ks)
+ show ?case
+ proof(cases "ks = []")
+ case True
+ have eq_ones:
+ "ones (u + 2) (u + 2 + int k) = (ones (u + 2) (u + 1 + int k) \<and>* one (u + 2 + int k))"
+ by (smt ones_rev)
+ have eq_ones': "(one (u + 2) \<and>* ones (3 + u) (u + 2 + int k)) =
+ (one (u + 2 + int k) \<and>* ones (u + 2) (u + 1 + int k))"
+ by (smt eq_ones ones.simps sep.mult_commute)
+ thus ?thesis
+ apply (insert True, simp del:ones_simps add:sep_conj_cond)
+ apply (rule tm.pre_condI, simp del:ones_simps, unfold eq_ones)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>* ps (u + 2 + int k) \<and>* zero u \<and>*
+ zero (u + 1) \<and>* ones (u + 2) (u + 2 + int k)"
+ in tm.pre_stren)
+ by (hsteps)
+ next
+ case False
+ from False have spt: "splited (ks @ [k]) ks [k]" by (unfold splited_def, auto)
+ show ?thesis
+ apply (unfold reps_splited[OF spt], simp del:ones_simps add:sep_conj_cond)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply (rule_tac q = "st i \<and>*
+ ps (1 + (u + int (reps_len ks))) \<and>*
+ zero u \<and>*
+ zero (u + 1) \<and>*
+ reps (u + 2) (1 + (u + int (reps_len ks))) ks \<and>*
+ zero (u + 2 + int (reps_len ks)) \<and>*
+ ones (3 + (u + int (reps_len ks))) (3 + (u + int (reps_len ks)) + int k)" in
+ tm.sequencing)
+ apply hsteps[1]
+ by (hstep snoc(1))
+ qed
+ qed
+qed
+
+lemma hoare_left_until_double_zero_gen[step]:
+ assumes h1: "ks \<noteq> []"
+ and h: "u = y" "w = v + 1" "x = v + 2"
+ shows "\<lbrace>st i ** ps u ** zero v ** zero w ** reps x y ks\<rbrace>
+ i:[left_until_double_zero]:j
+ \<lbrace>st j ** ps v ** zero v ** zero w ** reps x y ks\<rbrace>"
+ by (unfold h, rule hoare_left_until_double_zero[OF h1])
+
+lemma hoare_jmp_reps1:
+ assumes "ks \<noteq> []"
+ shows "\<lbrace> st i \<and>* ps u \<and>* reps u v ks\<rbrace>
+ i:[jmp e]:j
+ \<lbrace> st e \<and>* ps u \<and>* reps u v ks\<rbrace>"
+proof -
+ from assms obtain k ks' where Cons:"ks = k#ks'"
+ by (metis neq_Nil_conv)
+ thus ?thesis
+ proof(cases "ks' = []")
+ case True with Cons
+ show ?thesis
+ apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
+ by (hgoto hoare_jmp_gen)
+ next
+ case False
+ show ?thesis
+ apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
+ by (hgoto hoare_jmp[where p = u])
+ qed
+qed
+
+lemma hoare_jmp_reps1_gen[step]:
+ assumes "ks \<noteq> []" "u = v"
+ shows "\<lbrace> st i \<and>* ps u \<and>* reps v w ks\<rbrace>
+ i:[jmp e]:j
+ \<lbrace> st e \<and>* ps u \<and>* reps v w ks\<rbrace>"
+ by (unfold assms, rule hoare_jmp_reps1[OF `ks \<noteq> []`])
+
+lemma hoare_jmp_reps:
+ "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
+ i:[(jmp e; c)]:j
+ \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
+proof(cases "ks")
+ case Nil
+ thus ?thesis
+ by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
+next
+ case (Cons k ks')
+ thus ?thesis
+ proof(cases "ks' = []")
+ case True with Cons
+ show ?thesis
+ apply(simp add:sep_conj_cond, intro tm.pre_condI, simp)
+ by (hgoto hoare_jmp[where p = u])
+ next
+ case False
+ show ?thesis
+ apply (unfold `ks = k#ks'` reps_simp3[OF False], simp)
+ by (hgoto hoare_jmp[where p = u])
+ qed
+qed
+
+lemma hoare_shift_right_cons:
+ assumes h: "ks \<noteq> []"
+ shows "\<lbrace>st i \<and>* ps u ** reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>
+ i:[shift_right]:j
+ \<lbrace>st j ** ps (v + 2) ** zero u ** reps (u + 1) (v + 1) ks ** zero (v + 2) \<rbrace>"
+proof(unfold shift_right_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, auto)
+ fix la
+ have eq_ones: "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k)) =
+ (one (u + 1) \<and>* ones (2 + u) (u + 1 + int k))"
+ by (smt cond_true_eq2 ones.simps ones_rev sep.mult_assoc sep.mult_commute
+ sep.mult_left_commute sep_conj_assoc sep_conj_commute
+ sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 sep_conj_left_commute
+ sep_conj_trivial_strip2)
+ show "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ i :[ (if_zero la ;
+ write_zero ; move_right ; right_until_zero ; write_one ; move_right ; jmp i) ]: la
+ \<lbrace>st la \<and>* ps (v + 2) \<and>* zero u \<and>* reps (u + 1) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+ using h
+ proof(induct ks arbitrary:i u v)
+ case (Cons k ks)
+ thus ?case
+ proof(cases "ks = []")
+ let ?j = la
+ case True
+ let ?body = "i :[ (if_zero ?j ;
+ write_zero ;
+ move_right ;
+ right_until_zero ;
+ write_one ; move_right ; jmp i) ]: ?j"
+ have first_interation:
+ "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st i \<and>*
+ ps (u + int k + 2) \<and>*
+ one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>"
+ apply (hsteps)
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps (u + int k + 2) \<and>* zero u \<and>* one (u + 1) \<and>*
+ ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
+ proof(rule tm.sequencing)
+ show "\<lbrace>st i \<and>*
+ ps (u + int k + 2) \<and>*
+ one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>*
+ ps (u + int k + 2) \<and>*
+ zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
+ apply (hgoto hoare_if_zero_true_gen)
+ by (simp add:sep_conj_ac eq_ones)
+ qed
+ with True
+ show ?thesis
+ by (simp, simp only:sep_conj_cond, intro tm.pre_condI, auto simp:sep_conj_ac)
+ next
+ case False
+ let ?j = la
+ let ?body = "i :[ (if_zero ?j ;
+ write_zero ;
+ move_right ; right_until_zero ;
+ write_one ; move_right ; jmp i) ]: ?j"
+ have eq_ones':
+ "(one (u + int k + 1) \<and>*
+ ones (u + 1) (u + int k) \<and>*
+ zero u \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))
+ =
+ (zero u \<and>*
+ ones (u + 1) (u + int k) \<and>*
+ one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))"
+ by (simp add:eq_ones sep_conj_ac)
+ have "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* ones (u + 1) (u + int k) \<and>*
+ one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ apply (hsteps)
+ by (auto simp:sep_conj_ac, sep_cancel+, smt)
+ hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
+ zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+ proof(rule tm.sequencing)
+ have eq_ones':
+ "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 2)) =
+ (one (u + 1) \<and>* zero (2 + (u + int k)) \<and>* ones (2 + u) (u + 1 + int k))"
+ by (smt eq_ones sep.mult_assoc sep_conj_commute)
+ show "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>*
+ ones (u + 1) (u + int k) \<and>* one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>*
+ zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
+ zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+ apply (hsteps Cons.hyps)
+ by (simp add:sep_conj_ac eq_ones, sep_cancel+, smt)
+ qed
+ thus ?thesis
+ by (unfold reps_simp3[OF False], auto simp:sep_conj_ac)
+ qed
+ qed auto
+qed
+
+lemma hoare_shift_right_cons_gen[step]:
+ assumes h: "ks \<noteq> []"
+ and h1: "u = v" "x = w + 1" "y = w + 2"
+ shows "\<lbrace>st i \<and>* ps u ** reps v w ks \<and>* zero x \<and>* zero y \<rbrace>
+ i:[shift_right]:j
+ \<lbrace>st j ** ps y ** zero v ** reps (v + 1) x ks ** zero y\<rbrace>"
+ by (unfold h1, rule hoare_shift_right_cons[OF h])
+
+lemma shift_right_nil [step]:
+ assumes "u = v"
+ shows
+ "\<lbrace> st i \<and>* ps u \<and>* zero v \<rbrace>
+ i:[shift_right]:j
+ \<lbrace> st j \<and>* ps u \<and>* zero v \<rbrace>"
+ by (unfold assms shift_right_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+, hstep)
+
+
+text {*
+ @{text "clear_until_zero"} is useful to implement @{text "drag"}.
+*}
+
+lemma hoare_clear_until_zero[step]:
+ "\<lbrace>st i ** ps u ** ones u v ** zero (v + 1)\<rbrace>
+ i :[clear_until_zero]: j
+ \<lbrace>st j ** ps (v + 1) ** zeros u v ** zero (v + 1)\<rbrace> "
+proof(unfold clear_until_zero_def, intro t_hoare_local, rule t_hoare_label,
+ rule t_hoare_label_last, simp+)
+ let ?body = "i :[ (if_zero j ; write_zero ; move_right ; jmp i) ]: j"
+ show "\<lbrace>st i \<and>* ps u \<and>* ones u v \<and>* zero (v + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros u v \<and>* zero (v + 1)\<rbrace>"
+ proof(induct u v rule: zeros.induct)
+ fix ia ja
+ assume h: "\<not> ja < ia \<Longrightarrow>
+ \<lbrace>st i \<and>* ps (ia + 1) \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+ show "\<lbrace>st i \<and>* ps ia \<and>* ones ia ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros ia ja \<and>* zero (ja + 1)\<rbrace>"
+ proof(cases "ja < ia")
+ case True
+ thus ?thesis
+ by (simp add: ones.simps zeros.simps sep_conj_ac, simp only:sep_conj_cond,
+ intro tm.pre_condI, simp, hsteps)
+ next
+ case False
+ note h[OF False, step]
+ from False have ones_eq: "ones ia ja = (one ia \<and>* ones (ia + 1) ja)"
+ by(simp add: ones.simps)
+ from False have zeros_eq: "zeros ia ja = (zero ia \<and>* zeros (ia + 1) ja)"
+ by(simp add: zeros.simps)
+ have s1: "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+ proof(cases "ja < ia + 1")
+ case True
+ from True False have "ja = ia" by auto
+ thus ?thesis
+ apply(simp add: ones.simps)
+ by (hsteps)
+ next
+ case False
+ from False have "ones (ia + 1) ja = (one (ia + 1) \<and>* ones (ia + 1 + 1) ja)"
+ by(simp add: ones.simps)
+ thus ?thesis
+ by (simp, hsteps)
+ qed
+ have s2: "\<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+ by hsteps
+ from tm.sequencing[OF s1 s2] have
+ "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" .
+ thus ?thesis
+ unfolding ones_eq zeros_eq by(simp add: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_clear_until_zero_gen[step]:
+ assumes "u = v" "x = w + 1"
+ shows "\<lbrace>st i ** ps u ** ones v w ** zero x\<rbrace>
+ i :[clear_until_zero]: j
+ \<lbrace>st j ** ps x ** zeros v w ** zero x\<rbrace>"
+ by (unfold assms, rule hoare_clear_until_zero)
+
+declare ones_simps[simp del]
+
+lemma hoare_move_left_reps[step]:
+ assumes "ks \<noteq> []" "u = v"
+ shows
+ "\<lbrace>st i ** ps u ** reps v w ks\<rbrace>
+ i:[move_left]:j
+ \<lbrace>st j ** ps (u - 1) ** reps v w ks\<rbrace>"
+proof -
+ from `ks \<noteq> []` obtain y ys where eq_ks: "ks = y#ys"
+ by (metis neq_Nil_conv)
+ show ?thesis
+ apply (unfold assms eq_ks)
+ apply (case_tac ys, simp)
+ my_block
+ have "(ones v (v + int y)) = (one v \<and>* ones (v + 1) (v + int y))"
+ by (smt ones_step_simp)
+ my_block_end
+ apply (unfold this, hsteps)
+ by (simp add:this, hsteps)
+qed
+
+lemma hoare_shift_left_cons:
+ assumes h: "ks \<noteq> []"
+ shows "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>
+ i:[shift_left]:j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>"
+proof(unfold shift_left_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+, clarify, prune)
+ show " \<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ i :[ (if_zero j ;
+ move_left ;
+ write_one ;
+ right_until_zero ;
+ move_left ; write_zero ;
+ move_right ; move_right ; jmp i) ]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ using h
+ proof(induct ks arbitrary:i u v x)
+ case (Cons k ks)
+ thus ?case
+ proof(cases "ks = []")
+ let ?body = "i :[ (if_zero j ; move_left ; write_one ; right_until_zero ;
+ move_left ; write_zero ; move_right ; move_right ; jmp i) ]: j"
+ case True
+ have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* (one u \<and>* ones (u + 1) (u + int k)) \<and>*
+ zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (u + int k + 2) \<and>* (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
+ zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>"
+ apply(rule tm.sequencing [where q = "st i \<and>* ps (u + int k + 2) \<and>*
+ (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
+ zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)"])
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* ones (u - 1) (u + int k) \<and>*
+ zero (u + int k + 1) \<and>* zero (u + int k + 2)"
+ in tm.pre_stren)
+ apply (hsteps)
+ my_block
+ have "(ones (u - 1) (u + int k)) = (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
+ by (smt ones_rev)
+ my_block_end
+ apply (unfold this)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
+ apply (simp add:sep_conj_ac)+
+ apply (sep_cancel+)
+ apply (smt ones.simps sep.mult_left_commute sep_conj_commuteI this)
+ by hstep
+ with True show ?thesis
+ by (simp add:ones_simps, simp only:sep_conj_cond, intro tm.pre_condI, simp)
+ next
+ case False
+ let ?body = "i :[ (if_zero j ; move_left ; write_one ;right_until_zero ; move_left ;
+ write_zero ; move_right ; move_right ; jmp i) ]: j"
+ have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>*
+ zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>*
+ zero (u + int k) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
+ zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ apply (rule tm.sequencing[where q = "st i \<and>* ps (u + int k + 2) \<and>*
+ zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>*
+ zero (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* zero (u + int k)"])
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>*
+ ones (u - 1) (u + int k) \<and>*
+ zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)
+ " in tm.pre_stren)
+ apply hsteps
+ my_block
+ have "(ones (u - 1) (u + int k)) =
+ (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
+ by (smt ones_rev)
+ my_block_end
+ apply (unfold this)
+ apply (hsteps)
+ apply (sep_cancel+)
+ apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
+ apply (sep_cancel+)
+ apply (smt ones.simps this)
+ my_block
+ have eq_u: "1 + (u + int k) = u + int k + 1" by simp
+ from Cons.hyps[OF `ks \<noteq> []`, of i "u + int k + 2" Bk v, folded zero_def]
+ have "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
+ zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ by (simp add:eq_u)
+ my_block_end my_note hh[step] = this
+ by hsteps
+ thus ?thesis
+ by (unfold reps_simp3[OF False], auto simp:sep_conj_ac ones_simps)
+ qed
+ qed auto
+qed
+
+lemma hoare_shift_left_cons_gen[step]:
+ assumes h: "ks \<noteq> []"
+ "v = u - 1" "w = u" "y = x + 1" "z = x + 2"
+ shows "\<lbrace>st i \<and>* ps u \<and>* tm v vv \<and>* reps w x ks \<and>* tm y Bk \<and>* tm z Bk\<rbrace>
+ i:[shift_left]:j
+ \<lbrace>st j \<and>* ps z \<and>* reps v (x - 1) ks \<and>* zero x \<and>* zero y \<and>* zero z \<rbrace>"
+ by (unfold assms, fold zero_def, rule hoare_shift_left_cons[OF `ks \<noteq> []`])
+
+lemma hoare_bone_1_out:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bone_def, intro t_hoare_local)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma hoare_bone_1:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+proof -
+ note h[step]
+ show ?thesis
+ apply (unfold bone_def, intro t_hoare_local)
+ apply (rule t_hoare_label_last, auto)
+ apply hsteps
+ apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+ by hsteps
+qed
+
+lemma hoare_bone_2:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+apply (unfold bone_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), intro tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), simp add:sep_conj_cond, rule tm.code_condI, simp )
+by (rule h)
+
+lemma hoare_bone_2_out:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bone_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma hoare_bzero_1:
+ assumes h[step]:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+apply (unfold bzero_def, intro t_hoare_local)
+apply hsteps
+apply (rule_tac c = " ((c1 ; jmp l) ; TLabel la ; c2 ; TLabel l)" in t_hoare_label_last, auto)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension)
+by hsteps
+
+lemma hoare_bzero_1_out:
+ assumes h[step]:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bzero_def, intro t_hoare_local)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma hoare_bzero_2:
+ assumes h:
+ "\<And> i j. \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+ apply (unfold bzero_def, intro t_hoare_local)
+ apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
+ apply hsteps
+ apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+ apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+ apply (subst tassemble_to.simps(2), intro tm.code_exI)
+ apply (subst tassemble_to.simps(4))
+ apply (rule tm.code_condI, simp)
+ apply (subst tassemble_to.simps(2))
+ apply (rule tm.code_exI)
+ apply (subst tassemble_to.simps(4), simp add:sep_conj_cond)
+ apply (rule tm.code_condI, simp)
+ by (rule h)
+
+lemma hoare_bzero_2_out:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p\<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bzero_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma reps_len_split:
+ assumes "xs \<noteq> []" "ys \<noteq> []"
+ shows "reps_len (xs @ ys) = reps_len xs + reps_len ys + 1"
+ using assms
+proof(induct xs arbitrary:ys)
+ case (Cons x1 xs1)
+ show ?case
+ proof(cases "xs1 = []")
+ case True
+ thus ?thesis
+ by (simp add:reps_len_cons[OF `ys \<noteq> []`] reps_len_sg)
+ next
+ case False
+ hence " xs1 @ ys \<noteq> []" by simp
+ thus ?thesis
+ apply (simp add:reps_len_cons[OF `xs1@ys \<noteq> []`] reps_len_cons[OF `xs1 \<noteq> []`])
+ by (simp add: Cons.hyps[OF `xs1 \<noteq> []` `ys \<noteq> []`])
+ qed
+qed auto
+
+lemma hoare_skip_or_set_set:
+ "\<lbrace> st i \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace> st j \<and>* ps (u + 2) \<and>* one u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>"
+ apply(unfold skip_or_set_def)
+ apply(rule_tac q = "st j \<and>* ps (u + 2) \<and>* tm (u + 2) x \<and>* one u \<and>* zero (u + 1)"
+ in tm.post_weaken)
+ apply(rule hoare_bone_1)
+ apply hsteps
+ by (auto simp:sep_conj_ac, sep_cancel+, smt)
+
+lemma hoare_skip_or_set_set_gen[step]:
+ assumes "u = v" "w = v + 1" "x = v + 2"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero v \<and>* zero w \<and>* tm x xv\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace>st j \<and>* ps x \<and>* one v \<and>* zero w \<and>* tm x xv\<rbrace>"
+ by (unfold assms, rule hoare_skip_or_set_set)
+
+lemma hoare_skip_or_set_skip:
+ "\<lbrace> st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace> st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+proof -
+ show ?thesis
+ apply(unfold skip_or_set_def, unfold reps.simps, simp add:sep_conj_cond)
+ apply(rule tm.pre_condI, simp)
+ apply(rule_tac p = "st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>*
+ zero (u + int k + 1)"
+ in tm.pre_stren)
+ apply (rule_tac q = "st j \<and>* ps (u + int k + 2) \<and>*
+ one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1)
+ " in tm.post_weaken)
+ apply (rule hoare_bone_2)
+ apply (rule_tac p = " st i \<and>* ps u \<and>* ones u (u + int k) \<and>* zero (u + int k + 1)
+ " in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+, auto simp:sep_conj_ac ones_simps)
+ by (sep_cancel+, smt)
+ qed
+
+lemma hoare_skip_or_set_skip_gen[step]:
+ assumes "u = v" "x = w + 1"
+ shows "\<lbrace> st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace> st j \<and>* ps (w + 2) \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+ by (unfold assms, rule hoare_skip_or_set_skip)
+
+lemma hoare_if_reps_z_true:
+ assumes h: "k = 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+ apply (unfold reps.simps, simp add:sep_conj_cond)
+ apply (rule tm.pre_condI, simp add:h)
+ apply (unfold if_reps_z_def)
+ apply (simp add:ones_simps)
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
+ apply (rule hoare_bone_1_out)
+ by (hsteps)
+
+lemma hoare_if_reps_z_true_gen[step]:
+ assumes "k = 0" "u = v" "x = w + 1"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_z_true, simp)
+
+lemma hoare_if_reps_z_false:
+ assumes h: "k \<noteq> 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps u v [k]\<rbrace>"
+proof -
+ from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
+ show ?thesis
+ apply (unfold `k = Suc k'`)
+ apply (simp add:sep_conj_cond, rule tm.pre_condI, simp)
+ apply (unfold if_reps_z_def)
+ apply (simp add:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
+ ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
+ apply (rule_tac hoare_bone_2)
+ by (hsteps)
+qed
+
+lemma hoare_if_reps_z_false_gen[step]:
+ assumes h: "k \<noteq> 0" "u = v"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps v w [k]\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_z_false[OF `k \<noteq> 0`])
+
+lemma EXS_postI:
+ assumes "\<lbrace>P\<rbrace>
+ c
+ \<lbrace>Q x\<rbrace>"
+ shows "\<lbrace>P\<rbrace>
+ c
+ \<lbrace>EXS x. Q x\<rbrace>"
+by (metis EXS_intro assms tm.hoare_adjust)
+
+lemma hoare_if_reps_nz_true:
+ assumes h: "k \<noteq> 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps u v [k]\<rbrace>"
+proof -
+ from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
+ show ?thesis
+ apply (unfold `k = Suc k'`)
+ apply (unfold reps.simps, simp add:sep_conj_cond, rule tm.pre_condI, simp)
+ apply (unfold if_reps_nz_def)
+ apply (simp add:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
+ ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
+ apply (rule hoare_bzero_1_out)
+ by hsteps
+qed
+
+
+lemma hoare_if_reps_nz_true_gen[step]:
+ assumes h: "k \<noteq> 0" "u = v"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps v w [k]\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_nz_true[OF `k\<noteq> 0`])
+
+lemma hoare_if_reps_nz_false:
+ assumes h: "k = 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+ apply (simp add:h sep_conj_cond)
+ apply (rule tm.pre_condI, simp)
+ apply (unfold if_reps_nz_def)
+ apply (simp add:ones_simps)
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
+ apply (rule hoare_bzero_2)
+ by (hsteps)
+
+lemma hoare_if_reps_nz_false_gen[step]:
+ assumes h: "k = 0" "u = v" "x = w + 1"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_nz_false, simp)
+
+lemma hoare_skip_or_sets_set:
+ shows "\<lbrace>st i \<and>* ps u \<and>* zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
+ tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps (u + int (reps_len (replicate (Suc n) 0)) + 1) \<and>*
+ reps' u (u + int (reps_len (replicate (Suc n) 0))) (replicate (Suc n) 0) \<and>*
+ tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x \<rbrace>"
+proof(induct n arbitrary:i j u x)
+ case 0
+ from 0 show ?case
+ apply (simp add:reps'_def reps_len_def reps_ctnt_len_def reps_sep_len_def reps.simps)
+ apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
+ apply hsteps
+ by (auto simp:sep_conj_ac, smt cond_true_eq2 ones.simps sep_conj_left_commute)
+next
+ case (Suc n)
+ { fix n
+ have "listsum (replicate n (Suc 0)) = n"
+ by (induct n, auto)
+ } note eq_sum = this
+ have eq_len: "\<And>n. n \<noteq> 0 \<Longrightarrow> reps_len (replicate (Suc n) 0) = reps_len (replicate n 0) + 2"
+ by (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+ have eq_zero: "\<And> u v. (zeros u (u + int (v + 2))) =
+ (zeros u (u + (int v)) \<and>* zero (u + (int v) + 1) \<and>* zero (u + (int v) + 2))"
+ by (smt sep.mult_assoc zeros_rev)
+ hence eq_z:
+ "zeros u (u + int (reps_len (replicate (Suc (Suc n)) 0))) =
+ (zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
+ zero ((u + int (reps_len (replicate (Suc n) 0))) + 1) \<and>*
+ zero ((u + int (reps_len (replicate (Suc n) 0))) + 2))
+ " by (simp only:eq_len)
+ have hh: "\<And>x. (replicate (Suc (Suc n)) x) = (replicate (Suc n) x) @ [x]"
+ by (metis replicate_Suc replicate_append_same)
+ have hhh: "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
+ have eq_code:
+ "(i :[ skip_or_sets (Suc (Suc n)) ]: j) =
+ (i :[ (skip_or_sets (Suc n); skip_or_set) ]: j)"
+ proof(unfold skip_or_sets_def)
+ show "i :[ tpg_fold (replicate (Suc (Suc n)) skip_or_set) ]: j =
+ i :[ (tpg_fold (replicate (Suc n) skip_or_set) ; skip_or_set) ]: j"
+ apply (insert tpg_fold_app[OF hhh, of i j], unfold hh)
+ by (simp only:tpg_fold_sg)
+ qed
+ have "Suc n \<noteq> 0" by simp
+ show ?case
+ apply (unfold eq_z eq_code)
+ apply (hstep Suc(1))
+ apply (unfold eq_len[OF `Suc n \<noteq> 0`])
+ apply hstep
+ apply (auto simp:sep_conj_ac)[1]
+ apply (sep_cancel+, prune)
+ apply (fwd abs_ones)
+ apply ((fwd abs_reps')+, simp add:int_add_ac)
+ by (metis replicate_append_same)
+ qed
+
+lemma hoare_skip_or_sets_set_gen[step]:
+ assumes h: "p2 = p1"
+ "p3 = p1 + int (reps_len (replicate (Suc n) 0))"
+ "p4 = p3 + 1"
+ shows "\<lbrace>st i \<and>* ps p1 \<and>* zeros p2 p3 \<and>* tm p4 x\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps p4 \<and>* reps' p2 p3 (replicate (Suc n) 0) \<and>* tm p4 x\<rbrace>"
+ apply (unfold h)
+ by (rule hoare_skip_or_sets_set)
+
+declare reps.simps[simp del]
+
+lemma hoare_skip_or_sets_skip:
+ assumes h: "n < length ks"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n] \<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps (w+1) \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n]\<rbrace>"
+ using h
+proof(induct n arbitrary: i j u v w ks)
+ case 0
+ show ?case
+ apply (subst (1 5) reps'_def, simp add:sep_conj_cond, intro tm.pre_condI, simp)
+ apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
+ apply (unfold reps'_def, simp del:reps.simps)
+ apply hsteps
+ by (sep_cancel+, smt+)
+next
+ case (Suc n)
+ from `Suc n < length ks` have "n < length ks" by auto
+ note h = Suc(1) [OF this]
+ show ?case
+ my_block
+ from `Suc n < length ks`
+ have eq_take: "take (Suc n) ks = take n ks @ [ks!n]"
+ by (metis not_less_eq not_less_iff_gr_or_eq take_Suc_conv_app_nth)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
+ my_block
+ have "(i :[ skip_or_sets (Suc (Suc n)) ]: j) =
+ (i :[ (skip_or_sets (Suc n); skip_or_set )]: j)"
+ proof -
+ have eq_rep:
+ "(replicate (Suc (Suc n)) skip_or_set) = ((replicate (Suc n) skip_or_set) @ [skip_or_set])"
+ by (metis replicate_Suc replicate_append_same)
+ have "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
+ from tpg_fold_app[OF this]
+ show ?thesis
+ by (unfold skip_or_sets_def eq_rep, simp del:replicate.simps add:tpg_fold_sg)
+ qed
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j m
+ have "\<lbrace>st i \<and>* ps u \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>
+ i :[ (skip_or_sets (Suc n)) ]: j
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>"
+ apply (rule h[THEN tm.hoare_adjust])
+ by (sep_cancel+, auto)
+ my_block_end my_note h_c1 = this
+ my_block
+ fix j' j m
+ have "\<lbrace>st j' \<and>* ps (v + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>
+ j' :[ skip_or_set ]: j
+ \<lbrace>st j \<and>* ps (w + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>"
+ apply (unfold reps'_def, simp)
+ apply (rule hoare_skip_or_set_skip[THEN tm.hoare_adjust])
+ by (sep_cancel+, smt)+
+ my_block_end
+ apply (hstep h_c1 this)+
+ by ((fwd abs_reps'), simp, sep_cancel+)
+qed
+
+lemma hoare_skip_or_sets_skip_gen[step]:
+ assumes h: "n < length ks" "u = v" "x = w + 1"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n] \<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps (y+1) \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n]\<rbrace>"
+ by (unfold assms, rule hoare_skip_or_sets_skip[OF `n < length ks`])
+
+lemma fam_conj_interv_simp:
+ "(fam_conj {(ia::int)<..} p) = ((p (ia + 1)) \<and>* fam_conj {ia + 1 <..} p)"
+by (smt Collect_cong fam_conj_insert_simp greaterThan_def
+ greaterThan_eq_iff greaterThan_iff insertI1
+ insert_compr lessThan_iff mem_Collect_eq)
+
+lemma zeros_fam_conj:
+ assumes "u \<le> v"
+ shows "(zeros u v \<and>* fam_conj {v<..} zero) = fam_conj {u - 1<..} zero"
+proof -
+ have "{u - 1<..v} ## {v <..}" by (auto simp:set_ins_def)
+ from fam_conj_disj_simp[OF this, symmetric]
+ have "(fam_conj {u - 1<..v} zero \<and>* fam_conj {v<..} zero) = fam_conj ({u - 1<..v} + {v<..}) zero" .
+ moreover
+ from `u \<le> v` have eq_set: "{u - 1 <..} = {u - 1 <..v} + {v <..}" by (auto simp:set_ins_def)
+ moreover have "fam_conj {u - 1<..v} zero = zeros u v"
+ proof -
+ have "({u - 1<..v}) = ({u .. v})" by auto
+ moreover {
+ fix u v
+ assume "u \<le> (v::int)"
+ hence "fam_conj {u .. v} zero = zeros u v"
+ proof(induct rule:ones_induct)
+ case (Base i j)
+ thus ?case by auto
+ next
+ case (Step i j)
+ thus ?case
+ proof(cases "i = j")
+ case True
+ show ?thesis
+ by (unfold True, simp add:fam_conj_simps)
+ next
+ case False
+ with `i \<le> j` have hh: "i + 1 \<le> j" by auto
+ hence eq_set: "{i..j} = (insert i {i + 1 .. j})"
+ by (smt simp_from_to)
+ have "i \<notin> {i + 1 .. j}" by simp
+ from fam_conj_insert_simp[OF this, folded eq_set]
+ have "fam_conj {i..j} zero = (zero i \<and>* fam_conj {i + 1..j} zero)" .
+ with Step(2)[OF hh] Step
+ show ?thesis by simp
+ qed
+ qed
+ }
+ moreover note this[OF `u \<le> v`]
+ ultimately show ?thesis by simp
+ qed
+ ultimately show ?thesis by smt
+qed
+
+declare replicate.simps [simp del]
+
+lemma hoare_skip_or_sets_comb:
+ assumes "length ks \<le> n"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps ((v + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>*
+ reps' u (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
+ fam_conj {(v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
+proof(cases "ks = []")
+ case True
+ show ?thesis
+ apply (subst True, simp only:reps.simps sep_conj_cond)
+ apply (rule tm.pre_condI, simp)
+ apply (rule_tac p = "st i \<and>* ps (v + 1) \<and>*
+ zeros (v + 1) (v + 1 + int (reps_len (replicate (Suc n) 0))) \<and>*
+ tm (v + 2 + int (reps_len (replicate (Suc n) 0))) Bk \<and>*
+ fam_conj {(v + 2 + int (reps_len (replicate (Suc n) 0)))<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ apply (auto simp:sep_conj_ac)[1]
+ apply (auto simp:sep_conj_ac)[2]
+ my_block
+ from True have "(list_ext n ks) = (replicate (Suc n) 0)"
+ by (metis append_Nil diff_zero list.size(3) list_ext_def)
+ my_block_end my_note le_red = this
+ my_block
+ from True have "(reps_len ks) = 0"
+ by (metis reps_len_nil)
+ my_block_end
+ apply (unfold this le_red, simp)
+ my_block
+ have "v + 2 + int (reps_len (replicate (Suc n) 0)) =
+ v + int (reps_len (replicate (Suc n) 0)) + 2" by smt
+ my_block_end my_note eq_len = this
+ apply (unfold this)
+ apply (sep_cancel+)
+ apply (fold zero_def)
+ apply (subst fam_conj_interv_simp, simp)
+ apply (simp only:int_add_ac)
+ apply (simp only:sep_conj_ac, sep_cancel+)
+ my_block
+ have "v + 1 \<le> (2 + (v + int (reps_len (replicate (Suc n) 0))))" by simp
+ from zeros_fam_conj[OF this]
+ have "(fam_conj {v<..} zero) = (zeros (v + 1) (2 + (v + int (reps_len (replicate (Suc n) 0)))) \<and>*
+ fam_conj {2 + (v + int (reps_len (replicate (Suc n) 0)))<..} zero)"
+ by simp
+ my_block_end
+ apply (subst (asm) this, simp only:int_add_ac, sep_cancel+)
+ by (smt cond_true_eq2 sep.mult_assoc sep.mult_commute
+ sep.mult_left_commute sep_conj_assoc sep_conj_commute
+ sep_conj_left_commute zeros.simps zeros_rev)
+next
+ case False
+ show ?thesis
+ my_block
+ have "(i:[skip_or_sets (Suc n)]:j) =
+ (i:[(skip_or_sets (length ks); skip_or_sets (Suc n - length ks))]:j)"
+ apply (unfold skip_or_sets_def)
+ my_block
+ have "(replicate (Suc n) skip_or_set) =
+ (replicate (length ks) skip_or_set @ (replicate (Suc n - length ks) skip_or_set))"
+ by (smt assms replicate_add)
+ my_block_end
+ apply (unfold this, rule tpg_fold_app, simp add:False)
+ by (insert `length ks \<le> n`, simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ from False have "length ks = (Suc (length ks - 1))" by simp
+ my_block_end
+ apply (subst (1) this)
+ my_block
+ from False
+ have "(reps u v ks \<and>* fam_conj {v<..} zero) =
+ (reps' u (v + 1) ks \<and>* fam_conj {v+1<..} zero)"
+ apply (unfold reps'_def, simp)
+ by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps u \<and>* reps' u (v + 1) ks \<rbrace>
+ i :[ skip_or_sets (Suc (length ks - 1))]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps' u (v + 1) ks \<rbrace>"
+ my_block
+ have "ks = take (length ks - 1) ks @ [ks!(length ks - 1)]"
+ by (smt False drop_0 drop_eq_Nil id_take_nth_drop)
+ my_block_end my_note eq_ks = this
+ apply (subst (1) this)
+ apply (unfold reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
+ my_block
+ from False have "(length ks - Suc 0) < length ks"
+ by (smt `length ks = Suc (length ks - 1)`)
+ my_block_end
+ apply hsteps
+ apply (subst eq_ks, unfold reps'_append, simp only:sep_conj_exists)
+ by (rule_tac x = m in EXS_intro, simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix u n
+ have "(fam_conj {u <..} zero) =
+ (zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk \<and>* fam_conj {(u + int n + 2)<..} zero)"
+ my_block
+ have "u + 1 \<le> (u + int n + 2)" by auto
+ from zeros_fam_conj[OF this, symmetric]
+ have "fam_conj {u<..} zero = (zeros (u + 1) (u + int n + 2) \<and>* fam_conj {u + int n + 2<..} zero)"
+ by simp
+ my_block_end
+ apply (subst this)
+ my_block
+ have "(zeros (u + 1) (u + int n + 2)) =
+ ((zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk))"
+ by (smt zero_def zeros_rev)
+ my_block_end
+ by (unfold this, auto simp:sep_conj_ac)
+ my_block_end
+ apply (subst (1) this[of _ "(reps_len (replicate (Suc (n - length ks)) 0))"])
+ my_block
+ from `length ks \<le> n`
+ have "Suc n - length ks = Suc (n - length ks)" by auto
+ my_block_end my_note eq_suc = this
+ apply (subst this)
+ apply hsteps
+ apply (simp add: sep_conj_ac this, sep_cancel+)
+ apply (fwd abs_reps')+
+ my_block
+ have "(int (reps_len (replicate (Suc (n - length ks)) 0))) =
+ (int (reps_len (list_ext n ks)) - int (reps_len ks) - 1)"
+ apply (unfold list_ext_def eq_suc)
+ my_block
+ have "replicate (Suc (n - length ks)) 0 \<noteq> []" by simp
+ my_block_end
+ by (unfold reps_len_split[OF False this], simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ from `length ks \<le> n`
+ have "(ks @ replicate (Suc (n - length ks)) 0) = (list_ext n ks)"
+ by (unfold list_ext_def, simp)
+ my_block_end
+ apply (unfold this, simp)
+ apply (subst fam_conj_interv_simp, unfold zero_def, simp, simp add:int_add_ac sep_conj_ac)
+ by (sep_cancel+, smt)
+qed
+
+lemma hoare_skip_or_sets_comb_gen:
+ assumes "length ks \<le> n" "u = v" "w = x"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps v w ks \<and>* fam_conj {x<..} zero\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps ((x + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>*
+ reps' u (x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
+ fam_conj {(x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
+ by (unfold assms, rule hoare_skip_or_sets_comb[OF `length ks \<le> n`])
+
+lemma list_ext_tail_expand:
+ assumes h: "length ks \<le> a"
+ shows "list_ext a ks = take a (list_ext a ks) @ [(list_ext a ks)!a]"
+proof -
+ let ?l = "list_ext a ks"
+ from h have eq_len: "length ?l = Suc a"
+ by (smt list_ext_len_eq)
+ hence "?l \<noteq> []" by auto
+ hence "?l = take (length ?l - 1) ?l @ [?l!(length ?l - 1)]"
+ by (metis `length (list_ext a ks) = Suc a` diff_Suc_1 le_refl
+ lessI take_Suc_conv_app_nth take_all)
+ from this[unfolded eq_len]
+ show ?thesis by simp
+qed
+
+lemma reps'_nn_expand:
+ assumes "xs \<noteq> []"
+ shows "(reps' u v xs) = (reps u (v - 1) xs \<and>* zero v)"
+ by (metis assms reps'_def)
+
+lemma sep_conj_st1: "(p \<and>* st t \<and>* q) = (st t \<and>* p \<and>* q)"
+ by (simp only:sep_conj_ac)
+
+lemma sep_conj_st2: "(p \<and>* st t) = (st t \<and>* p)"
+ by (simp only:sep_conj_ac)
+
+lemma sep_conj_st3: "((st t \<and>* p) \<and>* r) = (st t \<and>* p \<and>* r)"
+ by (simp only:sep_conj_ac)
+
+lemma sep_conj_st4: "(EXS x. (st t \<and>* r x)) = ((st t) \<and>* (EXS x. r x))"
+ apply (unfold pred_ex_def, default+)
+ apply (safe)
+ apply (sep_cancel, auto)
+ by (auto elim!: sep_conjE intro!:sep_conjI)
+
+lemmas sep_conj_st = sep_conj_st1 sep_conj_st2 sep_conj_st3 sep_conj_st4
+
+lemma sep_conj_cond3 : "(<cond1> \<and>* <cond2>) = <(cond1 \<and> cond2)>"
+ by (smt cond_eqI cond_true_eq sep_conj_commute sep_conj_empty)
+
+lemma sep_conj_cond4 : "(<cond1> \<and>* <cond2> \<and>* r) = (<(cond1 \<and> cond2)> \<and>* r)"
+ by (metis Hoare_gen.sep_conj_cond3 Hoare_tm.sep_conj_cond3)
+
+lemmas sep_conj_cond = sep_conj_cond3 sep_conj_cond4 sep_conj_cond
+
+lemma hoare_left_until_zero_reps:
+ "\<lbrace>st i ** ps v ** zero u ** reps (u + 1) v [k]\<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps u ** zero u ** reps (u + 1) v [k]\<rbrace>"
+ apply (unfold reps.simps, simp only:sep_conj_cond)
+ apply (rule tm.pre_condI, simp)
+ by hstep
+
+lemma hoare_left_until_zero_reps_gen[step]:
+ assumes "u = x" "w = v + 1"
+ shows "\<lbrace>st i ** ps u ** zero v ** reps w x [k]\<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps v ** zero v ** reps w x [k]\<rbrace>"
+ by (unfold assms, rule hoare_left_until_zero_reps)
+
+lemma reps_lenE:
+ assumes "reps u v ks s"
+ shows "( <(v = u + int (reps_len ks) - 1)> \<and>* reps u v ks ) s"
+proof(rule condI)
+ from reps_len_correct[OF assms] show "v = u + int (reps_len ks) - 1" .
+next
+ from assms show "reps u v ks s" .
+qed
+
+lemma condI1:
+ assumes "p s" "b"
+ shows "(<b> \<and>* p) s"
+proof(rule condI[OF assms(2)])
+ from assms(1) show "p s" .
+qed
+
+lemma hoare_locate_set:
+ assumes "length ks \<le> n"
+ shows "\<lbrace>st i \<and>* zero (u - 1) \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* zero (u - 1) \<and>*
+ (EXS m w. ps m \<and>* reps' u (m - 1) (take n (list_ext n ks)) \<and>*
+ reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
+proof(cases "take n (list_ext n ks) = []")
+ case False
+ show ?thesis
+ apply (unfold locate_def)
+ apply (hstep hoare_skip_or_sets_comb_gen)
+ apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
+ apply (subst (1) reps'_append, simp add:sep_conj_exists)
+ apply (rule tm.precond_exI)
+ apply (subst (1) reps'_nn_expand[OF False])
+ apply (rule_tac p = "st j' \<and>* <(m = u + int (reps_len (take n (list_ext n ks))) + 1)> \<and>*
+ ps (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
+ ((reps u (m - 1 - 1) (take n (list_ext n ks)) \<and>* zero (m - 1)) \<and>*
+ reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)
+ [list_ext n ks ! n]) \<and>*
+ fam_conj
+ {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..}
+ zero \<and>*
+ zero (u - 1)"
+ in tm.pre_stren)
+ my_block
+ have "[list_ext n ks ! n] \<noteq> []" by simp
+ from reps'_nn_expand[OF this]
+ have "(reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) [list_ext n ks ! n]) =
+ (reps m (v + (int (reps_len (list_ext n ks)) - int (reps_len ks))) [list_ext n ks ! n] \<and>*
+ zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1))"
+ by simp
+ my_block_end
+ apply (subst this)
+ my_block
+ have "(fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} zero) =
+ (zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
+ fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2<..} zero)"
+ by (subst fam_conj_interv_simp, smt)
+ my_block_end
+ apply (unfold this)
+ apply (simp only:sep_conj_st)
+ apply hsteps
+ apply (auto simp:sep_conj_ac)[1]
+ apply (sep_cancel+)
+ apply (rule_tac x = m in EXS_intro)
+ apply (rule_tac x = "m + int (list_ext n ks ! n)" in EXS_intro)
+ apply (simp add:sep_conj_ac del:ones_simps, sep_cancel+)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule_tac condE, clarsimp, simp add:sep_conj_ac int_add_ac)
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (simp add:sep_conj_ac int_add_ac)
+ apply (sep_cancel+)
+ apply (subst (asm) reps'_def, subst fam_conj_interv_simp, subst fam_conj_interv_simp,
+ simp add:sep_conj_ac int_add_ac)
+ my_block
+ fix s
+ assume h: "(reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
+ (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s"
+ (is "?P s")
+ from reps_len_correct[OF this] list_ext_tail_expand[OF `length ks \<le> n`]
+ have hh: "v + (- int (reps_len ks) +
+ int (reps_len (take n (list_ext n ks) @ [list_ext n ks ! n]))) =
+ 1 + (u + int (reps_len (take n (list_ext n ks)))) +
+ int (reps_len [list_ext n ks ! n]) - 1"
+ by metis
+ have "[list_ext n ks ! n] \<noteq> []" by simp
+ from hh[unfolded reps_len_split[OF False this]]
+ have "v = u + (int (reps_len ks)) - 1"
+ by simp
+ from condI1[where p = ?P, OF h this]
+ have "(<(v = u + int (reps_len ks) - 1)> \<and>*
+ reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
+ (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" .
+ my_block_end
+ apply (fwd this, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
+ reps_len_sg)
+ apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
+ reps_len_sg)
+ by (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac)
+next
+ case True
+ show ?thesis
+ apply (unfold locate_def)
+ apply (hstep hoare_skip_or_sets_comb)
+ apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
+ apply (subst (1) reps'_append, simp add:sep_conj_exists)
+ apply (rule tm.precond_exI)
+ my_block
+ from True `length ks \<le> n`
+ have "ks = []" "n = 0"
+ apply (metis le0 le_antisym length_0_conv less_nat_zero_code list_ext_len take_eq_Nil)
+ by (smt True length_take list.size(3) list_ext_len)
+ my_block_end
+ apply (unfold True this)
+ apply (simp add:reps'_def list_ext_def reps.simps reps_len_def reps_sep_len_def
+ reps_ctnt_len_def
+ del:ones_simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply (subst fam_conj_interv_simp, simp add:sep_conj_st del:ones_simps)
+ apply (hsteps)
+ apply (auto simp:sep_conj_ac)[1]
+ apply (sep_cancel+)
+ apply (rule_tac x = "(v + int (listsum (replicate (Suc 0) (Suc 0))))" in EXS_intro)+
+ apply (simp only:sep_conj_ac, sep_cancel+)
+ apply (auto)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ by smt
+qed
+
+lemma hoare_locate_set_gen[step]:
+ assumes "length ks \<le> n"
+ "u = v - 1" "v = w" "x = y"
+ shows "\<lbrace>st i \<and>* zero u \<and>* ps v \<and>* reps w x ks \<and>* fam_conj {y<..} zero\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* zero u \<and>*
+ (EXS m w. ps m \<and>* reps' v (m - 1) (take n (list_ext n ks)) \<and>*
+ reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
+ by (unfold assms, rule hoare_locate_set[OF `length ks \<le> n`])
+
+lemma hoare_locate_skip:
+ assumes h: "n < length ks"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* ps v \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>"
+proof -
+ show ?thesis
+ apply (unfold locate_def)
+ apply hsteps
+ apply (subst (2 4) reps'_def, simp add:reps.simps sep_conj_cond del:ones_simps)
+ apply (intro tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (case_tac "(take n ks) = []", simp add:reps'_def sep_conj_cond del:ones_simps)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (simp del:ones_simps add:reps'_def)
+ by hsteps
+qed
+
+
+lemma hoare_locate_skip_gen[step]:
+ assumes "n < length ks"
+ "v = u - 1" "w = u" "x = y - 1" "z' = z + 1"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* ps y \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>"
+ by (unfold assms, fold zero_def, rule hoare_locate_skip[OF `n < length ks`])
+
+lemma ones_int_expand: "(ones m (m + int k)) = (one m \<and>* ones (m + 1) (m + int k))"
+ by (simp add:ones_simps)
+
+lemma reps_splitedI:
+ assumes h1: "(reps u v ks1 \<and>* zero (v + 1) \<and>* reps (v + 2) w ks2) s"
+ and h2: "ks1 \<noteq> []"
+ and h3: "ks2 \<noteq> []"
+ shows "(reps u w (ks1 @ ks2)) s"
+proof -
+ from h2 h3
+ have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
+ from h1 obtain s1 where
+ "(reps u v ks1) s1" by (auto elim:sep_conjE)
+ from h1 obtain s2 where
+ "(reps (v + 2) w ks2) s2" by (auto elim:sep_conjE)
+ from reps_len_correct[OF `(reps u v ks1) s1`]
+ have eq_v: "v = u + int (reps_len ks1) - 1" .
+ from reps_len_correct[OF `(reps (v + 2) w ks2) s2`]
+ have eq_w: "w = v + 2 + int (reps_len ks2) - 1" .
+ from h1
+ have "(reps u (u + int (reps_len ks1) - 1) ks1 \<and>*
+ zero (u + int (reps_len ks1)) \<and>* reps (u + int (reps_len ks1) + 1) w ks2) s"
+ apply (unfold eq_v eq_w[unfolded eq_v])
+ by (sep_cancel+, smt)
+ thus ?thesis
+ by(unfold reps_splited[OF `splited (ks1 @ ks2) ks1 ks2`], simp)
+qed
+
+lemma reps_sucI:
+ assumes h: "(reps u v (xs@[x]) \<and>* one (1 + v)) s"
+ shows "(reps u (1 + v) (xs@[Suc x])) s"
+proof(cases "xs = []")
+ case True
+ from h obtain s' where "(reps u v (xs@[x])) s'" by (auto elim:sep_conjE)
+ from reps_len_correct[OF this] have " v = u + int (reps_len (xs @ [x])) - 1" .
+ with True have eq_v: "v = u + int x" by (simp add:reps_len_sg)
+ have eq_one1: "(one (1 + (u + int x)) \<and>* ones (u + 1) (u + int x)) = ones (u + 1) (1 + (u + int x))"
+ by (smt ones_rev sep.mult_commute)
+ from h show ?thesis
+ apply (unfold True, simp add:eq_v reps.simps sep_conj_cond sep_conj_ac ones_rev)
+ by (sep_cancel+, simp add: eq_one1, smt)
+next
+ case False
+ from h obtain s1 s2 where hh: "(reps u v (xs@[x])) s1" "s = s1 + s2" "s1 ## s2" "one (1 + v) s2"
+ by (auto elim:sep_conjE)
+ from hh(1)[unfolded reps_rev[OF False]]
+ obtain s11 s12 s13 where hhh:
+ "(reps u (v - int (x + 1) - 1) xs) s11"
+ "(zero (v - int (x + 1))) s12" "(ones (v - int x) v) s13"
+ "s11 ## (s12 + s13)" "s12 ## s13" "s1 = s11 + s12 + s13"
+ apply (atomize_elim)
+ apply(elim sep_conjE)+
+ apply (rule_tac x = xa in exI)
+ apply (rule_tac x = xaa in exI)
+ apply (rule_tac x = ya in exI)
+ apply (intro conjI, assumption+)
+ by (auto simp:set_ins_def)
+ show ?thesis
+ proof(rule reps_splitedI[where v = "(v - int (x + 1) - 1)"])
+ show "(reps u (v - int (x + 1) - 1) xs \<and>* zero (v - int (x + 1) - 1 + 1) \<and>*
+ reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) s"
+ proof(rule sep_conjI)
+ from hhh(1) show "reps u (v - int (x + 1) - 1) xs s11" .
+ next
+ show "(zero (v - int (x + 1) - 1 + 1) \<and>* reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) (s12 + (s13 + s2))"
+ proof(rule sep_conjI)
+ from hhh(2) show "zero (v - int (x + 1) - 1 + 1) s12" by smt
+ next
+ from hh(4) hhh(3)
+ show "reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x] (s13 + s2)"
+ apply (simp add:reps.simps del:ones_simps add:ones_rev)
+ by (smt hh(3) hh(4) hhh(4) hhh(5) hhh(6) sep_add_disjD sep_conjI sep_disj_addI1)
+ next
+ show "s12 ## s13 + s2"
+ by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_add_commute sep_add_disjD
+ sep_add_disjI2 sep_disj_addD sep_disj_addD1 sep_disj_addI1 sep_disj_commuteI)
+ next
+ show "s12 + (s13 + s2) = s12 + (s13 + s2)" by metis
+ qed
+ next
+ show "s11 ## s12 + (s13 + s2)"
+ by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_disj_addD1 sep_disj_addI1 sep_disj_addI3)
+ next
+ show "s = s11 + (s12 + (s13 + s2))"
+ by (smt hh(2) hh(3) hhh(4) hhh(5) hhh(6) sep_add_assoc sep_add_commute
+ sep_add_disjD sep_add_disjI2 sep_disj_addD1 sep_disj_addD2
+ sep_disj_addI1 sep_disj_addI3 sep_disj_commuteI)
+ qed
+ next
+ from False show "xs \<noteq> []" .
+ next
+ show "[Suc x] \<noteq> []" by simp
+ qed
+qed
+
+lemma cond_expand: "(<cond> \<and>* p) s = (cond \<and> (p s))"
+ by (metis (full_types) condD pasrt_def sep_conj_commuteI
+ sep_conj_sep_emptyI sep_empty_def sep_globalise)
+
+lemma ones_rev1:
+ assumes "\<not> (1 + n) < m"
+ shows "(ones m n \<and>* one (1 + n)) = (ones m (1 + n))"
+ by (insert ones_rev[OF assms, simplified], simp)
+
+lemma reps_one_abs:
+ assumes "(reps u v [k] \<and>* one w) s"
+ "w = v + 1"
+ shows "(reps u w [Suc k]) s"
+ using assms unfolding assms
+ apply (simp add:reps.simps sep_conj_ac)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, simp)
+ by (simp add:ones_rev sep_conj_ac, sep_cancel+, smt)
+
+lemma reps'_reps_abs:
+ assumes "(reps' u v xs \<and>* reps w x ys) s"
+ "w = v + 1" "ys \<noteq> []"
+ shows "(reps u x (xs@ys)) s"
+proof(cases "xs = []")
+ case False
+ with assms
+ have h: "splited (xs@ys) xs ys" by (simp add:splited_def)
+ from assms(1)[unfolded assms(2)]
+ show ?thesis
+ apply (unfold reps_splited[OF h])
+ apply (insert False, unfold reps'_def, simp)
+ apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+)
+ by (erule condE, simp)
+next
+ case True
+ with assms
+ show ?thesis
+ apply (simp add:reps'_def)
+ by (erule condE, simp)
+qed
+
+lemma reps_one_abs1:
+ assumes "(reps u v (xs@[k]) \<and>* one w) s"
+ "w = v + 1"
+ shows "(reps u w (xs@[Suc k])) s"
+proof(cases "xs = []")
+ case True
+ with assms reps_one_abs
+ show ?thesis by simp
+next
+ case False
+ hence "splited (xs@[k]) xs [k]" by (simp add:splited_def)
+ from assms(1)[unfolded reps_splited[OF this] assms(2)]
+ show ?thesis
+ apply (fwd reps_one_abs)
+ apply (fwd reps_reps'_abs)
+ apply (fwd reps'_reps_abs)
+ by (simp add:assms)
+qed
+
+lemma tm_hoare_inc00:
+ assumes h: "a < length ks \<and> ks ! a = v"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Inc a ]: j
+ \<lbrace>st j \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
+ fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
+ (is "\<lbrace> ?P \<rbrace> ?code \<lbrace> ?Q \<rbrace>")
+proof -
+ from h have "a < length ks" "ks ! a = v" by auto
+ from list_nth_expand[OF `a < length ks`]
+ have eq_ks: "ks = take a ks @ [ks!a] @ drop (Suc a) ks" .
+ from `a < length ks` have "ks \<noteq> []" by auto
+ hence "(reps u ia ks \<and>* zero (ia + 1)) = reps' u (ia + 1) ks"
+ by (simp add:reps'_def)
+ also from eq_ks have "\<dots> = reps' u (ia + 1) (take a ks @ [ks!a] @ drop (Suc a) ks)" by simp
+ also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ia + 1) (ks ! a # drop (Suc a) ks))"
+ by (simp add:reps'_append)
+ also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ia + 1) ([ks ! a] @ drop (Suc a) ks))"
+ by simp
+ also have "\<dots> = (EXS m ma. reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks))"
+ by (simp only:reps'_append sep_conj_exists)
+ finally have eq_s: "(reps u ia ks \<and>* zero (ia + 1)) = \<dots>" .
+ { fix m ma
+ have eq_u: "-1 + u = u - 1" by smt
+ have " \<lbrace>st i \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ (reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks)) \<and>*
+ fam_conj {ia + 1<..} zero\<rbrace>
+ i :[ Inc a ]: j
+ \<lbrace>st j \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
+ proof(cases "(drop (Suc a) ks) = []")
+ case True
+ { fix hc
+ have eq_1: "(1 + (m + int (ks ! a))) = (m + int (ks ! a) + 1)" by simp
+ have eq_2: "take a ks @ [Suc (ks ! a)] = ks[a := Suc v]"
+ apply (subst (3) eq_ks, unfold True, simp)
+ by (metis True append_Nil2 eq_ks h upd_conv_take_nth_drop)
+ assume h: "(fam_conj {1 + (m + int (ks ! a))<..} zero \<and>*
+ reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)])) hc"
+ hence "(fam_conj {m + int (ks ! a) + 1<..} zero \<and>* reps u (m + int (ks ! a) + 1) (ks[a := Suc v])) hc"
+ by (unfold eq_1 eq_2 , sep_cancel+)
+ } note eq_fam = this
+ show ?thesis
+ apply (unfold Inc_def, subst (3) reps'_def, simp add:True sep_conj_cond)
+ apply (intro tm.pre_condI, simp)
+ apply (subst fam_conj_interv_simp, simp, subst (3) zero_def)
+ apply hsteps
+ apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "
+ st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* zero (u - 1) \<and>* zero (u - 2) \<and>*
+ reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks!a)])
+ \<and>* fam_conj {1 + (m + int (ks ! a))<..} zero
+ " in tm.pre_stren)
+ apply (hsteps)
+ apply (simp add:sep_conj_ac list_ext_lt[OF `a < length ks`], sep_cancel+)
+ apply (fwd eq_fam, sep_cancel+)
+ apply (simp del:ones_simps add:sep_conj_ac)
+ apply (sep_cancel+, prune)
+ apply ((fwd abs_reps')+, simp)
+ apply (fwd reps_one_abs abs_reps')+
+ apply (subst (asm) reps'_def, simp)
+ by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
+ next
+ case False
+ then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+ by (metis append_Cons append_Nil list.exhaust)
+ from `a < length ks`
+ have eq_ks: "ks[a := Suc v] = (take a ks @ [Suc (ks ! a)]) @ (drop (Suc a) ks)"
+ apply (fold `ks!a = v`)
+ by (metis append_Cons append_Nil append_assoc upd_conv_take_nth_drop)
+ show ?thesis
+ apply (unfold Inc_def)
+ apply (unfold Inc_def eq_drop reps'_append, simp add:sep_conj_exists del:ones_simps)
+ apply (rule tm.precond_exI, subst (2) reps'_sg)
+ apply (subst sep_conj_cond)+
+ apply (subst (1) ones_int_expand)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ (* apply (hsteps hoare_locate_skip_gen[OF `a < length ks`]) *)
+ apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>*
+ ps (2 + (m + int (ks ! a))) \<and>*
+ reps (2 + (m + int (ks ! a))) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+ reps u (m + int (ks ! a)) (take a ks @ [ks!a]) \<and>* zero (1 + (m + int (ks ! a))) \<and>*
+ zero (u - 2) \<and>* zero (u - 1) \<and>* fam_conj {ia + 2<..} zero
+ " in tm.pre_stren)
+ apply (hsteps hoare_shift_right_cons_gen[OF False]
+ hoare_left_until_double_zero_gen[OF False])
+ apply (rule_tac p =
+ "st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>*
+ zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)]) \<and>*
+ zero (2 + (m + int (ks ! a))) \<and>*
+ reps (3 + (m + int (ks ! a))) (ia + 1) (drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero
+ " in tm.pre_stren)
+ apply (hsteps)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (unfold list_ext_lt[OF `a < length ks`], simp)
+ apply (fwd abs_reps')+
+ apply(fwd reps'_reps_abs)
+ apply (subst eq_ks, simp)
+ apply (sep_cancel+)
+ apply (thin_tac "mb = 4 + (m + (int (ks ! a) + int k'))")
+ apply (thin_tac "ma = 2 + (m + int (ks ! a))", prune)
+ apply (simp add: int_add_ac sep_conj_ac, sep_cancel+)
+ apply (fwd reps_one_abs1, subst fam_conj_interv_simp, simp, sep_cancel+, smt)
+ apply (fwd abs_ones)+
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (unfold eq_drop, simp add:int_add_ac sep_conj_ac)
+ apply (sep_cancel+)
+ apply (fwd reps'_abs[where xs = "take a ks"])
+ apply (fwd reps'_abs[where xs = "[k']"])
+ apply (unfold reps'_def, simp add:int_add_ac sep_conj_ac)
+ apply (sep_cancel+)
+ by (subst (asm) fam_conj_interv_simp, simp, smt)
+ qed
+ } note h = this
+ show ?thesis
+ apply (subst fam_conj_interv_simp)
+ apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ (reps u ia ks \<and>* zero (ia + 1)) \<and>* fam_conj {ia + 1<..} zero"
+ in tm.pre_stren)
+ apply (unfold eq_s, simp only:sep_conj_exists)
+ apply (intro tm.precond_exI h)
+ by (sep_cancel+, unfold eq_s, simp)
+qed
+
+declare ones_simps [simp del]
+
+lemma tm_hoare_inc01:
+ assumes "length ks \<le> a \<and> v = 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Inc a ]: j
+ \<lbrace>st j \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
+ fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
+proof -
+ from assms have "length ks \<le> a" "v = 0" by auto
+ show ?thesis
+ apply (rule_tac p = "
+ st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* (reps u ia ks \<and>* <(ia = u + int (reps_len ks) - 1)>) \<and>*
+ fam_conj {ia<..} zero
+ " in tm.pre_stren)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply (unfold Inc_def)
+ apply hstep
+ (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
+ apply (simp only:sep_conj_exists)
+ apply (intro tm.precond_exI)
+ my_block
+ fix m w
+ have "reps m w [list_ext a ks ! a] =
+ (ones m (m + int (list_ext a ks ! a)) \<and>* <(w = m + int (list_ext a ks ! a))>)"
+ by (simp add:reps.simps)
+ my_block_end
+ apply (unfold this)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply (subst fam_conj_interv_simp)
+ apply (hsteps)
+ apply (subst fam_conj_interv_simp, simp)
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (m + int (list_ext a ks ! a) + 1) \<and>*
+ zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (m + int (list_ext a ks ! a) + 1)
+ ((take a (list_ext a ks))@[Suc (list_ext a ks ! a)]) \<and>*
+ fam_conj {(m + int (list_ext a ks ! a) + 1)<..} zero
+ " in tm.pre_stren)
+ apply (hsteps)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (unfold `v = 0`, prune)
+ my_block
+ from `length ks \<le> a` have "list_ext a ks ! a = 0"
+ by (metis le_refl list_ext_tail)
+ from `length ks \<le> a` have "a < length (list_ext a ks)"
+ by (metis list_ext_len)
+ from reps_len_suc[OF this]
+ have eq_len: "int (reps_len (list_ext a ks)) =
+ int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1"
+ by smt
+ fix m w hc
+ assume h: "(fam_conj {m + int (list_ext a ks ! a) + 1<..} zero \<and>*
+ reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
+ hc"
+ then obtain s where
+ "(reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) s"
+ by (auto dest!:sep_conjD)
+ from reps_len_correct[OF this]
+ have "m = u + int (reps_len (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
+ - int (list_ext a ks ! a) - 2" by smt
+ from h [unfolded this]
+ have "(fam_conj {u + int (reps_len (list_ext a ks))<..} zero \<and>*
+ reps u (u + int (reps_len (list_ext a ks))) (list_ext a ks[a := Suc 0]))
+ hc"
+ apply (unfold eq_len, simp)
+ my_block
+ from `a < length (list_ext a ks)`
+ have "take a (list_ext a ks) @ [Suc (list_ext a ks ! a)] =
+ list_ext a ks[a := Suc (list_ext a ks ! a)]"
+ by (smt `list_ext a ks ! a = 0` assms length_take list_ext_tail_expand list_update_length)
+ my_block_end
+ apply (unfold this)
+ my_block
+ have "-1 + (u + int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)]))) =
+ u + (int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1)" by simp
+ my_block_end
+ apply (unfold this)
+ apply (sep_cancel+)
+ by (unfold `(list_ext a ks ! a) = 0`, simp)
+ my_block_end
+ apply (rule this, assumption)
+ apply (simp only:sep_conj_ac, sep_cancel+)+
+ apply (fwd abs_reps')+
+ apply (fwd reps_one_abs)
+ apply (fwd reps'_reps_abs)
+ apply (simp add:int_add_ac sep_conj_ac)
+ apply (sep_cancel+)
+ apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, smt)
+ apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp)
+ by (sep_cancel+)
+qed
+
+lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
+proof
+ assume "(<b> \<and>* p) s"
+ from condD[OF this] show " b \<and> p s" .
+next
+ assume "b \<and> p s"
+ hence b and "p s" by auto
+ from `b` have "(<b>) 0" by (auto simp:pasrt_def)
+ moreover have "s = 0 + s" by auto
+ moreover have "0 ## s" by auto
+ moreover note `p s`
+ ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
+qed
+
+lemma tm_hoare_dec_fail00:
+ assumes "a < length ks \<and> ks ! a = 0"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+proof -
+ from assms have "a < length ks" "ks!a = 0" by auto
+ from list_nth_expand[OF `a < length ks`]
+ have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
+ show ?thesis
+ proof(cases " drop (Suc a) ks = []")
+ case False
+ then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+ by (metis append_Cons append_Nil list.exhaust)
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+ apply (subst (1) eq_ks)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (subst fam_conj_interv_simp)
+ by (unfold reps'_def, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append)
+ apply (unfold eq_drop)
+ apply (subst (2) reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
+ apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
+ apply hstep
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ my_block
+ fix m mb
+ have "(reps' mb (m - 1) [ks ! a]) = (reps mb (m - 2) [ks!a] \<and>* zero (m - 1))"
+ by (simp add:reps'_def, smt)
+ my_block_end
+ apply (unfold this)
+ apply hstep
+ (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
+ apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
+ apply (rule_tac p = "st j'b \<and>*
+ ps mb \<and>*
+ reps u mb ((take a ks)@[ks ! a]) \<and>* <(m - 2 = mb)> \<and>*
+ zero (m - 1) \<and>*
+ zero (u - 1) \<and>*
+ one m \<and>*
+ zero (u - 2) \<and>*
+ ones (m + 1) (m + int k') \<and>*
+ <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
+ in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (subgoal_tac "m + int k' = ma - 2", simp)
+ apply (fwd abs_ones)+
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, auto)
+ apply (fwd abs_reps')+
+ apply (subgoal_tac "ma = m + int k' + 2", simp)
+ apply (fwd abs_reps')+
+ my_block
+ from `a < length ks`
+ have "list_ext a ks = ks" by (auto simp:list_ext_def)
+ my_block_end
+ apply (simp add:this)
+ apply (subst eq_ks, simp add:eq_drop `ks!a = 0`)
+ apply (subst (asm) reps'_def, simp)
+ apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, sep_cancel+)
+ apply (metis append_Cons assms eq_Nil_appendI eq_drop eq_ks list_update_id)
+ apply (clarsimp)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (fwd abs_reps')+
+ by (fwd reps'_reps_abs, simp add:`ks!a = 0`)
+ next
+ case True
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+ apply (subst (1) eq_ks, unfold True, simp)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (unfold reps'_def, subst fam_conj_interv_simp)
+ by (simp add:sep_conj_ac)
+ my_block_end
+ apply (subst (1) this)
+ apply (subst reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (subst fam_conj_interv_simp, simp)
+ my_block
+ have "(zero (2 + ia)) = (tm (2 + ia) Bk)"
+ by (simp add:zero_def)
+ my_block_end my_note eq_z = this
+ apply hstep
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ my_block
+ fix m
+ have "(reps' m (ia + 1) [ks ! a]) = (reps m ia [ks!a] \<and>* zero (ia + 1))"
+ by (simp add:reps'_def)
+ my_block_end
+ apply (unfold this, prune)
+ apply hstep
+ (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
+ apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
+ apply (rule_tac p = "st j'b \<and>* ps m \<and>* (reps u m ((take a ks)@[ks!a]) \<and>* <(ia = m)>)
+ \<and>* zero (ia + 1) \<and>* zero (u - 1) \<and>*
+ zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
+ in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac)
+ apply ((subst (asm) sep_conj_cond)+, erule condE, simp)
+ my_block
+ from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
+ my_block_end
+ apply (unfold this, simp)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp, simp)
+ apply (simp only:sep_conj_ac, sep_cancel+)
+ apply (subst eq_ks, unfold True `ks!a = 0`, simp)
+ apply (metis True append_Nil2 assms eq_ks list_update_same_conv)
+ apply (simp add:sep_conj_ac)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, simp, thin_tac "ia = m")
+ apply (fwd abs_reps')+
+ apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
+ apply (unfold reps'_def, simp)
+ by (metis sep.mult_commute)
+ qed
+qed
+
+lemma tm_hoare_dec_fail01:
+ assumes "length ks \<le> a"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+ apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>*
+ zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero \<and>*
+ <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
+ apply hstep
+ (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ my_block
+ from assms
+ have "list_ext a ks ! a = 0" by (metis le_refl list_ext_tail)
+ my_block_end my_note is_z = this
+ apply (subst fam_conj_interv_simp)
+ apply hstep
+ (* apply (hstep hoare_if_reps_nz_false_gen[OF is_z]) *)
+ apply (unfold is_z)
+ apply (subst (1) reps.simps)
+ apply (rule_tac p = "st j'b \<and>* ps m \<and>* reps u m (take a (list_ext a ks) @ [0]) \<and>* zero (w + 1) \<and>*
+ <(w = m + int 0)> \<and>* zero (u - 1) \<and>*
+ fam_conj {w + 1<..} zero \<and>* zero (u - 2) \<and>*
+ <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
+ my_block
+ have "(take a (list_ext a ks)) @ [0] \<noteq> []" by simp
+ my_block_end
+ apply hsteps
+ (* apply (hsteps hoare_left_until_double_zero_gen[OF this]) *)
+ apply (simp add:sep_conj_ac)
+ apply prune
+ apply (subst (asm) sep_conj_cond)+
+ apply (elim condE, simp add:sep_conj_ac, prune)
+ my_block
+ fix m w ha
+ assume h1: "w = m \<and> ia = u + int (reps_len ks) - 1"
+ and h: "(ps u \<and>*
+ st e \<and>*
+ zero (u - 1) \<and>*
+ zero (m + 1) \<and>*
+ fam_conj {m + 1<..} zero \<and>* zero (u - 2) \<and>* reps u m (take a (list_ext a ks) @ [0])) ha"
+ from h1 have eq_w: "w = m" and eq_ia: "ia = u + int (reps_len ks) - 1" by auto
+ from h obtain s' where "reps u m (take a (list_ext a ks) @ [0]) s'"
+ by (auto dest!:sep_conjD)
+ from reps_len_correct[OF this]
+ have eq_m: "m = u + int (reps_len (take a (list_ext a ks) @ [0])) - 1" .
+ from h[unfolded eq_m, simplified]
+ have "(ps u \<and>*
+ st e \<and>*
+ zero (u - 1) \<and>*
+ zero (u - 2) \<and>*
+ fam_conj {u + (-1 + int (reps_len (list_ext a ks)))<..} zero \<and>*
+ reps u (u + (-1 + int (reps_len (list_ext a ks)))) (list_ext a ks[a := 0])) ha"
+ apply (sep_cancel+)
+ apply (subst fam_conj_interv_simp, simp)
+ my_block
+ from `length ks \<le> a` have "list_ext a ks[a := 0] = list_ext a ks"
+ by (metis is_z list_update_id)
+ my_block_end
+ apply (unfold this)
+ my_block
+ from `length ks \<le> a` is_z
+ have "take a (list_ext a ks) @ [0] = list_ext a ks"
+ by (metis list_ext_tail_expand)
+ my_block_end
+ apply (unfold this)
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (rule this, assumption)
+ apply (sep_cancel+)[1]
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, prune, simp)
+ my_block
+ fix s m
+ assume "(reps' u (m - 1) (take a (list_ext a ks)) \<and>* ones m m \<and>* zero (m + 1)) s"
+ hence "reps' u (m + 1) (take a (list_ext a ks) @ [0]) s"
+ apply (unfold reps'_append)
+ apply (rule_tac x = m in EXS_intro)
+ by (subst (2) reps'_def, simp add:reps.simps)
+ my_block_end
+ apply (rotate_tac 1, fwd this)
+ apply (subst (asm) reps'_def, simp add:sep_conj_ac)
+ my_block
+ fix s
+ assume h: "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u ia ks \<and>* fam_conj {ia<..} zero) s"
+ then obtain s' where "reps u ia ks s'" by (auto dest!:sep_conjD)
+ from reps_len_correct[OF this] have eq_ia: "ia = u + int (reps_len ks) - 1" .
+ from h
+ have "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>*
+ fam_conj {ia<..} zero \<and>* <(ia = u + int (reps_len ks) - 1)>) s"
+ by (unfold eq_ia, simp)
+ my_block_end
+ by (rule this, assumption)
+
+lemma t_hoare_label1:
+ "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace> l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
+ \<lbrace>st l \<and>* p \<rbrace>
+ i:[(TLabel l; c l)]:j
+ \<lbrace>st k \<and>* q\<rbrace>"
+by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
+
+lemma tm_hoare_dec_fail1:
+ assumes "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+ using assms
+proof
+ assume "a < length ks \<and> ks ! a = 0"
+ thus ?thesis
+ by (rule tm_hoare_dec_fail00)
+next
+ assume "length ks \<le> a"
+ thus ?thesis
+ by (rule tm_hoare_dec_fail01)
+qed
+
+lemma shift_left_nil_gen[step]:
+ assumes "u = v"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero v\<rbrace>
+ i :[shift_left]:j
+ \<lbrace>st j \<and>* ps u \<and>* zero v\<rbrace>"
+ apply(unfold assms shift_left_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp, clarify, prune, simp)
+ by hstep
+
+lemma tm_hoare_dec_suc1:
+ assumes "a < length ks \<and> ks ! a = Suc v"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia - 1) (list_ext a ks[a := v]) \<and>*
+ fam_conj {ia - 1<..} zero\<rbrace>"
+proof -
+ from assms have "a < length ks" " ks ! a = Suc v" by auto
+ from list_nth_expand[OF `a < length ks`]
+ have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
+ show ?thesis
+ proof(cases " drop (Suc a) ks = []")
+ case False
+ then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+ by (metis append_Cons append_Nil list.exhaust)
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI)
+ apply (subst (1) eq_ks)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (subst fam_conj_interv_simp)
+ by (unfold reps'_def, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append)
+ apply (unfold eq_drop)
+ apply (subst (2) reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
+ apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (rule_tac q =
+ "st l \<and>*
+ ps mb \<and>*
+ zero (u - 1) \<and>*
+ reps' u (mb - 1) (take a ks) \<and>*
+ reps' mb (m - 1) [ks ! a] \<and>*
+ one m \<and>*
+ zero (u - 2) \<and>*
+ ones (m + 1) (m + int k') \<and>*
+ <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
+ in tm.sequencing)
+ apply (rule tm.code_extension)
+ apply hstep
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ apply (subst (2) reps'_def, simp)
+ my_block
+ fix i j l m mb
+ from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
+ from hoare_if_reps_nz_true[OF this, where u = mb and v = "m - 2"]
+ have "\<lbrace>st i \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>
+ i :[ if_reps_nz l ]: j
+ \<lbrace>st l \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>"
+ by smt
+ my_block_end
+ apply (hgoto this)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (subst reps'_def, simp add:sep_conj_ac)
+ apply (rule tm.code_extension1)
+ apply (rule t_hoare_label1, simp, prune)
+ apply (subst (2) reps'_def, simp add:reps.simps)
+ apply (rule_tac p = "st j' \<and>* ps mb \<and>* zero (u - 1) \<and>* reps' u (mb - 1) (take a ks) \<and>*
+ ((ones mb (mb + int (ks ! a)) \<and>* <(-2 + m = mb + int (ks ! a))>) \<and>* zero (mb + int (ks ! a) + 1)) \<and>*
+ one (mb + int (ks ! a) + 2) \<and>* zero (u - 2) \<and>*
+ ones (mb + int (ks ! a) + 3) (mb + int (ks ! a) + int k' + 2) \<and>*
+ <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ (* apply (simp add:sep_conj_ac) *)
+ apply (unfold `ks!a = Suc v`)
+ my_block
+ fix mb
+ have "(ones mb (mb + int (Suc v))) = (ones mb (mb + int v) \<and>* one (mb + int (Suc v)))"
+ by (simp add:ones_rev)
+ my_block_end
+ apply (unfold this, prune)
+ apply hsteps
+ apply (rule_tac p = "st j'a \<and>*
+ ps (mb + int (Suc v) + 2) \<and>* zero (mb + int (Suc v) + 1) \<and>*
+ reps (mb + int (Suc v) + 2) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+ zero (mb + int (Suc v)) \<and>*
+ ones mb (mb + int v) \<and>*
+ zero (u - 1) \<and>*
+ reps' u (mb - 1) (take a ks) \<and>*
+ zero (u - 2) \<and>* fam_conj {ia + 2<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ (* apply (hsteps hoare_shift_left_cons_gen[OF False]) *)
+ apply (rule_tac p = "st j'a \<and>* ps (ia - 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia - 1) (take a ks @ [v] @ drop (Suc a) ks) \<and>*
+ zero ia \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+ fam_conj {ia + 2<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (simp add:sep_conj_ac)
+ apply (sep_cancel+)
+ my_block
+ have "take a ks @ v # drop (Suc a) ks = list_ext a ks[a := v]"
+ proof -
+ from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
+ hence "list_ext a ks[a:=v] = ks[a:=v]" by simp
+ moreover from `a < length ks` have "ks[a:=v] = take a ks @ v # drop (Suc a) ks"
+ by (metis upd_conv_take_nth_drop)
+ ultimately show ?thesis by metis
+ qed
+ my_block_end
+ apply (unfold this, sep_cancel+, smt)
+ apply (simp add:sep_conj_ac)
+ apply (fwd abs_reps')+
+ apply (simp add:sep_conj_ac int_add_ac)
+ apply (sep_cancel+)
+ apply (subst (asm) reps'_def, simp add:sep_conj_ac)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (fwd abs_ones)+
+ apply (fwd abs_reps')+
+ apply (subst (asm) reps'_def, simp)
+ apply (subst (asm) fam_conj_interv_simp)
+ apply (simp add:sep_conj_ac int_add_ac eq_drop reps'_def)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ by (simp add:sep_conj_ac int_add_ac)
+ next
+ case True
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI)
+ apply (subst (1) eq_ks, simp add:True)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (subst fam_conj_interv_simp)
+ by (unfold reps'_def, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (rule_tac q = "st l \<and>* ps m \<and>* zero (u - 1) \<and>* reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ia + 1) [ks ! a] \<and>* zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
+ in tm.sequencing)
+ apply (rule tm.code_extension)
+ apply (subst fam_conj_interv_simp, simp)
+ apply hsteps
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ my_block
+ fix m
+ have "(reps' m (ia + 1) [ks ! a]) =
+ (reps m ia [ks!a] \<and>* zero (ia + 1))"
+ by (unfold reps'_def, simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j l m
+ from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
+ my_block_end
+ apply (hgoto hoare_if_reps_nz_true_gen)
+ apply (rule tm.code_extension1)
+ apply (rule t_hoare_label1, simp)
+ apply (thin_tac "la = j'", prune)
+ apply (subst (1) reps.simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply hsteps
+ apply (unfold `ks!a = Suc v`)
+ my_block
+ fix m
+ have "(ones m (m + int (Suc v))) = (ones m (m + int v) \<and>* one (m + int (Suc v)))"
+ by (simp add:ones_rev)
+ my_block_end
+ apply (unfold this)
+ apply hsteps
+ apply (rule_tac p = "st j'a \<and>* ps (m + int v) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (m + int v) (take a ks @ [v]) \<and>* zero (m + (1 + int v)) \<and>*
+ zero (2 + (m + int v)) \<and>* zero (3 + (m + int v)) \<and>*
+ fam_conj {3 + (m + int v)<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ my_block
+ have "take a ks @ [v] = list_ext a ks[a := v]"
+ proof -
+ from True `a < length ks` have "ks = take a ks @ [ks!a]"
+ by (metis append_Nil2 eq_ks)
+ hence "ks[a:=v] = take a ks @ [v]"
+ by (metis True `a < length ks` upd_conv_take_nth_drop)
+ moreover from `a < length ks` have "list_ext a ks = ks"
+ by (metis list_ext_lt)
+ ultimately show ?thesis by simp
+ qed
+ my_block_end my_note eq_l = this
+ apply (unfold this)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (simp add:sep_conj_ac, sep_cancel, smt)
+ apply (simp add:sep_conj_ac int_add_ac)+
+ apply (sep_cancel+)
+ apply (fwd abs_reps')+
+ apply (fwd reps'_reps_abs)
+ by (simp add:eq_l)
+ qed
+qed
+
+lemma hoare_cfill_until_one:
+ "\<lbrace>st i \<and>* ps v \<and>* one (u - 1) \<and>* zeros u v\<rbrace>
+ i :[ cfill_until_one ]: j
+ \<lbrace>st j \<and>* ps (u - 1) \<and>* ones (u - 1) v \<rbrace>"
+proof(induct u v rule:zeros_rev_induct)
+ case (Base x y)
+ thus ?case
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp add:ones_simps)
+ apply (unfold cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ by hstep
+next
+ case (Step x y)
+ show ?case
+ apply (rule_tac q = "st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1) \<and>* one y" in tm.sequencing)
+ apply (subst cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ apply hsteps
+ my_block
+ fix i j l
+ have "\<lbrace>st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>
+ i :[ jmp l ]: j
+ \<lbrace>st l \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>"
+ apply (case_tac "(y - 1) < x", simp add:zeros_simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply hstep
+ apply (drule_tac zeros_rev, simp)
+ by hstep
+ my_block_end
+ apply (hstep this)
+ (* The next half *)
+ apply (hstep Step(2), simp add:sep_conj_ac, sep_cancel+)
+ by (insert Step(1), simp add:ones_rev sep_conj_ac)
+qed
+
+declare zeros.simps [simp del] zeros_simps[simp del]
+
+lemma hoare_cmove:
+ assumes "w \<le> k"
+ shows "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zero (u - 1) \<and>*
+ reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<and>* zeros (v + 3 + int w) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[cmove]: j
+ \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+ reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+ using assms
+proof(induct "k - w" arbitrary: w)
+ case (0 w)
+ hence "w = k" by auto
+ show ?case
+ apply (simp add: `w = k` del:zeros.simps zeros_simps)
+ apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
+ apply (rule_tac p = "st i \<and>* ps (v + 2 + int k) \<and>* zero (u - 1) \<and>*
+ reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+ ones (v + 2) (v + 2 + int k) \<and>* zeros (v + 3 + int k) (2 + (v + int k)) \<and>*
+ <(u = v - int k)>"
+ in tm.pre_stren)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 2 + int k) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
+ \<and>* <(u = v - int k)>\<rbrace>
+ i :[ left_until_zero ]: j
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
+ \<and>* <(u = v - int k)>\<rbrace>"
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ my_block
+ have "(zeros (v - int k + 1) (v + 1)) = (zeros (v - int k + 1) v \<and>* zero (v + 1))"
+ by (simp only:zeros_rev, smt)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>
+ i :[left_until_one]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>"
+ apply (simp add:reps.simps ones_simps)
+ by hsteps
+ my_block_end
+ apply (hsteps this)
+ apply ((subst (asm) sep_conj_cond)+, erule condE, clarsimp)
+ apply (fwd abs_reps')+
+ apply (simp only:sep_conj_ac int_add_ac, sep_cancel+)
+ apply (simp add:int_add_ac sep_conj_ac zeros_simps)
+ apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
+ apply (fwd reps_lenE)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (subgoal_tac "v = u + int k + int (reps_len [0]) - 1", clarsimp)
+ apply (simp add:reps_len_sg)
+ apply (fwd abs_ones)+
+ apply (fwd abs_reps')+
+ apply (simp add:sep_conj_ac int_add_ac)
+ apply (sep_cancel+)
+ apply (simp add:reps.simps, smt)
+ by (clarsimp)
+next
+ case (Suc k' w)
+ from `Suc k' = k - w` `w \<le> k`
+ have h: "k' = k - (Suc w)" "Suc w \<le> k" by auto
+ show ?case
+ apply (rule tm.sequencing[OF _ Suc(1)[OF h(1, 2)]])
+ apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>
+ i :[left_until_zero]: j
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>"
+ my_block
+ have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
+ ones (v + 2) (v + 2 + int w)"
+ by (simp only:ones_simps, smt)
+ my_block_end
+ apply (unfold this)
+ my_block
+ have "(zeros (v - int w + 1) (v + 1)) = (zeros (v - int w + 1) v \<and>* zero (v + 1))"
+ by (simp only:zeros_rev, simp)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>
+ i :[left_until_one]: j
+ \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac "u + int (k - w) = v - int w", simp)
+ defer
+ apply simp
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ have "(reps u (v - int w) [k - w]) = (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))"
+ apply (subst (1 2) reps.simps)
+ apply (subst sep_conj_cond)+
+ my_block
+ have "((v - int w = u + int (k - w))) =
+ (v - (1 + int w) = u + int (k - Suc w))"
+ apply auto
+ apply (smt Suc.prems h(2))
+ by (smt Suc.prems h(2))
+ my_block_end
+ apply (simp add:this)
+ my_block
+ fix b p q
+ assume "(b \<Longrightarrow> (p::tassert) = q)"
+ have "(<b> \<and>* p) = (<b> \<and>* q)"
+ by (metis `b \<Longrightarrow> p = q` cond_eqI)
+ my_block_end
+ apply (rule this)
+ my_block
+ assume "v - (1 + int w) = u + int (k - Suc w)"
+ hence "v = 1 + int w + u + int (k - Suc w)" by auto
+ my_block_end
+ apply (simp add:this)
+ my_block
+ have "\<not> (u + int (k - w)) < u" by auto
+ my_block_end
+ apply (unfold ones_rev[OF this])
+ my_block
+ from Suc (2, 3) have "(u + int (k - w) - 1) = (u + int (k - Suc w))"
+ by auto
+ my_block_end
+ apply (unfold this)
+ my_block
+ from Suc (2, 3) have "(u + int (k - w)) = (1 + (u + int (k - Suc w)))"
+ by auto
+ my_block_end
+ by (unfold this, simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v - int w) \<and>*
+ (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>
+ i :[ move_left]: j
+ \<lbrace>st j \<and>* ps (v - (1 + int w)) \<and>*
+ (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+ defer
+ apply simp
+ apply hsteps
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i' j'
+ have "\<lbrace>st i' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>
+ i' :[ if_zero j ]: j'
+ \<lbrace>st j' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+ defer
+ apply simp
+ by hstep
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>
+ i :[ move_right ]: j
+ \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - (1 + int w)) [k - Suc w] \<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+ defer
+ apply simp
+ by hstep
+ my_block_end
+ apply (hsteps this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v - int w) \<and>* one (v + 2) \<and>*
+ zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>
+ i :[right_until_one]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* one (v + 2) \<and>* zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
+ my_block
+ have "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) =
+ (zeros (v - int w) (v + 1))"
+ by (simp add:zeros_simps)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ from Suc(2, 3) have "w < k" by auto
+ hence "(zeros (v + 3 + int w) (2 + (v + int k))) =
+ (zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)))"
+ by (simp add:zeros_simps)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>
+ i :[right_until_zero]: j
+ \<lbrace>st j \<and>* ps (v + 3 + int w) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>"
+ my_block
+ have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
+ (ones (v + 2) (v + 2 + int w))"
+ by (simp add:ones_simps, smt)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hsteps this, simp only:sep_conj_ac)
+ apply (sep_cancel+, simp add:sep_conj_ac)
+ my_block
+ fix s
+ assume "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) s"
+ hence "zeros (v - int w) (v + 1) s"
+ by (simp add:zeros_simps)
+ my_block_end
+ apply (fwd this)
+ my_block
+ fix s
+ assume "(one (v + 3 + int w) \<and>* ones (v + 3) (v + 2 + int w)) s"
+ hence "ones (v + 3) (3 + (v + int w)) s"
+ by (simp add:ones_rev sep_conj_ac, smt)
+ my_block_end
+ apply (fwd this)
+ by (simp add:sep_conj_ac, smt)
+qed
+
+lemma hoare_copy:
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[copy]: j
+ \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+ apply (unfold copy_def)
+ my_block
+ fix i j
+ have
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[cinit]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>"
+ apply (unfold cinit_def)
+ apply (simp add:reps.simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply hsteps
+ apply (simp add:sep_conj_ac)
+ my_block
+ have "(zeros (u + int k + 2) (u + int k + int (reps_len [k]) + 1)) =
+ (zero (u + int k + 2) \<and>* zeros (u + int k + 3) (u + int k + int (reps_len [k]) + 1))"
+ by (smt reps_len_sg zeros_step_simp)
+ my_block_end
+ apply (unfold this)
+ apply hstep
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (hstep this)
+ apply (rule_tac p = "st j' \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ one (v + 2) \<and>* zeros (v + 3) (v + int (reps_len [k]) + 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ <(v = u + int (reps_len [k]) - 1)>
+ " in tm.pre_stren)
+ my_block
+ fix i j
+ from hoare_cmove[where w = 0 and k = k and i = i and j = j and v = v and u = u]
+ have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[cmove]: j
+ \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+ reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+ by (auto simp:ones_simps zeros_simps)
+ my_block_end
+ apply (hstep this)
+ apply (hstep, simp)
+ my_block
+ have "reps u u [0] = one u" by (simp add:reps.simps ones_simps)
+ my_block_end my_note eq_repsz = this
+ apply (unfold this)
+ apply (hstep)
+ apply (subst reps.simps, simp add: ones_simps)
+ apply hsteps
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp del:zeros.simps zeros_simps)
+ apply (thin_tac "int (reps_len [k]) = 1 + int k \<and> v = u + int (reps_len [k]) - 1")
+ my_block
+ have "(zeros (u + 1) (u + int k + 1)) = (zeros (u + 1) (u + int k) \<and>* zero (u + int k + 1))"
+ by (simp only:zeros_rev, smt)
+ my_block_end
+ apply (unfold this)
+ apply (hstep, simp)
+ my_block
+ fix i j
+ from hoare_cfill_until_one[where v = "u + int k" and u = "u + 1"]
+ have "\<lbrace>st i \<and>* ps (u + int k) \<and>* one u \<and>* zeros (u + 1) (u + int k)\<rbrace>
+ i :[ cfill_until_one ]: j
+ \<lbrace>st j \<and>* ps u \<and>* ones u (u + int k) \<rbrace>"
+ by simp
+ my_block_end
+ apply (hstep this, simp add:sep_conj_ac reps.simps ones_simps)
+ apply (simp add:sep_conj_ac reps.simps ones_simps)
+ apply (subst sep_conj_cond)+
+ apply (subst (asm) sep_conj_cond)+
+ apply (rule condI)
+ apply (erule condE, simp)
+ apply (simp add: reps_len_def reps_sep_len_def reps_ctnt_len_def)
+ apply (sep_cancel+)
+ by (erule condE, simp)
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Hoare_tm_basis.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,2857 @@
+header {*
+ Separation logic for TM
+*}
+
+theory Hoare_tm_basis
+imports Hoare_gen My_block Data_slot MLs Term_pat (* BaseSS *) Subgoal Sort_ops
+ Thm_inst
+begin
+
+section {* Aux lemmas on seperation algebra *}
+
+lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
+proof
+ assume "(<b> \<and>* p) s"
+ from condD[OF this] show " b \<and> p s" .
+next
+ assume "b \<and> p s"
+ hence b and "p s" by auto
+ from `b` have "(<b>) 0" by (auto simp:pasrt_def)
+ moreover have "s = 0 + s" by auto
+ moreover have "0 ## s" by auto
+ moreover note `p s`
+ ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
+qed
+
+lemma cond_eqI:
+ assumes h: "b \<Longrightarrow> r = s"
+ shows "(<b> ** r) = (<b> ** s)"
+proof(cases b)
+ case True
+ from h[OF this] show ?thesis by simp
+next
+ case False
+ thus ?thesis
+ by (unfold sep_conj_def set_ins_def pasrt_def, auto)
+qed
+
+lemma EXS_intro:
+ assumes h: "(P x) s"
+ shows "((EXS x. P(x))) s"
+ by (smt h pred_ex_def sep_conj_impl)
+
+lemma EXS_elim:
+ assumes "(EXS x. P x) s"
+ obtains x where "P x s"
+ by (metis assms pred_ex_def)
+
+lemma EXS_eq:
+ fixes x
+ assumes h: "Q (p x)"
+ and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x"
+ shows "p x = (EXS x. p x)"
+proof
+ fix s
+ show "p x s = (EXS x. p x) s"
+ proof
+ assume "p x s"
+ thus "(EXS x. p x) s" by (auto simp:pred_ex_def)
+ next
+ assume "(EXS x. p x) s"
+ thus "p x s"
+ proof(rule EXS_elim)
+ fix y
+ assume "p y s"
+ from this[unfolded h1[OF this]] show "p x s" .
+ qed
+ qed
+qed
+
+section {* The TM assembly language *}
+
+subsection {* The TM assembly language *}
+
+datatype taction = W0 | W1 | L | R
+
+datatype tstate = St nat
+
+fun nat_of :: "tstate \<Rightarrow> nat"
+where "nat_of (St n) = n"
+
+declare [[coercion_enabled]]
+
+declare [[coercion "St :: nat \<Rightarrow> tstate"]]
+
+type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)"
+
+datatype Block = Oc | Bk
+
+datatype tpg =
+ TInstr tm_inst
+ | TLabel tstate
+ | TSeq tpg tpg
+ | TLocal "(tstate \<Rightarrow> tpg)"
+
+notation TLocal (binder "TL " 10)
+
+abbreviation tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61)
+where "\<guillemotright> i \<equiv> TInstr i"
+
+abbreviation tprog_seq :: "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52)
+where "c1 ; c2 \<equiv> TSeq c1 c2"
+
+subsection {* The notion of assembling *}
+
+datatype tresource =
+ TM int Block
+ | TC nat tm_inst
+ | TAt nat
+ | TPos int
+ | TFaults nat
+
+type_synonym tassert = "tresource set \<Rightarrow> bool"
+
+definition "sg e = (\<lambda> s. s = e)"
+
+primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert"
+ where
+ "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
+ "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
+ "tassemble_to (TLocal fp) i j = (EXS l. (tassemble_to (fp l) i j))" |
+ "tassemble_to (TLabel l) i j = <(i = j \<and> j = nat_of l)>"
+
+declare tassemble_to.simps [simp del]
+
+lemmas tasmp = tassemble_to.simps (2, 3, 4)
+
+abbreviation tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60)
+ where "i :[ tpg ]: j \<equiv> tassemble_to tpg i j"
+
+section {* Automatic checking of assemblility *}
+
+subsection {* Basic theories *}
+
+text {* @{text cpg} is the type for skeleton assembly language. Every constructor
+ corresponds to one in the definition of @{text tpg} *}
+
+datatype cpg =
+ CInstr tm_inst
+ | CLabel nat
+ | CSeq cpg cpg
+ | CLocal cpg
+
+text {* Conversion from @{text cpg} to @{text tpg}*}
+
+fun c2t :: "tstate list \<Rightarrow> cpg \<Rightarrow> tpg" where
+ "c2t env (CInstr ((act0, St st0), (act1, St st1))) =
+ TInstr ((act0, env!st0), (act1, env!st1))" |
+ "c2t env (CLabel l) = TLabel (env!l)" |
+ "c2t env (CSeq cpg1 cpg2) = TSeq (c2t env cpg1) (c2t env cpg2)" |
+ "c2t env (CLocal cpg) = TLocal (\<lambda> x. c2t (x#env) cpg)"
+
+text {* Well formedness checking of @{text cpg} *}
+
+datatype status = Free | Bound
+
+text {* @{text wf_cpg_test} is the checking function *}
+
+fun wf_cpg_test :: "status list \<Rightarrow> cpg \<Rightarrow> (bool \<times> status list)" where
+ "wf_cpg_test sts (CInstr ((a0, l0), (a1, l1))) = ((l0 < length sts \<and> l1 < length sts), sts)" |
+ "wf_cpg_test sts (CLabel l) = ((l < length sts) \<and> sts!l = Free, sts[l:=Bound])" |
+ "wf_cpg_test sts (CSeq c1 c2) = (let (b1, sts1) = wf_cpg_test sts c1;
+ (b2, sts2) = wf_cpg_test sts1 c2 in
+ (b1 \<and> b2, sts2))" |
+ "wf_cpg_test sts (CLocal body) = (let (b, sts') = (wf_cpg_test (Free#sts) body) in
+ (b, tl sts'))"
+
+text {*
+ The meaning the following @{text "c2p"} has to be understood together with
+ the following lemma @{text "wf_cpg_test_correct"}. The intended use of @{text "c2p"}
+ is when the elements of @{text "sts"} are all @{text "Free"}, in which case,
+ the precondition on @{text "f"}, i.e.
+ @{text "\<forall> x. ((length x = length sts \<and>
+ (\<forall> k < length sts. sts!k = Bound \<longrightarrow> (x!k = f i k))"}
+ is trivially true.
+*}
+definition
+ "c2p sts i cpg j =
+ (\<exists> f. \<forall> x. ((length x = length sts \<and>
+ (\<forall> k < length sts. sts!k = Bound \<longrightarrow> (x!k = f i k)))
+ \<longrightarrow> (\<exists> s. (i:[(c2t x cpg)]:j) s)))"
+
+instantiation status :: order
+begin
+ definition less_eq_status_def: "((st1::status) \<le> st2) = (st1 = Free \<or> st2 = Bound)"
+ definition less_status_def: "((st1::status) < st2) = (st1 \<le> st2 \<and> st1 \<noteq> st2)"
+instance
+proof
+ fix x y
+ show "(x < (y::status)) = (x \<le> y \<and> \<not> y \<le> x)"
+ by (metis less_eq_status_def less_status_def status.distinct(1))
+next
+ fix x show "x \<le> (x::status)"
+ by (metis (full_types) less_eq_status_def status.exhaust)
+next
+ fix x y z
+ assume "x \<le> y" "y \<le> (z::status)" show "x \<le> (z::status)"
+ by (metis `x \<le> y` `y \<le> z` less_eq_status_def status.distinct(1))
+next
+ fix x y
+ assume "x \<le> y" "y \<le> (x::status)" show "x = y"
+ by (metis `x \<le> y` `y \<le> x` less_eq_status_def status.distinct(1))
+qed
+end
+
+instantiation list :: (order)order
+begin
+ definition "((sts::('a::order) list) \<le> sts') =
+ ((length sts = length sts') \<and> (\<forall> i < length sts. sts!i \<le> sts'!i))"
+ definition "((sts::('a::order) list) < sts') = ((sts \<le> sts') \<and> sts \<noteq> sts')"
+
+ lemma anti_sym: assumes h: "x \<le> (y::'a list)" "y \<le> x"
+ shows "x = y"
+ proof -
+ from h have "length x = length y"
+ by (metis less_eq_list_def)
+ moreover from h have " (\<forall> i < length x. x!i = y!i)"
+ by (metis (full_types) antisym_conv less_eq_list_def)
+ ultimately show ?thesis
+ by (metis nth_equalityI)
+ qed
+
+ lemma refl: "x \<le> (x::('a::order) list)"
+ apply (unfold less_eq_list_def)
+ by (metis order_refl)
+
+ instance
+ proof
+ fix x y
+ show "((x::('a::order) list) < y) = (x \<le> y \<and> \<not> y \<le> x)"
+ proof
+ assume h: "x \<le> y \<and> \<not> y \<le> x"
+ have "x \<noteq> y"
+ proof
+ assume "x = y" with h have "\<not> (x \<le> x)" by simp
+ with refl show False by auto
+ qed
+ moreover from h have "x \<le> y" by blast
+ ultimately show "x < y" by (auto simp:less_list_def)
+ next
+ assume h: "x < y"
+ hence hh: "x \<le> y"
+ by (metis less_list_def)
+ moreover have "\<not> y \<le> x"
+ proof
+ assume "y \<le> x"
+ from anti_sym[OF hh this] have "x = y" .
+ with h show False
+ by (metis less_list_def)
+ qed
+ ultimately show "x \<le> y \<and> \<not> y \<le> x" by auto
+ qed
+ next
+ fix x from refl show "(x::'a list) \<le> x" .
+ next
+ fix x y assume "(x::'a list) \<le> y" "y \<le> x"
+ from anti_sym[OF this] show "x = y" .
+ next
+ fix x y z
+ assume h: "(x::'a list) \<le> y" "y \<le> z"
+ show "x \<le> z"
+ proof -
+ from h have "length x = length z" by (metis less_eq_list_def)
+ moreover from h have "\<forall> i < length x. x!i \<le> z!i"
+ by (metis less_eq_list_def order_trans)
+ ultimately show "x \<le> z"
+ by (metis less_eq_list_def)
+ qed
+ qed
+end
+
+lemma sts_bound_le: "sts \<le> sts[l := Bound]"
+proof -
+ have "length sts = length (sts[l := Bound])"
+ by (metis length_list_update)
+ moreover have "\<forall> i < length sts. sts!i \<le> (sts[l:=Bound])!i"
+ proof -
+ { fix i
+ assume "i < length sts"
+ have "sts ! i \<le> sts[l := Bound] ! i"
+ proof(cases "l < length sts")
+ case True
+ note le_l = this
+ show ?thesis
+ proof(cases "l = i")
+ case True with le_l
+ have "sts[l := Bound] ! i = Bound" by auto
+ thus ?thesis by (metis less_eq_status_def)
+ next
+ case False
+ with le_l have "sts[l := Bound] ! i = sts!i" by auto
+ thus ?thesis by auto
+ qed
+ next
+ case False
+ hence "sts[l := Bound] = sts" by auto
+ thus ?thesis by auto
+ qed
+ } thus ?thesis by auto
+ qed
+ ultimately show ?thesis by (metis less_eq_list_def)
+qed
+
+lemma sts_tl_le:
+ assumes "sts \<le> sts'"
+ shows "tl sts \<le> tl sts'"
+proof -
+ from assms have "length (tl sts) = length (tl sts')"
+ by (metis (hide_lams, no_types) length_tl less_eq_list_def)
+ moreover from assms have "\<forall> i < length (tl sts). (tl sts)!i \<le> (tl sts')!i"
+ by (smt calculation length_tl less_eq_list_def nth_tl)
+ ultimately show ?thesis
+ by (metis less_eq_list_def)
+qed
+
+lemma wf_cpg_test_le:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ shows "sts \<le> sts'" using assms
+proof(induct cpg arbitrary:sts sts')
+ case (CInstr instr sts sts')
+ obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
+ by (metis surj_pair tstate.exhaust)
+ from CInstr[unfolded this]
+ show ?case by simp
+next
+ case (CLabel l sts sts')
+ thus ?case by (auto simp:sts_bound_le)
+next
+ case (CLocal body sts sts')
+ from this(2)
+ obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "sts' = tl sts1"
+ by (auto split:prod.splits)
+ from CLocal(1)[OF this(1)] have "Free # sts \<le> sts1" .
+ from sts_tl_le[OF this]
+ have "sts \<le> tl sts1" by simp
+ from this[folded h(2)]
+ show ?case .
+next
+ case (CSeq cpg1 cpg2 sts sts')
+ from this(3)
+ show ?case
+ by (auto split:prod.splits dest!:CSeq(1, 2))
+qed
+
+lemma c2p_assert:
+ assumes "(c2p [] i cpg j)"
+ shows "\<exists> s. (i :[(c2t [] cpg)]: j) s"
+proof -
+ from assms obtain f where
+ h [rule_format]:
+ "\<forall> x. length x = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> (x ! k = f i k)) \<longrightarrow>
+ (\<exists> s. (i :[ c2t [] cpg ]: j) s)"
+ by (unfold c2p_def, auto)
+ have "length [] = length [] \<and> (\<forall>k<length []. [] ! k = Bound \<longrightarrow> ([] ! k = f i k))"
+ by auto
+ from h[OF this] obtain s where "(i :[ c2t [] cpg ]: j) s" by blast
+ thus ?thesis by auto
+qed
+
+definition "sts_disj sts sts' = ((length sts = length sts') \<and>
+ (\<forall> i < length sts. \<not>(sts!i = Bound \<and> sts'!i = Bound)))"
+
+instantiation list :: (plus)plus
+begin
+ fun plus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+ "plus_list [] ys = []" |
+ "plus_list (x#xs) [] = []" |
+ "plus_list (x#xs) (y#ys) = ((x + y)#plus_list xs ys)"
+ instance ..
+end
+
+instantiation list :: (minus)minus
+begin
+ fun minus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+ "minus_list [] ys = []" |
+ "minus_list (x#xs) [] = []" |
+ "minus_list (x#xs) (y#ys) = ((x - y)#minus_list xs ys)"
+ instance ..
+end
+
+instantiation status :: minus
+begin
+ fun minus_status :: "status \<Rightarrow> status \<Rightarrow> status" where
+ "minus_status Bound Bound = Free" |
+ "minus_status Bound Free = Bound" |
+ "minus_status Free x = Free "
+ instance ..
+end
+
+instantiation status :: plus
+begin
+ fun plus_status :: "status \<Rightarrow> status \<Rightarrow> status" where
+ "plus_status Free x = x" |
+ "plus_status Bound x = Bound"
+ instance ..
+end
+
+lemma length_sts_plus:
+ assumes "length (sts1 :: status list) = length sts2"
+ shows "length (sts1 + sts2) = length sts1"
+ using assms
+proof(induct sts1 arbitrary: sts2)
+ case Nil
+ thus ?case
+ by (metis plus_list.simps(1))
+next
+ case (Cons s' sts' sts2)
+ thus ?case
+ proof(cases "sts2 = []")
+ case True
+ with Cons show ?thesis by auto
+ next
+ case False
+ then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''"
+ by (metis neq_Nil_conv)
+ with Cons
+ show ?thesis
+ by (metis length_Suc_conv list.inject plus_list.simps(3))
+ qed
+qed
+
+lemma nth_sts_plus:
+ assumes "i < length ((sts1::status list) + sts2)"
+ shows "(sts1 + sts2)!i = sts1!i + sts2!i"
+ using assms
+proof(induct sts1 arbitrary:i sts2)
+ case (Nil i sts2)
+ thus ?case by auto
+next
+ case (Cons s' sts' i sts2)
+ show ?case
+ proof(cases "sts2 = []")
+ case True
+ with Cons show ?thesis by auto
+ next
+ case False
+ then obtain s'' sts'' where eq_sts2: "sts2 = s''#sts''"
+ by (metis neq_Nil_conv)
+ with Cons
+ show ?thesis
+ by (smt list.size(4) nth_Cons' plus_list.simps(3))
+ qed
+qed
+
+lemma nth_sts_minus:
+ assumes "i < length ((sts1::status list) - sts2)"
+ shows "(sts1 - sts2)!i = sts1!i - sts2!i"
+ using assms
+proof(induct arbitrary:i rule:minus_list.induct)
+ case (3 x xs y ys i)
+ show ?case
+ proof(cases i)
+ case 0
+ thus ?thesis by simp
+ next
+ case (Suc k)
+ with 3(2) have "k < length (xs - ys)" by auto
+ from 3(1)[OF this] and Suc
+ show ?thesis
+ by auto
+ qed
+qed auto
+
+fun taddr :: "tresource \<Rightarrow> nat" where
+ "taddr (TC i instr) = i"
+
+lemma tassemble_to_range:
+ assumes "(i :[tpg]: j) s"
+ shows "(i \<le> j) \<and> (\<forall> r \<in> s. i \<le> taddr r \<and> taddr r < j)"
+ using assms
+proof(induct tpg arbitrary: i j s)
+ case (TInstr instr i j s)
+ obtain a0 l0 a1 l1 where "instr = ((a0, l0), (a1, l1))"
+ by (metis pair_collapse)
+ with TInstr
+ show ?case
+ apply (simp add:tassemble_to.simps sg_def)
+ by (smt `instr = ((a0, l0), a1, l1)` cond_eq cond_true_eq1
+ empty_iff insert_iff le_refl lessI sep.mult_commute taddr.simps)
+next
+ case (TLabel l i j s)
+ thus ?case
+ apply (simp add:tassemble_to.simps)
+ by (smt equals0D pasrt_def set_zero_def)
+next
+ case (TSeq c1 c2 i j s)
+ from TSeq(3) obtain s1 s2 j' where
+ h: "(i :[ c1 ]: j') s1" "(j' :[ c2 ]: j) s2" "s1 ## s2" "s = s1 + s2"
+ by (auto simp:tassemble_to.simps elim!:EXS_elim sep_conjE)
+ show ?case
+ proof -
+ { fix r
+ assume "r \<in> s"
+ with h (3, 4) have "r \<in> s1 \<or> r \<in> s2"
+ by (auto simp:set_ins_def)
+ hence "i \<le> j \<and> i \<le> taddr r \<and> taddr r < j"
+ proof
+ assume " r \<in> s1"
+ from TSeq(1)[OF h(1)]
+ have "i \<le> j'" "(\<forall>r\<in>s1. i \<le> taddr r \<and> taddr r < j')" by auto
+ from this(2)[rule_format, OF `r \<in> s1`]
+ have "i \<le> taddr r" "taddr r < j'" by auto
+ with TSeq(2)[OF h(2)]
+ show ?thesis by auto
+ next
+ assume "r \<in> s2"
+ from TSeq(2)[OF h(2)]
+ have "j' \<le> j" "(\<forall>r\<in>s2. j' \<le> taddr r \<and> taddr r < j)" by auto
+ from this(2)[rule_format, OF `r \<in> s2`]
+ have "j' \<le> taddr r" "taddr r < j" by auto
+ with TSeq(1)[OF h(1)]
+ show ?thesis by auto
+ qed
+ } thus ?thesis
+ by (smt TSeq.hyps(1) TSeq.hyps(2) h(1) h(2))
+ qed
+next
+ case (TLocal body i j s)
+ from this(2) obtain l s' where "(i :[ body l ]: j) s"
+ by (simp add:tassemble_to.simps, auto elim!:EXS_elim)
+ from TLocal(1)[OF this]
+ show ?case by auto
+qed
+
+lemma c2p_seq:
+ assumes "c2p sts1 i cpg1 j'"
+ "c2p sts2 j' cpg2 j"
+ "sts_disj sts1 sts2"
+ shows "(c2p (sts1 + sts2) i (CSeq cpg1 cpg2) j)"
+proof -
+ from assms(1)[unfolded c2p_def]
+ obtain f1 where
+ h1[rule_format]:
+ "\<forall>x. length x = length sts1 \<and> (\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k)) \<longrightarrow>
+ Ex (i :[ c2t x cpg1 ]: j')" by blast
+ from assms(2)[unfolded c2p_def]
+ obtain f2 where h2[rule_format]:
+ "\<forall>x. length x = length sts2 \<and> (\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k)) \<longrightarrow>
+ Ex (j' :[ c2t x cpg2 ]: j)" by blast
+ from assms(3)[unfolded sts_disj_def]
+ have h3: "length sts1 = length sts2"
+ and h4[rule_format]:
+ "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))" by auto
+ let ?f = "\<lambda> i k. if (sts1!k = Bound) then f1 i k else f2 j' k"
+ { fix x
+ assume h5: "length x = length (sts1 + sts2)" and
+ h6[rule_format]: "(\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = ?f i k)"
+ obtain s1 where h_s1: "(i :[ c2t x cpg1 ]: j') s1"
+ proof(atomize_elim, rule h1)
+ from h3 h5 have "length x = length sts1"
+ by (metis length_sts_plus)
+ moreover {
+ fix k assume hh: "k<length sts1" "sts1 ! k = Bound"
+ from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)"
+ by (metis calculation)
+ from h3 hh(2) have p2: "(sts1 + sts2)!k = Bound"
+ by (metis nth_sts_plus p1 plus_status.simps(2))
+ from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" .
+ with hh(2)
+ have "x ! k = f1 i k" by simp
+ } ultimately show "length x = length sts1 \<and>
+ (\<forall>k<length sts1. sts1 ! k = Bound \<longrightarrow> (x ! k = f1 i k))"
+ by blast
+ qed
+ obtain s2 where h_s2: "(j' :[ c2t x cpg2 ]: j) s2"
+ proof(atomize_elim, rule h2)
+ from h3 h5 have "length x = length sts2"
+ by (metis length_sts_plus)
+ moreover {
+ fix k
+ assume hh: "k<length sts2" "sts2 ! k = Bound"
+ from hh(1) h3 h5 have p1: "k < length (sts1 + sts2)"
+ by (metis calculation)
+ from hh(1) h3 h5 hh(2) have p2: "(sts1 + sts2)!k = Bound"
+ by (metis `length sts1 = length sts2 \<and>
+ (\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))`
+ calculation nth_sts_plus plus_status.simps(1) status.distinct(1) status.exhaust)
+ from h6[OF p1 p2] have "x ! k = (if sts1 ! k = Bound then f1 i k else f2 j' k)" .
+ moreover from h4[OF hh(1)[folded h3]] hh(2) have "sts1!k \<noteq> Bound" by auto
+ ultimately have "x!k = f2 j' k" by simp
+ } ultimately show "length x = length sts2 \<and>
+ (\<forall>k<length sts2. sts2 ! k = Bound \<longrightarrow> (x ! k = f2 j' k))"
+ by blast
+ qed
+ have h_s12: "s1 ## s2"
+ proof -
+ { fix r assume h: "r \<in> s1" "r \<in> s2"
+ with h_s1 h_s2
+ have "False"by (smt tassemble_to_range)
+ } thus ?thesis by (auto simp:set_ins_def)
+ qed
+ have "(EXS j'. i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)"
+ proof(rule_tac x = j' in EXS_intro)
+ from h_s1 h_s2 h_s12
+ show "(i :[ c2t x cpg1 ]: j' \<and>* j' :[ c2t x cpg2 ]: j) (s1 + s2)"
+ by (metis sep_conjI)
+ qed
+ hence "\<exists> s. (i :[ c2t x (CSeq cpg1 cpg2) ]: j) s"
+ by (auto simp:tassemble_to.simps)
+ }
+ hence "\<exists>f. \<forall>x. length x = length (sts1 + sts2) \<and>
+ (\<forall>k<length (sts1 + sts2). (sts1 + sts2) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
+ Ex (i :[ c2t x (CSeq cpg1 cpg2) ]: j)"
+ by (rule_tac x = ?f in exI, auto)
+ thus ?thesis
+ by(unfold c2p_def, auto)
+qed
+
+lemma plus_list_len:
+ "length ((sts1::status list) + sts2) = min (length sts1) (length sts2)"
+ by(induct rule:plus_list.induct, auto)
+
+lemma minus_list_len:
+ "length ((sts1::status list) - sts2) = min (length sts1) (length sts2)"
+ by(induct rule:minus_list.induct, auto)
+
+lemma sts_le_comb:
+ assumes "sts1 \<le> sts2"
+ and "sts2 \<le> sts3"
+ shows "sts_disj (sts2 - sts1) (sts3 - sts2)" and
+ "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)"
+proof -
+ from assms
+ have h1: "length sts1 = length sts2" "\<forall>i<length sts1. sts1 ! i \<le> sts2 ! i"
+ and h2: "length sts2 = length sts3" "\<forall>i<length sts1. sts2 ! i \<le> sts3 ! i"
+ by (unfold less_eq_list_def, auto)
+ have "sts_disj (sts2 - sts1) (sts3 - sts2)"
+ proof -
+ from h1(1) h2(1)
+ have "length (sts2 - sts1) = length (sts3 - sts2)"
+ by (metis minus_list_len)
+ moreover {
+ fix i
+ assume lt_i: "i<length (sts2 - sts1)"
+ from lt_i h1(1) h2(1) have "i < length sts1"
+ by (smt minus_list_len)
+ from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this]
+ have "sts1 ! i \<le> sts2 ! i" "sts2 ! i \<le> sts3 ! i" .
+ moreover have "(sts2 - sts1) ! i = sts2!i - sts1!i"
+ by (metis lt_i nth_sts_minus)
+ moreover have "(sts3 - sts2)!i = sts3!i - sts2!i"
+ by (metis `length (sts2 - sts1) = length (sts3 - sts2)` lt_i nth_sts_minus)
+ ultimately have " \<not> ((sts2 - sts1) ! i = Bound \<and> (sts3 - sts2) ! i = Bound)"
+ apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp)
+ apply (cases "sts3!i", simp, simp)
+ apply (cases "sts1!i", cases "sts3!i", simp, simp)
+ by (cases "sts3!i", simp, simp)
+ } ultimately show ?thesis by (unfold sts_disj_def, auto)
+ qed
+ moreover have "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)"
+ proof(induct rule:nth_equalityI)
+ case 1
+ show ?case by (metis h1(1) h2(1) length_sts_plus minus_list_len)
+ next
+ case 2
+ { fix i
+ assume lt_i: "i<length (sts3 - sts1)"
+ have "(sts3 - sts1) ! i = (sts2 - sts1 + (sts3 - sts2)) ! i" (is "?L = ?R")
+ proof -
+ have "?R = sts2!i - sts1!i + (sts3!i - sts2!i)"
+ by (smt `i < length (sts3 - sts1)` h2(1) minus_list_len nth_sts_minus
+ nth_sts_plus plus_list_len)
+ moreover have "?L = sts3!i - sts1!i"
+ by (metis `i < length (sts3 - sts1)` nth_sts_minus)
+ moreover
+ have "sts2!i - sts1!i + (sts3!i - sts2!i) = sts3!i - sts1!i"
+ proof -
+ from lt_i h1(1) h2(1) have "i < length sts1"
+ by (smt minus_list_len)
+ from h1(2)[rule_format, of i, OF this] h2(2)[rule_format, of i, OF this]
+ show ?thesis
+ apply (cases "sts2!i", cases "sts1!i", cases "sts3!i", simp, simp)
+ apply (cases "sts3!i", simp, simp)
+ apply (cases "sts1!i", cases "sts3!i", simp, simp)
+ by (cases "sts3!i", simp, simp)
+ qed
+ ultimately show ?thesis by simp
+ qed
+ } thus ?case by auto
+ qed
+ ultimately show "sts_disj (sts2 - sts1) (sts3 - sts2)" and
+ "(sts3 - sts1) = (sts2 - sts1) + (sts3 - sts2)" by auto
+qed
+
+lemma wf_cpg_test_correct:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ shows "(\<forall> i. \<exists> j. (c2p (sts' - sts) i cpg j))"
+ using assms
+proof(induct cpg arbitrary:sts sts')
+ case (CInstr instr sts sts')
+ obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
+ by (metis surj_pair tstate.exhaust)
+ show ?case
+ proof(unfold eq_instr c2p_def, clarsimp simp:tassemble_to.simps)
+ fix i
+ let ?a = "(Suc i)" and ?f = "\<lambda> i k. St i"
+ show "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and>
+ (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
+ Ex (sg {TC i ((a0, (x ! l0)), a1, (x ! l1))} \<and>* <(a = (Suc i))>)"
+ proof(rule_tac x = ?a in exI, rule_tac x = ?f in exI, default, clarsimp)
+ fix x
+ let ?j = "Suc i"
+ let ?s = " {TC i ((a0, x ! l0), a1, x ! l1)}"
+ have "(sg {TC i ((a0, x ! l0), a1, x ! l1)} \<and>* <(Suc i = Suc i)>) ?s"
+ by (simp add:tassemble_to.simps sg_def)
+ thus "Ex (sg {TC i ((a0, (x ! l0)), a1, (x ! l1))})"
+ by auto
+ qed
+ qed
+next
+ case (CLabel l sts sts')
+ show ?case
+ proof
+ fix i
+ from CLabel
+ have h1: "l < length sts"
+ and h2: "sts ! l = Free"
+ and h3: "sts[l := Bound] = sts'" by auto
+ let ?f = "\<lambda> i k. St i"
+ have "\<exists>a f. \<forall>x. length x = length (sts' - sts) \<and>
+ (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f (i::nat) k) \<longrightarrow>
+ Ex (<(i = a \<and> a = nat_of (x ! l))>)"
+ proof(rule_tac x = i in exI, rule_tac x = ?f in exI, clarsimp)
+ fix x
+ assume h[rule_format]:
+ "\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = St i"
+ from h1 h3 have p1: "l < length (sts' - sts)"
+ by (metis length_list_update min_max.inf.idem minus_list_len)
+ from p1 h2 h3 have p2: "(sts' - sts)!l = Bound"
+ by (metis h1 minus_status.simps(2) nth_list_update_eq nth_sts_minus)
+ from h[OF p1 p2] have "(<(i = nat_of (x ! l))>) 0"
+ by (simp add:set_ins_def)
+ thus "\<exists> s. (<(i = nat_of (x ! l))>) s" by auto
+ qed
+ thus "\<exists>a. c2p (sts' - sts) i (CLabel l) a"
+ by (auto simp:c2p_def tassemble_to.simps)
+ qed
+next
+ case (CSeq cpg1 cpg2 sts sts')
+ show ?case
+ proof
+ fix i
+ from CSeq(3)[unfolded wf_cpg_test.simps]
+ obtain b1 sts1
+ where LetE: "(let (b2, y) = wf_cpg_test sts1 cpg2 in (b1 \<and> b2, y)) = (True, sts')"
+ "(b1, sts1) = wf_cpg_test sts cpg1"
+ by (auto simp:Let_def split:prod.splits)
+ show "\<exists> j. c2p (sts' - sts) i (CSeq cpg1 cpg2) j"
+ proof -
+ from LetE(1)
+ obtain b2 where h: "(b2, sts') = wf_cpg_test sts1 cpg2" "b1=True" "b2=True"
+ by (atomize_elim, unfold Let_def, auto split:prod.splits)
+ from wf_cpg_test_le[OF LetE(2)[symmetric, unfolded h(2)]]
+ have sts_le1: "sts \<le> sts1" .
+ from CSeq(1)[OF LetE(2)[unfolded h(2), symmetric], rule_format, of i]
+ obtain j1 where h1: "(c2p (sts1 - sts) i cpg1 j1)" by blast
+ from wf_cpg_test_le[OF h(1)[symmetric, unfolded h(3)]]
+ have sts_le2: "sts1 \<le> sts'" .
+ from sts_le_comb[OF sts_le1 sts_le2]
+ have hh: "sts_disj (sts1 - sts) (sts' - sts1)"
+ "sts' - sts = (sts1 - sts) + (sts' - sts1)" .
+ from CSeq(2)[OF h(1)[symmetric, unfolded h(3)], rule_format, of j1]
+ obtain j2 where h2: "(c2p (sts' - sts1) j1 cpg2 j2)" by blast
+ have "c2p (sts' - sts) i (CSeq cpg1 cpg2) j2"
+ by(unfold hh(2), rule c2p_seq[OF h1 h2 hh(1)])
+ thus ?thesis by blast
+ qed
+ qed
+next
+ case (CLocal body sts sts')
+ from this(2) obtain b sts1 s where
+ h: "wf_cpg_test (Free # sts) body = (True, sts1)"
+ "sts' = tl sts1"
+ by (unfold wf_cpg_test.simps, auto split:prod.splits)
+ from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2)
+ obtain s where eq_sts1: "sts1 = s#sts'"
+ by (metis Suc_length_conv list.size(4) tl.simps(2))
+ from CLocal(1)[OF h(1)] have p1: "\<forall>i. \<exists>a. c2p (sts1 - (Free # sts)) i body a" .
+ show ?case
+ proof
+ fix i
+ from p1[rule_format, of i] obtain j where "(c2p (sts1 - (Free # sts)) i body) j" by blast
+ then obtain f where hh [rule_format]:
+ "\<forall>x. length x = length (sts1 - (Free # sts)) \<and>
+ (\<forall>k<length (sts1 - (Free # sts)). (sts1 - (Free # sts)) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
+ (\<exists>s. (i :[ c2t x body ]: j) s)"
+ by (auto simp:c2p_def)
+ let ?f = "\<lambda> i k. f i (Suc k)"
+ have "\<exists>j f. \<forall>x. length x = length (sts' - sts) \<and>
+ (\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
+ (\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s)"
+ proof(rule_tac x = j in exI, rule_tac x = ?f in exI, default, clarsimp)
+ fix x
+ assume h1: "length x = length (sts' - sts)"
+ and h2: "\<forall>k<length (sts' - sts). (sts' - sts) ! k = Bound \<longrightarrow> x ! k = f i (Suc k)"
+ let ?l = "f i 0" let ?x = " ?l#x"
+ from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1"
+ by (unfold less_eq_list_def, simp)
+ with h1 h(2) have q1: "length (?l # x) = length (sts1 - (Free # sts))"
+ by (smt Suc_length_conv length_Suc_conv list.inject list.size(4)
+ minus_list.simps(3) minus_list_len tl.simps(2))
+ have q2: "(\<forall>k<length (sts1 - (Free # sts)).
+ (sts1 - (Free # sts)) ! k = Bound \<longrightarrow> (f i 0 # x) ! k = f i k)"
+ proof -
+ { fix k
+ assume lt_k: "k<length (sts1 - (Free # sts))"
+ and bd_k: "(sts1 - (Free # sts)) ! k = Bound"
+ have "(f i 0 # x) ! k = f i k"
+ proof(cases "k")
+ case (Suc k')
+ moreover have "x ! k' = f i (Suc k')"
+ proof(rule h2[rule_format])
+ from bd_k Suc eq_sts1 show "(sts' - sts) ! k' = Bound" by simp
+ next
+ from Suc lt_k eq_sts1 show "k' < length (sts' - sts)" by simp
+ qed
+ ultimately show ?thesis by simp
+ qed simp
+ } thus ?thesis by auto
+ qed
+ from conjI[THEN hh[of ?x], OF q1 q2] obtain s
+ where h_s: "(i :[ c2t (f i 0 # x) body ]: j) s" by blast
+ thus "(\<exists>s. (i :[ (TL xa. c2t (xa # x) body) ]: j) s)"
+ apply (simp add:tassemble_to.simps)
+ by (rule_tac x = s in exI, rule_tac x = "?l::tstate" in EXS_intro, simp)
+ qed
+ thus "\<exists>j. c2p (sts' - sts) i (CLocal body) j"
+ by (auto simp:c2p_def)
+ qed
+qed
+
+lemma
+ assumes "wf_cpg_test [] cpg = (True, sts')"
+ and "tpg = c2t [] cpg"
+ shows "\<forall> i. \<exists> j s. ((i:[tpg]:j) s)"
+proof
+ fix i
+ have eq_sts_minus: "(sts' - []) = []"
+ by (metis list.exhaust minus_list.simps(1) minus_list.simps(2))
+ from wf_cpg_test_correct[OF assms(1), rule_format, of i]
+ obtain j where "c2p (sts' - []) i cpg j" by auto
+ from c2p_assert [OF this[unfolded eq_sts_minus]]
+ obtain s where "(i :[ c2t [] cpg ]: j) s" by blast
+ from this[folded assms(2)]
+ show " \<exists> j s. ((i:[tpg]:j) s)" by blast
+qed
+
+lemma replicate_nth: "(replicate n x @ sts) ! (l + n) = sts!l"
+ by (smt length_replicate nth_append)
+
+lemma replicate_update:
+ "(replicate n x @ sts)[l + n := v] = replicate n x @ sts[l := v]"
+ by (smt length_replicate list_update_append)
+
+lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
+ by (metis not_less nth_append)
+
+lemma l_n_v_orig:
+ assumes "l0 < length env"
+ and "t \<le> l0"
+ shows "(take t env @ es @ drop t env) ! (l0 + length es) = env ! l0"
+proof -
+ from assms(1, 2) have "t < length env" by auto
+ hence h: "env = take t env @ drop t env"
+ "length (take t env) = t"
+ apply (metis append_take_drop_id)
+ by (smt `t < length env` length_take)
+ with assms(2) have eq_sts_l: "env!l0 = (drop t env)!(l0 - t)"
+ by (metis nth_app)
+ from h(2) have "length (take t env @ es) = t + length es"
+ by (metis length_append length_replicate nat_add_commute)
+ moreover from assms(2) have "t + (length es) \<le> l0 + (length es)" by auto
+ ultimately have "((take t env @ es) @ drop t env)!(l0 + length es) =
+ (drop t env)!(l0+ length es - (t + length es))"
+ by (smt length_replicate length_splice nth_append)
+ with eq_sts_l[symmetric, unfolded assms]
+ show ?thesis by auto
+qed
+
+lemma l_n_v:
+ assumes "l < length sts"
+ and "sts!l = v"
+ and "t \<le> l"
+ shows "(take t sts @ replicate n x @ drop t sts) ! (l + n) = v"
+proof -
+ from l_n_v_orig[OF assms(1) assms(3), of "replicate n x"]
+ and assms(2)
+ show ?thesis by auto
+qed
+
+lemma l_n_v_s:
+ assumes "l < length sts"
+ and "t \<le> l"
+ shows "(take t sts @ sts0 @ drop t sts)[l + length sts0 := v] =
+ take t (sts[l:=v])@ sts0 @ drop t (sts[l:=v])"
+proof -
+ let ?n = "length sts0"
+ from assms(1, 2) have "t < length sts" by auto
+ hence h: "sts = take t sts @ drop t sts"
+ "length (take t sts) = t"
+ apply (metis append_take_drop_id)
+ by (smt `t < length sts` length_take)
+ with assms(2) have eq_sts_l: "sts[l:=v] = take t sts @ drop t sts [(l - t) := v]"
+ by (smt list_update_append)
+ with h(2) have eq_take_drop_t: "take t (sts[l:=v]) = take t sts"
+ "drop t (sts[l:=v]) = (drop t sts)[l - t:=v]"
+ apply (metis append_eq_conv_conj)
+ by (metis append_eq_conv_conj eq_sts_l h(2))
+ from h(2) have "length (take t sts @ sts0) = t + ?n"
+ by (metis length_append length_replicate nat_add_commute)
+ moreover from assms(2) have "t + ?n \<le> l + ?n" by auto
+ ultimately have "((take t sts @ sts0) @ drop t sts)[l + ?n := v] =
+ (take t sts @ sts0) @ (drop t sts)[(l + ?n - (t + ?n)) := v]"
+ by (smt list_update_append replicate_nth)
+ with eq_take_drop_t
+ show ?thesis by auto
+qed
+
+lemma l_n_v_s1:
+ assumes "l < length sts"
+ and "\<not> t \<le> l"
+ shows "(take t sts @ sts0 @ drop t sts)[l := v] =
+ take t (sts[l := v]) @ sts0 @ drop t (sts[l := v])"
+proof(cases "t < length sts")
+ case False
+ hence h: "take t sts = sts" "drop t sts = []"
+ "take t (sts[l:=v]) = sts [l:=v]"
+ "drop t (sts[l:=v]) = []"
+ by auto
+ with assms(1)
+ show ?thesis
+ by (metis list_update_append)
+next
+ case True
+ with assms(2)
+ have h: "(take t sts)[l:=v] = take t (sts[l:=v])"
+ "(sts[l:=v]) = (take t sts)[l:=v]@drop t sts"
+ "length (take t sts) = t"
+ apply (smt length_list_update length_take nth_equalityI nth_list_update nth_take)
+ apply (smt True append_take_drop_id assms(2) length_take list_update_append1)
+ by (smt True length_take)
+ from h(2,3) have "drop t (sts[l := v]) = drop t sts"
+ by (metis append_eq_conv_conj length_list_update)
+ with h(1)
+ show ?thesis
+ apply simp
+ by (metis assms(2) h(3) list_update_append1 not_leE)
+qed
+
+lemma l_n_v_s2:
+ assumes "l0 < length env"
+ and "t \<le> l0"
+ and "\<not> t \<le> l1"
+ shows "(take t env @ es @ drop t env) ! l1 = env ! l1"
+proof -
+ from assms(1, 2) have "t < length env" by auto
+ hence h: "env = take t env @ drop t env"
+ "length (take t env) = t"
+ apply (metis append_take_drop_id)
+ by (smt `t < length env` length_take)
+ with assms(3) show ?thesis
+ by (smt nth_append)
+qed
+
+lemma l_n_v_s3:
+ assumes "l0 < length env"
+ and "\<not> t \<le> l0"
+ shows "(take t env @ es @ drop t env) ! l0 = env ! l0"
+proof(cases "t < length env")
+ case True
+ hence h: "env = take t env @ drop t env"
+ "length (take t env) = t"
+ apply (metis append_take_drop_id)
+ by (smt `t < length env` length_take)
+ with assms(2) show ?thesis
+ by (smt nth_append)
+next
+ case False
+ hence "take t env = env" by auto
+ with assms(1) show ?thesis
+ by (metis nth_append)
+qed
+
+subsection {* Invariant under lifts and perms *}
+
+definition "lift_b t i j = (if (j \<ge> t) then (j + i) else j)"
+
+fun lift_t :: "nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg"
+where "lift_t t i (CInstr ((act0, l0), (act1, l1))) =
+ (CInstr ((act0, lift_b t i (nat_of l0)),
+ (act1, lift_b t i (nat_of l1))))" |
+ "lift_t t i (CLabel l) = CLabel (lift_b t i l)" |
+ "lift_t t i (CSeq c1 c2) = CSeq (lift_t t i c1) (lift_t t i c2)" |
+ "lift_t t i (CLocal c) = CLocal (lift_t (t + 1) i c)"
+
+definition "lift0 (i::nat) cpg = lift_t 0 i cpg"
+
+definition "perm_b t i j k = (if ((k::nat) = i \<and> i < t \<and> j < t) then j else
+ if (k = j \<and> i < t \<and> j < t) then i else k)"
+
+fun perm :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> cpg \<Rightarrow> cpg"
+where "perm t i j (CInstr ((act0, l0), (act1, l1))) =
+ (CInstr ((act0, perm_b t i j l0), (act1, perm_b t i j l1)))" |
+ "perm t i j (CLabel l) = CLabel (perm_b t i j l)" |
+ "perm t i j (CSeq c1 c2) = CSeq (perm t i j c1) (perm t i j c2)" |
+ "perm t i j (CLocal c) = CLocal (perm (t + 1) (i + 1) (j + 1) c)"
+
+definition "map_idx f sts = map (\<lambda> k. sts!(f (nat k))) [0 .. int (length sts) - 1]"
+
+definition "perm_s i j sts = map_idx (perm_b (length sts) i j) sts"
+
+fun lift_es :: "(tstate list \<times> nat) list \<Rightarrow> tstate list \<Rightarrow> tstate list" where
+ "lift_es [] env = env"
+ | "lift_es ((env', t)#ops) env = lift_es ops (take t env @ env' @ drop t env)"
+
+fun lift_ss :: "(tstate list \<times> nat) list \<Rightarrow> status list \<Rightarrow> status list" where
+ "lift_ss [] sts = sts"
+ | "lift_ss ((env', t)#ops) sts = lift_ss ops (take t sts @ map (\<lambda> x. Free) env' @ drop t sts)"
+
+
+fun lift_ts :: "(nat \<times> nat) list \<Rightarrow> cpg \<Rightarrow> cpg" where
+ "lift_ts [] cpg = cpg"
+ | "lift_ts ((lenv, t)#ops) cpg = lift_ts ops (lift_t t lenv cpg)"
+
+fun perm_ss :: "(nat \<times> nat) list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
+ "perm_ss [] env = env"
+ | "perm_ss ((i, j)#ops) env = perm_ss ops (perm_s i j env)"
+
+fun perms :: "nat => (nat \<times> nat) list \<Rightarrow> cpg \<Rightarrow> cpg" where
+ "perms n [] cpg = cpg"
+ | "perms n ((i, j)#ops) cpg = perms n ops (perm n i j cpg)"
+
+definition
+ "adjust_cpg len sps lfs cpg = lift_ts lfs (perms len sps cpg)"
+
+definition
+ "red_lfs lfs = map (apfst length) lfs"
+
+definition
+ "adjust_env sps lfs env = lift_es lfs (perm_ss sps env)"
+
+definition
+ "adjust_sts sps lfs sts = lift_ss lfs (perm_ss sps sts)"
+
+fun sts_disj_test :: "status list \<Rightarrow> status list \<Rightarrow> bool" where
+ "sts_disj_test [] [] = True"
+ | "sts_disj_test [] (s#ss) = False"
+ | "sts_disj_test (s#ss) [] = False"
+ | "sts_disj_test (s1#ss1) (s2#ss2) = (case (s1, s2) of
+ (Bound, Bound) \<Rightarrow> False
+ | _ \<Rightarrow> sts_disj_test ss1 ss2)"
+
+lemma inj_perm_b: "inj (perm_b t i j)"
+proof(induct rule:injI)
+ case (1 x y)
+ thus ?case
+ by (unfold perm_b_def, auto split:if_splits)
+qed
+
+lemma lift_wf_cpg_test:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ shows "wf_cpg_test (take t sts @ sts0 @ drop t sts) (lift_t t (length sts0) cpg) =
+ (True, take t sts' @ sts0 @ drop t sts')"
+ using assms
+proof(induct cpg arbitrary:t sts0 sts sts')
+ case (CInstr instr t sts0 sts sts')
+ obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
+ by (metis surj_pair tstate.exhaust)
+ from CInstr
+ show ?case
+ by (auto simp:eq_instr lift_b_def)
+next
+ case (CLabel l t sts0 sts sts')
+ thus ?case
+ apply (auto simp:lift_b_def
+ replicate_nth replicate_update l_n_v_orig l_n_v_s)
+ apply (metis (mono_tags) diff_diff_cancel length_drop length_rev
+ linear not_less nth_append nth_take rev_take take_all)
+ by (simp add:l_n_v_s1)
+next
+ case (CSeq c1 c2 sts0 sts sts')
+ thus ?case
+ by (auto simp: lift0_def lift_b_def split:prod.splits)
+next
+ case (CLocal body t sts0 sts sts')
+ from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'"
+ by (auto simp:lift0_def lift_b_def split:prod.splits)
+ let ?lift_s = "\<lambda> t sts. take t sts @ sts0 @ drop t sts"
+ have eq_lift_1: "(?lift_s (Suc t) (Free # sts)) = Free#?lift_s t sts"
+ by (simp)
+ from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1"
+ by (unfold less_eq_list_def, simp)
+ hence eq_sts1: "sts1 = hd sts1 # tl sts1"
+ by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2))
+ from CLocal(1)[OF h(1), of "Suc t", of "sts0", unfolded eq_lift_1]
+ show ?case
+ apply (simp, subst eq_sts1, simp)
+ apply (simp add:h(2))
+ by (subst eq_sts1, simp add:h(2))
+qed
+
+lemma lift_c2t:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ and "length env = length sts"
+ shows "c2t (take t env @ es @ drop t env) (lift_t t (length es) cpg) =
+ c2t env cpg"
+ using assms
+proof(induct cpg arbitrary: t env es sts sts')
+ case (CInstr instr t env es sts sts')
+ obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
+ by (metis nat_of.cases surj_pair)
+ from CInstr have h: "l0 < length env" "l1 < length env"
+ by (auto simp:eq_instr)
+ with CInstr(2)
+ show ?case
+ by (auto simp:eq_instr lift_b_def l_n_v_orig l_n_v_s2 l_n_v_s3)
+next
+ case (CLabel l t env es sts sts')
+ thus ?case
+ by (auto simp:lift_b_def
+ replicate_nth replicate_update l_n_v_orig l_n_v_s3)
+next
+ case (CSeq c1 c2 t env es sts sts')
+ from CSeq(3) obtain sts1
+ where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')"
+ by (auto split:prod.splits)
+ from wf_cpg_test_le[OF h(1)] have "length sts = length sts1"
+ by (auto simp:less_eq_list_def)
+ from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" .
+ from CSeq(1)[OF h(1) CSeq(4)]
+ CSeq(2)[OF h(2) eq_len_env]
+ show ?case
+ by (auto simp: lift0_def lift_b_def split:prod.splits)
+next
+ case (CLocal body t env es sts sts')
+ { fix x
+ from CLocal(2)
+ obtain sts1 where h1: "wf_cpg_test (Free # sts) body = (True, sts1)"
+ by (auto split:prod.splits)
+ from CLocal(3) have "length (x#env) = length (Free # sts)" by simp
+ from CLocal(1)[OF h1 this, of "Suc t"]
+ have "c2t (x # take t env @ es @ drop t env) (lift_t (Suc t) (length es) body) =
+ c2t (x # env) body"
+ by simp
+ } thus ?case by simp
+qed
+
+lemma upto_len: "length [i .. j] = (if j < i then 0 else (nat (j - i + 1)))"
+proof(induct i j rule:upto.induct)
+ case (1 i j)
+ show ?case
+ proof(cases "j < i")
+ case True
+ thus ?thesis by simp
+ next
+ case False
+ hence eq_ij: "[i..j] = i # [i + 1..j]" by (simp add:upto.simps)
+ from 1 False
+ show ?thesis
+ by (auto simp:eq_ij)
+ qed
+qed
+
+lemma upto_append:
+ assumes "x \<le> y + 1"
+ shows "[x .. y + 1] = [x .. y]@[y + 1]"
+ using assms
+ by (induct x y rule:upto.induct, auto simp:upto.simps)
+
+lemma nth_upto:
+ assumes "l < length sts"
+ shows "[0..(int (length sts)) - 1]!l = int l"
+ using assms
+proof(induct sts arbitrary:l)
+ case Nil
+ thus ?case by simp
+next
+ case (Cons s sts l)
+ from Cons(2)
+ have "0 \<le> (int (length sts) - 1) + 1" by auto
+ from upto_append[OF this]
+ have eq_upto: "[0..int (length sts)] = [0..int (length sts) - 1] @ [int (length sts)]"
+ by simp
+ show ?case
+ proof(cases "l < length sts")
+ case True
+ with Cons(1)[OF True] eq_upto
+ show ?thesis
+ apply simp
+ by (smt nth_append take_eq_Nil upto_len)
+ next
+ case False
+ with Cons(2) have eq_l: "l = length sts" by simp
+ show ?thesis
+ proof(cases sts)
+ case (Cons x xs)
+ have "[0..1 + int (length xs)] = [0 .. int (length xs)]@[1 + int (length xs)]"
+ by (smt upto_append)
+ moreover have "length [0 .. int (length xs)] = Suc (length xs)"
+ by (smt upto_len)
+ moreover note Cons
+ ultimately show ?thesis
+ apply (simp add:eq_l)
+ by (smt nth_Cons' nth_append)
+ qed (simp add:upto_len upto.simps eq_l)
+ qed
+qed
+
+lemma map_idx_idx:
+ assumes "l < length sts"
+ shows "(map_idx f sts)!l = sts!(f l)"
+proof -
+ from assms have lt_l: "l < length [0..int (length sts) - 1]"
+ by (smt upto_len)
+ show ?thesis
+ apply (unfold map_idx_def nth_map[OF lt_l])
+ by (metis assms nat_int nth_upto)
+qed
+
+lemma map_idx_len: "length (map_idx f sts) = length sts"
+ apply (unfold map_idx_def)
+ by (smt length_map upto_len)
+
+lemma map_idx_eq:
+ assumes "\<forall> l < length sts. f l = g l"
+ shows "map_idx f sts = map_idx g sts"
+proof(induct rule: nth_equalityI)
+ case 1
+ show "length (map_idx f sts) = length (map_idx g sts)"
+ by (metis map_idx_len)
+next
+ case 2
+ { fix l
+ assume "l < length (map_idx f sts)"
+ hence "l < length sts"
+ by (metis map_idx_len)
+ from map_idx_idx[OF this] and assms and this
+ have "map_idx f sts ! l = map_idx g sts ! l"
+ by (smt list_eq_iff_nth_eq map_idx_idx map_idx_len)
+ } thus ?case by auto
+qed
+
+lemma perm_s_commut: "perm_s i j sts = perm_s j i sts"
+ apply (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def)
+ by smt
+
+lemma map_idx_id: "map_idx id sts = sts"
+proof(induct rule:nth_equalityI)
+ case 1
+ from map_idx_len show "length (map_idx id sts) = length sts" .
+next
+ case 2
+ { fix l
+ assume "l < length (map_idx id sts)"
+ from map_idx_idx[OF this[unfolded map_idx_len]]
+ have "map_idx id sts ! l = sts ! l" by simp
+ } thus ?case by auto
+qed
+
+lemma perm_s_lt_i:
+ assumes "\<not> i < length sts"
+ shows "perm_s i j sts = sts"
+proof -
+ have "map_idx (perm_b (length sts) i j) sts = map_idx id sts"
+ proof(rule map_idx_eq, default, clarsimp)
+ fix l
+ assume "l < length sts"
+ with assms
+ show "perm_b (length sts) i j l = l"
+ by (unfold perm_b_def, auto)
+ qed
+ with map_idx_id
+ have "map_idx (perm_b (length sts) i j) sts = sts" by simp
+ thus ?thesis by (simp add:perm_s_def)
+qed
+
+lemma perm_s_lt:
+ assumes "\<not> i < length sts \<or> \<not> j < length sts"
+ shows "perm_s i j sts = sts"
+ using assms
+proof
+ assume "\<not> i < length sts"
+ from perm_s_lt_i[OF this] show ?thesis .
+next
+ assume "\<not> j < length sts"
+ from perm_s_lt_i[OF this, of i, unfolded perm_s_commut]
+ show ?thesis .
+qed
+
+lemma perm_s_update_i:
+ assumes "i < length sts"
+ and "j < length sts"
+ shows "sts ! i = perm_s i j sts ! j"
+proof -
+ from map_idx_idx[OF assms(2)]
+ have "map_idx (perm_b (length sts) i j) sts ! j = sts!(perm_b (length sts) i j j)" .
+ with assms
+ show ?thesis
+ by (auto simp:perm_s_def perm_b_def)
+qed
+
+lemma nth_perm_s_neq:
+ assumes "l \<noteq> j"
+ and "l \<noteq> i"
+ and "l < length sts"
+ shows "sts ! l = perm_s i j sts ! l"
+proof -
+ have "map_idx (perm_b (length sts) i j) sts ! l = sts!(perm_b (length sts) i j l)"
+ by (metis assms(3) map_idx_def map_idx_idx)
+ with assms
+ show ?thesis
+ by (unfold perm_s_def perm_b_def, auto)
+qed
+
+lemma map_idx_update:
+ assumes "f j = i"
+ and "inj f"
+ and "i < length sts"
+ and "j < length sts"
+ shows "map_idx f (sts[i:=v]) = map_idx f sts[j := v]"
+proof(induct rule:nth_equalityI)
+ case 1
+ show "length (map_idx f (sts[i := v])) = length (map_idx f sts[j := v])"
+ by (metis length_list_update map_idx_len)
+next
+ case 2
+ { fix l
+ assume lt_l: "l < length (map_idx f (sts[i := v]))"
+ have eq_nth: "sts[i := v] ! f l = map_idx f sts[j := v] ! l"
+ proof(cases "f l = i")
+ case False
+ from lt_l have "l < length sts"
+ by (metis length_list_update map_idx_len)
+ from map_idx_idx[OF this, of f] have " map_idx f sts ! l = sts ! f l" .
+ moreover from False assms have "l \<noteq> j" by auto
+ moreover note False
+ ultimately show ?thesis by simp
+ next
+ case True
+ with assms have eq_l: "l = j"
+ by (metis inj_eq)
+ moreover from lt_l eq_l
+ have "j < length (map_idx f sts[j := v])"
+ by (metis length_list_update map_idx_len)
+ moreover note True assms
+ ultimately show ?thesis by simp
+ qed
+ from lt_l have "l < length (sts[i := v])"
+ by (metis map_idx_len)
+ from map_idx_idx[OF this] eq_nth
+ have "map_idx f (sts[i := v]) ! l = map_idx f sts[j := v] ! l" by simp
+ } thus ?case by auto
+qed
+
+lemma perm_s_update:
+ assumes "i < length sts"
+ and "j < length sts"
+ shows "(perm_s i j sts)[i := v] = perm_s i j (sts[j := v])"
+proof -
+ have "map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v]) =
+ map_idx (perm_b (length (sts[j := v])) i j) sts[i := v]"
+ proof(rule map_idx_update[OF _ _ assms(2, 1)])
+ from inj_perm_b show "inj (perm_b (length (sts[j := v])) i j)" .
+ next
+ from assms show "perm_b (length (sts[j := v])) i j i = j"
+ by (auto simp:perm_b_def)
+ qed
+ hence "map_idx (perm_b (length sts) i j) sts[i := v] =
+ map_idx (perm_b (length (sts[j := v])) i j) (sts[j := v])"
+ by simp
+ thus ?thesis by (simp add:perm_s_def)
+qed
+
+lemma perm_s_len: "length (perm_s i j sts') = length sts'"
+ apply (unfold perm_s_def map_idx_def)
+ by (smt Nil_is_map_conv length_0_conv length_greater_0_conv length_map neq_if_length_neq upto_len)
+
+lemma perm_s_update_neq:
+ assumes "l \<noteq> i"
+ and "l \<noteq> j"
+ shows "perm_s i j sts[l := v] = perm_s i j (sts[l := v])"
+proof(cases "i < length sts \<and> j < length sts")
+ case False
+ with perm_s_lt have "perm_s i j sts = sts" by auto
+ moreover have "perm_s i j (sts[l:=v]) = sts[l:=v]"
+ proof -
+ have "length (sts[l:=v]) = length sts" by auto
+ from False[folded this] perm_s_lt
+ show ?thesis by metis
+ qed
+ ultimately show ?thesis by simp
+next
+ case True
+ note lt_ij = this
+ show ?thesis
+ proof(cases "l < length sts")
+ case False
+ hence "sts[l:=v] = sts" by auto
+ moreover have "perm_s i j sts[l := v] = perm_s i j sts"
+ proof -
+ from False and perm_s_len
+ have "\<not> l < length (perm_s i j sts)" by metis
+ thus ?thesis by auto
+ qed
+ ultimately show ?thesis by simp
+ next
+ case True
+ show ?thesis
+ proof -
+ have "map_idx (perm_b (length (sts[l := v])) i j) (sts[l := v]) =
+ map_idx (perm_b (length (sts[l := v])) i j) sts[l := v]"
+ proof(induct rule:map_idx_update [OF _ inj_perm_b True True])
+ case 1
+ from assms lt_ij
+ show ?case
+ by (unfold perm_b_def, auto)
+ qed
+ thus ?thesis
+ by (unfold perm_s_def, simp)
+ qed
+ qed
+qed
+
+lemma perm_sb: "(perm_s i j sts)[perm_b (length sts) i j l := v] = perm_s i j (sts[l := v])"
+ apply(subst perm_b_def, auto simp:perm_s_len perm_s_lt perm_s_update)
+ apply (subst perm_s_commut, subst (2) perm_s_commut, rule_tac perm_s_update, auto)
+ by (rule_tac perm_s_update_neq, auto)
+
+lemma perm_s_id: "perm_s i i sts = sts" (is "?L = ?R")
+proof -
+ from map_idx_id have "?R = map_idx id sts" by metis
+ also have "\<dots> = ?L"
+ by (unfold perm_s_def, rule map_idx_eq, unfold perm_b_def, auto)
+ finally show ?thesis by simp
+qed
+
+lemma upto_map:
+ assumes "i \<le> j"
+ shows "[i .. j] = i # map (\<lambda> x. x + 1) [i .. (j - 1)]"
+ using assms
+proof(induct i j rule:upto.induct)
+ case (1 i j)
+ show ?case (is "?L = ?R")
+ proof -
+ from 1(2)
+ have eq_l: "?L = i # [i+1 .. j]" by (simp add:upto.simps)
+ show ?thesis
+ proof(cases "i + 1 \<le> j")
+ case False
+ with eq_l show ?thesis by (auto simp:upto.simps)
+ next
+ case True
+ have "[i + 1..j] = map (\<lambda>x. x + 1) [i..j - 1]"
+ by (smt "1.hyps" Cons_eq_map_conv True upto.simps)
+ with eq_l
+ show ?thesis by simp
+ qed
+ qed
+qed
+
+lemma perm_s_cons: "(perm_s (Suc i) (Suc j) (s # sts)) = s#perm_s i j sts"
+proof -
+ have le_0: "0 \<le> int (length (s # sts)) - 1" by simp
+ have "map (\<lambda>k. (s # sts) ! perm_b (length (s # sts)) (Suc i) (Suc j) (nat k))
+ [0..int (length (s # sts)) - 1] =
+ s # map (\<lambda>k. sts ! perm_b (length sts) i j (nat k)) [0..int (length sts) - 1]"
+ by (unfold upto_map[OF le_0], auto simp:perm_b_def, smt+)
+ thus ?thesis by (unfold perm_s_def map_idx_def, simp)
+qed
+
+lemma perm_wf_cpg_test:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ shows "wf_cpg_test (perm_s i j sts) (perm (length sts) i j cpg) =
+ (True, perm_s i j sts')"
+ using assms
+proof(induct cpg arbitrary:t i j sts sts')
+ case (CInstr instr i j sts sts')
+ obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
+ by (metis surj_pair tstate.exhaust)
+ from CInstr
+ show ?case
+ apply (unfold eq_instr, clarsimp)
+ by (unfold perm_s_len perm_b_def, clarsimp)
+next
+ case (CLabel l i j sts sts')
+ have "(perm_s i j sts)[perm_b (length sts) i j l := Bound] = perm_s i j (sts[l := Bound])"
+ by (metis perm_sb)
+ with CLabel
+ show ?case
+ apply (auto simp:perm_s_len perm_sb)
+ apply (subst perm_b_def, auto simp:perm_sb)
+ apply (subst perm_b_def, auto simp:perm_s_lt perm_s_update_i)
+ apply (unfold perm_s_id, subst perm_s_commut, simp add: perm_s_update_i[symmetric])
+ apply (simp add:perm_s_update_i[symmetric])
+ by (simp add: nth_perm_s_neq[symmetric])
+next
+ case (CSeq c1 c2 i j sts sts')
+ thus ?case
+ apply (auto split:prod.splits)
+ apply (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le)
+ by (metis (hide_lams, no_types) less_eq_list_def prod.inject wf_cpg_test_le)
+next
+ case (CLocal body i j sts sts')
+ from this(2) obtain sts1 where h: "wf_cpg_test (Free # sts) body = (True, sts1)" "tl sts1 = sts'"
+ by (auto simp:lift0_def lift_b_def split:prod.splits)
+ from wf_cpg_test_le[OF h(1)] have "length (Free#sts) = length sts1"
+ by (unfold less_eq_list_def, simp)
+ hence eq_sts1: "sts1 = hd sts1 # tl sts1"
+ by (metis append_Nil append_eq_conv_conj hd.simps list.exhaust tl.simps(2))
+ from CLocal(1)[OF h(1), of "Suc i" "Suc j"] h(2) eq_sts1
+ show ?case
+ apply (auto split:prod.splits simp:perm_s_cons)
+ by (metis perm_s_cons tl.simps(2))
+qed
+
+lemma nth_perm_sb:
+ assumes "l0 < length env"
+ shows "perm_s i j env ! perm_b (length env) i j l0 = env ! l0"
+ by (metis assms nth_perm_s_neq perm_b_def perm_s_commut perm_s_lt perm_s_update_i)
+
+
+lemma perm_c2t:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ and "length env = length sts"
+ shows "c2t (perm_s i j env) (perm (length env) i j cpg) =
+ c2t env cpg"
+ using assms
+proof(induct cpg arbitrary:i j env sts sts')
+ case (CInstr instr i j env sts sts')
+ obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
+ by (metis surj_pair tstate.exhaust)
+ from CInstr have h: "l0 < length env" "l1 < length env"
+ by (auto simp:eq_instr)
+ with CInstr(2)
+ show ?case
+ apply (auto simp:eq_instr)
+ by (metis nth_perm_sb)+
+next
+ case (CLabel l t env es sts sts')
+ thus ?case
+ apply (auto)
+ by (metis nth_perm_sb)
+next
+ case (CSeq c1 c2 i j env sts sts')
+ from CSeq(3) obtain sts1
+ where h: "wf_cpg_test sts c1 = (True, sts1)" "wf_cpg_test sts1 c2 = (True, sts')"
+ by (auto split:prod.splits)
+ from wf_cpg_test_le[OF h(1)] have "length sts = length sts1"
+ by (auto simp:less_eq_list_def)
+ from CSeq(4)[unfolded this] have eq_len_env: "length env = length sts1" .
+ from CSeq(1)[OF h(1) CSeq(4)]
+ CSeq(2)[OF h(2) eq_len_env]
+ show ?case by auto
+next
+ case (CLocal body i j env sts sts')
+ { fix x
+ from CLocal(2, 3)
+ obtain sts1 where "wf_cpg_test (Free # sts) body = (True, sts1)"
+ "length (x#env) = length (Free # sts)"
+ by (auto split:prod.splits)
+ from CLocal(1)[OF this]
+ have "(c2t (x # perm_s i j env) (perm (Suc (length env)) (Suc i) (Suc j) body)) =
+ (c2t (x # env) body)"
+ by (metis Suc_length_conv perm_s_cons)
+ } thus ?case by simp
+qed
+
+lemma wf_cpg_test_disj_aux1:
+ assumes "sts_disj sts1 (sts[l := Bound] - sts)"
+ "l < length sts"
+ "sts ! l = Free"
+ shows "(sts1 + sts) ! l = Free"
+proof -
+ from assms(1)[unfolded sts_disj_def]
+ have h: "length sts1 = length (sts[l := Bound] - sts)"
+ "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> (sts[l := Bound] - sts) ! i = Bound))"
+ by auto
+ from h(1) assms(2)
+ have lt_l: "l < length sts1"
+ "l < length (sts[l := Bound] - sts)"
+ "l < length (sts1 + sts)"
+ apply (smt length_list_update minus_list_len)
+ apply (smt assms(2) length_list_update minus_list_len)
+ by (smt assms(2) h(1) length_list_update length_sts_plus minus_list_len)
+ from h(2)[rule_format, of l, OF this(1)]
+ have " \<not> (sts1 ! l = Bound \<and> (sts[l := Bound] - sts) ! l = Bound)" .
+ with assms(3) nth_sts_minus[OF lt_l(2)] nth_sts_plus[OF lt_l(3)] assms(2)
+ show ?thesis
+ by (cases "sts1!l", auto)
+qed
+
+lemma wf_cpg_test_disj_aux2:
+ assumes "sts_disj sts1 (sts[l := Bound] - sts)"
+ " l < length sts"
+ shows "(sts1 + sts)[l := Bound] = sts1 + sts[l := Bound]"
+proof -
+ from assms have lt_l: "l < length (sts1 + sts[l:=Bound])"
+ "l < length (sts1 + sts)"
+ apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def)
+ by (smt assms(1) assms(2) length_list_update length_sts_plus minus_list_len sts_disj_def)
+ show ?thesis
+ proof(induct rule:nth_equalityI)
+ case 1
+ show ?case
+ by (smt assms(1) length_list_update length_sts_plus minus_list_len sts_disj_def)
+ next
+ case 2
+ { fix i
+ assume lt_i: "i < length ((sts1 + sts)[l := Bound])"
+ have " (sts1 + sts)[l := Bound] ! i = (sts1 + sts[l := Bound]) ! i"
+ proof(cases "i = l")
+ case True
+ with nth_sts_plus[OF lt_l(1)] assms(2) nth_sts_plus[OF lt_l(2)] lt_l
+ show ?thesis
+ by (cases "sts1 ! l", auto)
+ next
+ case False
+ from lt_i have "i < length (sts1 + sts)" "i < length (sts1 + sts[l := Bound])"
+ apply auto
+ by (metis length_list_update plus_list_len)
+ from nth_sts_plus[OF this(1)] nth_sts_plus[OF this(2)] lt_i lt_l False
+ show ?thesis
+ by simp
+ qed
+ } thus ?case by auto
+ qed
+qed
+
+lemma sts_list_plus_commut:
+ shows "sts1 + sts2 = sts2 + (sts1:: status list)"
+proof(induct rule:nth_equalityI)
+ case 1
+ show ?case
+ by (metis min_max.inf.commute plus_list_len)
+next
+ case 2
+ { fix i
+ assume lt_i1: "i<length (sts1 + sts2)"
+ hence lt_i2: "i < length (sts2 + sts1)"
+ by (smt plus_list_len)
+ from nth_sts_plus[OF this] nth_sts_plus[OF lt_i1]
+ have "(sts1 + sts2) ! i = (sts2 + sts1) ! i"
+ apply simp
+ apply (cases "sts1!i", cases "sts2!i", auto)
+ by (cases "sts2!i", auto)
+ } thus ?case by auto
+qed
+
+lemma sts_disj_cons:
+ assumes "sts_disj sts1 sts2"
+ shows "sts_disj (Free # sts1) (s # sts2)"
+ using assms
+proof -
+ from assms
+ have h: "length sts1 = length sts2"
+ "(\<forall>i<length sts1. \<not> (sts1 ! i = Bound \<and> sts2 ! i = Bound))"
+ by (unfold sts_disj_def, auto)
+ from h(1) have "length (Free # sts1) = length (s # sts2)" by simp
+ moreover {
+ fix i
+ assume lt_i: "i<length (Free # sts1)"
+ have "\<not> ((Free # sts1) ! i = Bound \<and> (s # sts2) ! i = Bound)"
+ proof(cases "i")
+ case 0
+ thus ?thesis by simp
+ next
+ case (Suc k)
+ from h(2)[rule_format, of k] lt_i[unfolded Suc] Suc
+ show ?thesis by auto
+ qed
+ }
+ ultimately show ?thesis by (auto simp:sts_disj_def)
+qed
+
+lemma sts_disj_uncomb:
+ assumes "sts_disj sts (sts1 + sts2)"
+ and "sts_disj sts1 sts2"
+ shows "sts_disj sts sts1" "sts_disj sts sts2"
+ using assms
+ apply (smt assms(1) assms(2) length_sts_plus nth_sts_plus plus_status.simps(2) sts_disj_def)
+ by (smt assms(1) assms(2) length_sts_plus nth_sts_plus
+ plus_status.simps(2) sts_disj_def sts_list_plus_commut)
+
+lemma wf_cpg_test_disj:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ and "sts_disj sts1 (sts' - sts)"
+ shows "wf_cpg_test (sts1 + sts) cpg = (True, sts1 + sts')"
+ using assms
+proof(induct cpg arbitrary:sts sts1 sts')
+ case (CInstr instr sts sts1 sts')
+ obtain a0 l0 a1 l1 where eq_instr: "instr = ((a0, St l0), (a1, St l1))"
+ by (metis nat_of.cases surj_pair)
+ with CInstr(1) have h: "l0 < length sts" "l1 < length sts" "sts = sts'" by auto
+ with CInstr eq_instr
+ show ?case
+ apply (auto)
+ by (smt length_sts_plus minus_list_len sts_disj_def)+
+next
+ case (CLabel l sts sts1 sts')
+ thus ?case
+ apply auto
+ apply (smt length_list_update length_sts_plus minus_list_len sts_disj_def)
+ by (auto simp: wf_cpg_test_disj_aux1 wf_cpg_test_disj_aux2)
+next
+ case (CSeq c1 c2 sts sts1 sts')
+ from CSeq(3) obtain sts''
+ where h: "wf_cpg_test sts c1 = (True, sts'')" "wf_cpg_test sts'' c2 = (True, sts')"
+ by (auto split:prod.splits)
+ from wf_cpg_test_le[OF h(1)] have "length sts = length sts''"
+ by (auto simp:less_eq_list_def)
+ from sts_le_comb[OF wf_cpg_test_le[OF h(1)] wf_cpg_test_le[OF h(2)]]
+ have " sts' - sts = (sts'' - sts) + (sts' - sts'')" "sts_disj (sts'' - sts) (sts' - sts'')"
+ by auto
+ from sts_disj_uncomb[OF CSeq(4)[unfolded this(1)] this(2)]
+ have "sts_disj sts1 (sts'' - sts)" "sts_disj sts1 (sts' - sts'')" .
+ from CSeq(1)[OF h(1) this(1)] CSeq(2)[OF h(2) this(2)]
+ have "wf_cpg_test (sts1 + sts) c1 = (True, sts1 + sts'')"
+ "wf_cpg_test (sts1 + sts'') c2 = (True, sts1 + sts')" .
+ thus ?case
+ by simp
+next
+ case (CLocal body sts sts1 sts')
+ from this(2)
+ obtain sts'' where h: "wf_cpg_test (Free # sts) body = (True, sts'')" "sts' = tl sts''"
+ by (auto split:prod.splits)
+ from wf_cpg_test_le[OF h(1), unfolded less_eq_list_def] h(2)
+ obtain s where eq_sts'': "sts'' = s#sts'"
+ by (metis Suc_length_conv list.size(4) tl.simps(2))
+ let ?sts = "Free#sts1"
+ from CLocal(3) have "sts_disj ?sts (sts'' - (Free # sts))"
+ apply (unfold eq_sts'', simp)
+ by (metis sts_disj_cons)
+ from CLocal(1)[OF h(1) this] eq_sts''
+ show ?case
+ by (auto split:prod.splits)
+qed
+
+lemma sts_disj_free:
+ assumes "list_all (op = Free) sts"
+ and "length sts' = length sts"
+ shows "sts_disj sts' sts"
+by (metis (full_types) assms(1) assms(2) list_all_length
+ status.distinct(1) sts_disj_def)
+
+lemma all_free_plus:
+ assumes "length sts' = length sts"
+ and "list_all (op = Free) sts"
+ shows "sts' + sts = sts'"
+ using assms
+proof(induct sts' arbitrary:sts)
+ case (Cons s sts' sts)
+ note cs = Cons
+ thus ?case
+ proof(cases "sts")
+ case (Cons s1 sts1)
+ with cs
+ show ?thesis
+ by (smt list.size(4) list_all_simps(1)
+ plus_list.simps(3) plus_status.simps(1) sts_list_plus_commut)
+ qed auto
+qed auto
+
+lemma wf_cpg_test_extrapo:
+ assumes "wf_cpg_test sts cpg = (True, sts)"
+ and "list_all (op = Free) sts"
+ and "length sts' = length sts"
+ shows "wf_cpg_test sts' cpg = (True, sts')"
+proof -
+ have "sts_disj sts' (sts - sts)"
+ proof(rule sts_disj_free)
+ from assms(2)
+ show "list_all (op = Free) (sts - sts)"
+ by (induct sts, auto)
+ next
+ from assms(3) show "length sts' = length (sts - sts)"
+ by (metis length_sts_plus minus_list_len plus_list_len)
+ qed
+ from wf_cpg_test_disj [OF assms(1) this]
+ have "wf_cpg_test (sts' + sts) cpg = (True, sts' + sts)" .
+ moreover from all_free_plus[OF assms(3, 2)] have "sts' + sts = sts'" .
+ finally show ?thesis by simp
+qed
+
+lemma perms_wf_cpg_test:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ shows "wf_cpg_test (perm_ss ops sts) (perms (length sts) ops cpg) =
+ (True, perm_ss ops sts')"
+ using assms
+proof(induct ops arbitrary:sts cpg sts')
+ case (Cons sp ops sts cpg sts')
+ show ?case
+ proof(cases "sp")
+ case (Pair i j)
+ show ?thesis
+ proof -
+ let ?sts = "(perm_s i j sts)" and ?cpg = "(perm (length sts) i j cpg)"
+ and ?sts' = "perm_s i j sts'"
+ have "wf_cpg_test (perm_ss ops ?sts) (perms (length ?sts) ops ?cpg) =
+ (True, perm_ss ops ?sts')"
+ proof(rule Cons(1))
+ show "wf_cpg_test (perm_s i j sts) (perm (length sts) i j cpg) = (True, perm_s i j sts')"
+ by (metis Cons.prems perm_wf_cpg_test)
+ qed
+ thus ?thesis
+ apply (unfold Pair)
+ apply simp
+ by (metis perm_s_len)
+ qed
+ qed
+qed auto
+
+lemma perm_ss_len: "length (perm_ss ops xs) = length xs"
+proof(induct ops arbitrary:xs)
+ case (Cons sp ops xs)
+ show ?case
+ proof(cases "sp")
+ case (Pair i j)
+ show ?thesis
+ proof -
+ let ?xs = "(perm_s i j xs)"
+ have "length (perm_ss ops ?xs) = length ?xs"
+ by (metis Cons.hyps)
+ also have "\<dots> = length xs"
+ by (metis perm_s_len)
+ finally show ?thesis
+ by (unfold Pair, simp)
+ qed
+ qed
+qed auto
+
+lemma perms_c2t:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ and "length env = length sts"
+ shows "c2t (perm_ss ops env) (perms (length env) ops cpg) = c2t env cpg"
+ using assms
+proof(induct ops arbitrary:sts cpg sts' env)
+ case (Cons sp ops sts cpg sts' env)
+ show ?case
+ proof(cases "sp")
+ case (Pair i j)
+ show ?thesis
+ proof -
+ let ?env = "(perm_s i j env)" and ?cpg = "(perm (length env) i j cpg)"
+ have " c2t (perm_ss ops ?env) (perms (length ?env) ops ?cpg) = c2t ?env ?cpg"
+ proof(rule Cons(1))
+ from perm_wf_cpg_test[OF Cons(2), of i j, folded Cons(3)]
+ show "wf_cpg_test (perm_s i j sts) (perm (length env) i j cpg) = (True, perm_s i j sts')" .
+ next
+ show "length (perm_s i j env) = length (perm_s i j sts)"
+ by (metis Cons.prems(2) perm_s_len)
+ qed
+ also have "\<dots> = c2t env cpg"
+ by (metis Cons.prems(1) Cons.prems(2) perm_c2t)
+ finally show ?thesis
+ apply (unfold Pair)
+ apply simp
+ by (metis perm_s_len)
+ qed
+ qed
+qed auto
+
+lemma red_lfs_nil: "red_lfs [] = []"
+ by (simp add:red_lfs_def)
+
+lemma red_lfs_cons: "red_lfs ((env, t)#lfs) = (length env, t)#(red_lfs lfs)"
+ by (simp add:red_lfs_def)
+
+lemmas red_lfs_simps [simp] = red_lfs_nil red_lfs_cons
+
+lemma lifts_wf_cpg_test:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ shows "wf_cpg_test (lift_ss ops sts) (lift_ts (red_lfs ops) cpg)
+ = (True, lift_ss ops sts')"
+ using assms
+proof(induct ops arbitrary:sts cpg sts')
+ case (Cons sp ops sts cpg sts')
+ show ?case
+ proof(cases "sp")
+ case (Pair env' t)
+ thus ?thesis
+ proof -
+ let ?sts = "(take t sts @ map (\<lambda>x. Free) env' @ drop t sts)"
+ and ?sts' = "(take t sts' @ map (\<lambda>x. Free) env' @ drop t sts')"
+ and ?cpg = "(lift_t t (length env') cpg)"
+ have "wf_cpg_test (lift_ss ops ?sts) (lift_ts (red_lfs ops) ?cpg) = (True, lift_ss ops ?sts')"
+ proof(induct rule: Cons(1))
+ case 1
+ show ?case
+ by (metis Cons.prems length_map lift_wf_cpg_test)
+ qed
+ thus ?thesis
+ by (unfold Pair, simp)
+ qed
+ qed
+qed auto
+
+lemma lifts_c2t:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ and "length env = length sts"
+ shows "c2t (lift_es ops env) (lift_ts (red_lfs ops) cpg) = c2t env cpg"
+ using assms
+proof(induct ops arbitrary:sts cpg sts' env)
+ case (Cons sp ops sts cpg sts' env)
+ show ?case
+ proof(cases "sp")
+ case (Pair env' t)
+ show ?thesis
+ proof -
+ let ?env = "(take t env @ env' @ drop t env)"
+ and ?cpg = "(lift_t t (length env') cpg)"
+ have "c2t (lift_es ops ?env) (lift_ts (red_lfs ops) ?cpg) = c2t ?env ?cpg"
+ proof(rule Cons(1))
+ from lift_wf_cpg_test[OF Cons(2), of t "map (\<lambda> x. Free) env'", simplified length_map]
+ show "wf_cpg_test (take t sts @ map (\<lambda>x. Free) env' @ drop t sts)
+ (lift_t t (length env') cpg) =
+ (True, take t sts' @ map (\<lambda>x. Free) env' @ drop t sts')" .
+ next
+ show "length (take t env @ env' @ drop t env) =
+ length (take t sts @ map (\<lambda>x. Free) env' @ drop t sts)"
+ by (metis (full_types) Cons.prems(2) Pair assms(2) length_append
+ length_drop length_map length_take)
+ qed
+ also have "\<dots> = c2t env cpg"
+ by (metis Cons.prems(1) Cons.prems(2) lift_c2t)
+ finally show ?thesis
+ by (unfold Pair, simp)
+ qed
+ qed
+qed auto
+
+lemma adjust_c2t:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ and "length env = length sts"
+ shows "c2t (adjust_env sps lfs env) (adjust_cpg (length sts) sps (red_lfs lfs) cpg) = c2t env cpg"
+proof -
+ let ?cpg = "(perms (length sts) sps cpg)"
+ and ?env = "(perm_ss sps env)"
+ have "c2t (lift_es lfs ?env)
+ (lift_ts (red_lfs lfs) ?cpg) = c2t ?env ?cpg"
+ proof (rule lifts_c2t)
+ from perms_wf_cpg_test[OF assms(1), of sps]
+ show "wf_cpg_test (perm_ss sps sts) (perms (length sts) sps cpg) = (True, perm_ss sps sts')" .
+ next
+ show "length (perm_ss sps env) = length (perm_ss sps sts)"
+ by (metis assms(2) perm_ss_len)
+ qed
+ also have "\<dots> = c2t env cpg"
+ proof(fold assms(2), rule perms_c2t)
+ from assms(1) show " wf_cpg_test sts cpg = (True, sts')" .
+ next
+ from assms(2) show "length env = length sts" .
+ qed
+ finally show ?thesis
+ by (unfold adjust_env_def adjust_cpg_def, simp)
+qed
+
+lemma adjust_wf_cpg_test:
+ assumes "wf_cpg_test sts cpg = (True, sts')"
+ shows "wf_cpg_test (adjust_sts sps lfs sts) (adjust_cpg (length sts) sps (red_lfs lfs) cpg) =
+ (True, adjust_sts sps lfs sts')"
+proof -
+ have " wf_cpg_test (lift_ss lfs (perm_ss sps sts)) (lift_ts (red_lfs lfs) (perms (length sts) sps cpg)) =
+ (True, lift_ss lfs (perm_ss sps sts'))"
+ proof(rule lifts_wf_cpg_test)
+ show " wf_cpg_test (perm_ss sps sts) (perms (length sts) sps cpg) = (True, perm_ss sps sts')"
+ by (rule perms_wf_cpg_test[OF assms])
+ qed
+ thus ?thesis
+ by (unfold adjust_sts_def adjust_cpg_def, simp)
+qed
+
+lemma sts_disj_test_correct:
+ assumes "sts_disj_test sts1 sts2"
+ shows "sts_disj sts1 sts2"
+ using assms
+proof(induct sts1 arbitrary:sts2)
+ case (Nil sts2)
+ note Nil_1 = Nil
+ show ?case
+ proof(cases sts2)
+ case Nil
+ with Nil_1
+ show ?thesis by (simp add:sts_disj_def)
+ next
+ case (Cons s2 ss2)
+ with Nil_1 show ?thesis by simp
+ qed
+next
+ case (Cons s1 ss1 sts2)
+ note Cons_1 = Cons
+ show ?case
+ proof(cases "sts2")
+ case Nil
+ with Cons_1 show ?thesis by simp
+ next
+ case (Cons s2 ss2)
+ show ?thesis
+ proof(cases "s1 = Bound \<and> s2 = Bound")
+ case True
+ with Cons_1 Cons
+ show ?thesis by simp
+ next
+ case False
+ with Cons_1 Cons
+ have "sts_disj_test ss1 ss2" by (auto split:status.splits)
+ from Cons_1(1) [OF this] False
+ show ?thesis
+ apply (unfold Cons)
+ apply (unfold sts_disj_def)
+ by (smt False length_Suc_conv list.size(4) nth_Cons')
+ qed
+ qed
+qed
+
+lemma sts_minus_free:
+ assumes "length sts1 = length sts2"
+ and "list_all (op = Free) sts2"
+ shows "sts1 - sts2 = sts1"
+ using assms
+proof(induct sts1 arbitrary:sts2)
+ case (Nil sts2)
+ thus ?case by simp
+next
+ case (Cons s1 ss1 sts2)
+ note Cons_1 = Cons
+ thus ?case
+ proof(cases sts2)
+ case Nil
+ with Cons
+ show ?thesis by simp
+ next
+ case (Cons s2 ss2)
+ have "ss1 - ss2 = ss1"
+ proof(rule Cons_1(1))
+ show "length ss1 = length ss2"
+ by (metis Cons Cons_1(2) Suc_length_conv list.inject)
+ next
+ show "list_all (op = Free) ss2"
+ by (metis Cons Cons_1(3) list_all_simps(1))
+ qed
+ moreover from Cons_1(3) Cons have "s2 = Free"
+ by (metis (full_types) list_all_simps(1))
+ ultimately show ?thesis using Cons
+ apply simp
+ by (metis (hide_lams, mono_tags) minus_status.simps(2) minus_status.simps(3) status.exhaust)
+ qed
+qed
+
+lemma st_simp [simp]: "St (nat_of x) = x"
+ by (metis nat_of.simps tstate.exhaust)
+
+lemma wf_cpg_test_len:
+ assumes "wf_cpg_test sts cpg = (b, sts')"
+ shows "length sts' = length sts"
+ using assms
+proof(induct cpg arbitrary:sts sts' b)
+ case (CInstr instr sts sts' b)
+ then obtain a1 s1 a2 s2 where
+ eq_instr: "instr = ((a1, St s1), (a2, St s2))"
+ by (metis st_simp surj_pair)
+ with CInstr
+ show ?case by simp
+qed (auto split:prod.splits)
+
+lemma wf_cpg_test_seq:
+ assumes "wf_cpg_test sts1 c1 = (True, sts1')"
+ and "wf_cpg_test sts2 c2 = (True, sts2')"
+ and "length sts1 = length sts2"
+ and "list_all (op = Free) sts1"
+ and "list_all (op = Free) sts2"
+ and "sts_disj_test sts1' sts2'"
+ shows "wf_cpg_test sts1 (CSeq c1 c2) = (True, sts1' + sts2')"
+proof -
+ have "wf_cpg_test (sts1' + sts2) c2 = (True, sts1' + sts2')"
+ by (metis add_imp_eq assms(2) assms(5) assms(6) length_sts_plus
+ plus_list_len sts_disj_test_correct sts_minus_free wf_cpg_test_disj wf_cpg_test_extrapo wf_cpg_test_len)
+ hence "wf_cpg_test sts1' c2 = (True, sts1' + sts2')"
+ by (metis all_free_plus assms(1) assms(3) assms(5) wf_cpg_test_len)
+ with assms(1)
+ show ?thesis by simp
+qed
+
+lemma c2t_seq:
+ assumes "c2t env c1 = t1"
+ and "c2t env c2 = t2"
+ shows "c2t env (CSeq c1 c2) = (t1; t2)"
+ using assms by simp
+
+lemma c2t_local:
+ assumes "\<And>x. (c2t (x#xs) cpg = body x)"
+ shows "c2t xs (CLocal cpg) = (TL x. body x)"
+ using assms
+ by simp
+
+lemma wf_cpg_test_local:
+ assumes "wf_cpg_test (Free#sts) cpg = (b, s'#sts')"
+ shows "wf_cpg_test sts (CLocal cpg) = (b, sts')"
+ by (simp add:assms)
+
+lemma wf_c2t_combined:
+ assumes "wf_cpg_test sts cpg = (True, sts)"
+ and "c2t env cpg = tpg"
+ and "list_all (op = Free) sts"
+ and "length env = length sts"
+ shows "\<forall> i. \<exists> j s. ((i:[tpg]:j) s)"
+proof
+ fix i
+ from wf_cpg_test_correct[OF assms(1), rule_format, of i]
+ obtain j where "c2p (sts - sts) i cpg j" by metis
+ from this[unfolded c2p_def]
+ obtain f where h: "\<forall>x. length x = length (sts - sts) \<and>
+ (\<forall>k<length (sts - sts). (sts - sts) ! k = Bound \<longrightarrow> x ! k = f i k) \<longrightarrow>
+ Ex (i :[ c2t x cpg ]: j)" by metis
+ have "\<exists> s. (i :[ c2t env cpg ]: j) s"
+ proof(rule h[rule_format], rule conjI)
+ show "length env = length (sts - sts)"
+ by (smt assms(4) minus_list_len)
+ next
+ show "\<forall>k<length (sts - sts). (sts - sts) ! k = Bound \<longrightarrow> env ! k = f i k"
+ by (metis assms(3) minus_status.simps(1) nth_sts_minus status.distinct(1) sts_minus_free)
+ qed
+ show "\<exists> j s. ((i:[tpg]:j) s)"
+ by (metis `\<exists>s. (i :[ c2t env cpg ]: j) s` assms(2))
+qed
+
+subsection {* The Checker *}
+
+ML {*
+ print_depth 200
+*}
+
+subsubsection {* Auxilary functions *}
+
+ML {*
+local
+ fun clear_binds ctxt = (ctxt |> Variable.binds_of |> Vartab.keys |> map (fn xi => (xi, NONE))
+ |> fold Variable.bind_term) ctxt
+ fun get_binds ctxt = ctxt |> Variable.binds_of |> Vartab.dest |> map (fn (xi, (_, tm)) => (xi, SOME tm))
+ fun set_binds blist ctxt = (fold Variable.bind_term blist) (clear_binds ctxt)
+in
+ fun blocalM f = liftM (m2M (fn ctxt => returnM (get_binds ctxt)))
+ :|-- (fn binds =>
+ f
+ :|-- (fn result =>
+ liftM (m2M (fn ctxt' => s2M (set_binds binds ctxt') |-- returnM result
+ )))
+ )
+end
+
+ fun condM bf scan = (fn v => m0M (fn st => if (bf (v, st)) then scan v else returnM v))
+
+ local
+ val counter = Unsynchronized.ref 0
+ in
+ fun init_counter n = (counter := n)
+ fun counter_test x =
+ if !counter <= 1 then true
+ else (counter := !counter - 1; false)
+ end
+
+ (* break point monad *)
+ fun bpM v' = (fn v => m0M (fn st => raiseM (v', (v, st))))
+
+ fun the_theory () = ML_Context.the_local_context () |> Proof_Context.theory_of
+ fun the_context () = ML_Context.the_local_context ()
+
+ (* Calculating the numberal of integer [i] *)
+ fun nat_of i = if i = 0 then @{term "0::nat"} else
+ (Const ("Num.numeral_class.numeral", @{typ "num \<Rightarrow> nat"}) $
+ (Numeral.mk_cnumeral i |> term_of))
+
+ fun vfixM nm typ = (m2M' (fn ctxt => let
+ val ([x], ctxt') = Variable.variant_fixes [nm] ctxt
+ val tm_x = Free (x, typ)
+ in s2M ctxt' |-- returnM tm_x end))
+ fun fixM nm typ = (m2M' (fn ctxt => let
+ val ([x], ctxt') = Variable.add_fixes [nm] ctxt
+ val tm_x = Free (x, typ)
+ in s2M ctxt' |-- returnM tm_x end))
+ local
+ fun mk_listM l =
+ case l of
+ [] => @{fterm "[]"}
+ | (tm::tms) => localM (@{match "?x"} tm
+ |-- (mk_listM tms)
+ :|-- @{match "?xs"}
+ |-- @{fterm "?x#?xs"})
+ in
+ fun mk_list_term ctxt l = [((), ctxt)] |> mk_listM l |> normVal |> fst
+ end
+ fun term_name (Const (x, _)) = Long_Name.base_name x
+ | term_name (Free (x, _)) = x
+ | term_name (Var ((x, _), _)) = x
+ | term_name _ = Name.uu;
+
+ val rew_conv = Raw_Simplifier.rewrite_cterm (true, false, false) (K (K NONE));
+
+ fun simpl_conv ss thl ctm =
+ rew_conv (ss addsimps thl) ctm RS meta_eq_to_obj_eq;
+
+ fun find_thms ctxt pats =
+ Find_Theorems.find_theorems ctxt NONE NONE true
+ (map (fn pat =>(true, Find_Theorems.Pattern
+ (Proof_Context.read_term_pattern ctxt pat))) pats) |> snd |> map snd
+
+
+ fun local_on arg rhs = [((), @{context})] |>
+ @{match "?body"} (Term.lambda arg rhs) |--
+ @{fterm "TL x. ?body x"} |> normVal |> fst
+ fun find_idx vars l = (nat_of (find_index (equal l) vars))
+
+ local
+ fun mk_pair_term (i, j) = [((), @{context})] |>
+ @{match "?i"} (nat_of i)
+ |-- @{match "?j"} (nat_of j)
+ |-- @{fterm "(?i, ?j)"} |> normVal |> fst
+ in
+ fun mk_npair_list_term ctxt pair_list =
+ if pair_list = [] then @{term "[]::(nat \<times> nat) list"}
+ else pair_list |> map mk_pair_term |> mk_list_term ctxt
+ end
+
+ fun list_of_array ary = let
+ val len = Array.length ary
+ val idx = upto (0, len - 1)
+ in map (fn i => Array.sub (ary, i)) idx end
+
+local
+ fun mk_env_term ctxt lst =
+ if lst = [] then @{term "[]::tstate list"} else (mk_list_term ctxt lst)
+ fun mk_pair_term ctxt (i, j) = [((), ctxt)] |>
+ @{match "?i"} (mk_env_term ctxt i)
+ |-- @{match "?j"} (nat_of j)
+ |-- @{fterm "(?i, ?j)"} |> normVal |> fst
+in
+ fun mk_tpair_list_term ctxt pair_list =
+ if pair_list = [] then @{term "[] :: (tstate list \<times> nat) list"}
+ else pair_list |> map (mk_pair_term ctxt) |> mk_list_term ctxt
+end
+
+*}
+
+subsubsection {* The reifier *}
+
+ML {*
+ fun locM (c2t_thm, test_thm) = (m1M' (fn env =>
+ let
+ val Free (x, _) = hd env
+ val c2t_thm = Drule.generalize ([], [x]) c2t_thm
+ val c2t_thm = @{thm c2t_local} OF [c2t_thm]
+ val test_thm = @{thm wf_cpg_test_local} OF [test_thm]
+ in
+ s1M (tl env) |-- returnM (c2t_thm, test_thm)
+ end))
+
+ fun reify_local reify t =
+ ( @{match "TL x . ?body (x::tstate)"} t
+ |-- vfixM "x" @{typ "tstate"}
+ :|-- @{match "?x"}
+ :|-- (fn tmx => m1M' (fn env => s1M (tmx::env)))
+ |-- @{fterm "?body ?x"}
+ :|-- reify
+ :|-- locM
+ (* :|-- condM counter_test (bpM ("local", t)) *)
+ )
+
+ fun labelM exp = m0M' (fn (env, ctxt) => let
+ (* The following three lines are used for debugging purpose
+ (* (* The following two lines are used to set breakpoint counter
+ and invoke the reifyer in debug mode *)
+ val _ = init_counter 3
+ val t = reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)] |> normExcp
+ *)
+ (* The following line is used to extract break point information and
+ establish the environment to execute body statements *)
+ val ((brc, exp), (_, (env, ctxt)::_)) = t
+ *)
+ val c2t_thm = [((), ctxt)] |>
+ @{match "?cpg"} exp
+ |-- @{match "?env"} (env |> mk_list_term ctxt)
+ |-- @{fterm "c2t ?env ?cpg"} |> normVal |> fst |> cterm_of (Proof_Context.theory_of ctxt)
+ |> simpl_conv (simpset_of ctxt) []
+ val test_thm = [((), ctxt)] |>
+ @{match "?cpg"} exp
+ |-- @{match "?sts"} (env |> map (fn _ => @{term "Free"}) |> mk_list_term ctxt)
+ |-- @{fterm "wf_cpg_test ?sts ?cpg"} |> normVal |> fst |> cterm_of (Proof_Context.theory_of ctxt)
+ |> simpl_conv (simpset_of ctxt) []
+ in returnM (c2t_thm, test_thm) end)
+
+ fun reify_label t =
+ @{match "TLabel ?L"} t
+ |-- @{fterm "?L"}
+ :|-- (fn l => m1M' (fn st => returnM (find_idx st l)))
+ :|-- @{match ?L1}
+ |-- @{fterm "CLabel ?L1"}
+ (* :|-- condM counter_test (bpM ("label", t)) *)
+ :|-- labelM
+
+ fun seqM ((c2t_thm1, test_thm1), (c2t_thm2, test_thm2)) =
+ m0M' (fn (env, ctxt) =>
+ let
+ val simp_trans = (simpset_of ctxt) delsimps @{thms wf_cpg_test.simps c2t.simps} |> full_simplify
+ val ct2_thm = (@{thm c2t_seq} OF [c2t_thm1, c2t_thm2]) |> simp_trans
+ val test_thm = (@{thm wf_cpg_test_seq} OF [test_thm1, test_thm2]) |> simp_trans
+ in returnM (ct2_thm, test_thm) end)
+
+ fun reify_seq reify t =
+ @{match "?c1; ?c2"} t
+ |-- ((@{fterm "?c1"} :|-- reify) --
+ (@{fterm "?c2"} :|-- reify))
+ (* :|-- condM counter_test (bpM ("seq", t)) *)
+ :|-- seqM
+
+ fun reify_instr t =
+ @{match "\<guillemotright> ((?A0, ?L0), (?A1, ?L1))"} t
+ |-- @{fterm "?L0"}
+ :|-- (fn l => m1M' (fn st => returnM (find_idx st l)))
+ :|-- @{match ?L0'}
+ |-- @{fterm "?L1"}
+ :|-- (fn l => m1M' (fn st => returnM (find_idx st l)))
+ :|-- @{match ?L1'}
+ |-- @{fterm "CInstr ((?A0, ?L0'), (?A1, St ?L1'))"}
+ :|-- labelM
+ (* :|-- condM counter_test (bpM ("instr", t)) *)
+
+ fun reify_var var =
+ (* condM counter_test (bpM ("var", var)) () |-- *)
+ (m0M' (fn (env, ctxt) => let
+ (* The following three lines are used for debugging purpose
+ (* (* The following two lines are used to set breakpoint counter
+ and invoke the reifyer in debug mode *)
+ val _ = init_counter 3
+ val t = reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)] |> normExcp
+ *)
+ (* The following line is used to extract break point information and
+ establish the environment to execute body statements *)
+ val ((brc, var), (_, (env, ctxt)::_)) = t
+ *)
+ val (var_hd, var_args) = Term.strip_comb var
+ val (var_args_prefx, var_args_sufx) =
+ take_suffix (fn tm => type_of tm = @{typ "tstate"}) var_args
+ val var_skel_hd_typ = var_args_prefx |> map type_of |> (fn typs => typs ---> @{typ "cpg"})
+ (* We discriminate two cases, one for tpg constants; the other for argument variable *)
+ val ([var_skel_hd_name], ctxt1) =
+ case var_hd of
+ (Const (nm, _)) => ([((nm |> Long_Name.base_name)^"_skel")], ctxt)
+ | _ => Variable.variant_fixes [(term_name var_hd^"_skel_")] ctxt
+ (* If [var_hd] is a constant, a corresponding skeleton constant is assumed to exist alrady *)
+ val var_skel_hd = if (Term.is_Const var_hd) then Syntax.read_term ctxt1 var_skel_hd_name
+ else Free (var_skel_hd_name, var_skel_hd_typ)
+ (* [skel_tm] is the skeleton object the properties of which will either be assumed (in case of
+ argument variable), or proved (in case of global constants ) *)
+ val skel_tm = Term.list_comb (var_skel_hd, var_args_prefx)
+ (* Start to prove or assume [c2t] property (named [c2t_thm]) of the skeleton object,
+ since the [c2t] property needs to be universally qantified, we
+ need to invent quantifier names: *)
+ val (var_skel_args_sufx_names, ctxt2) =
+ Variable.variant_fixes (var_args_sufx |> map term_name) ctxt1
+ val var_skel_args_sufx = var_skel_args_sufx_names |> map (fn nm => Free (nm, @{typ "tstate"}))
+ val c2t_rhs = Term.list_comb (var_hd, var_args_prefx@var_skel_args_sufx)
+ val c2t_env = mk_list_term ctxt2 (var_skel_args_sufx |> rev)
+ val eqn = [((), ctxt2)] |>
+ @{match ?env} c2t_env
+ |-- @{match ?skel_tm} skel_tm
+ |-- @{match ?c2t_rhs} c2t_rhs
+ |-- @{fterm "Trueprop (c2t ?env ?skel_tm = ?c2t_rhs)"} |> normVal |> fst
+ fun all_on ctxt arg body = Const ("all", dummyT) $ (Term.lambda arg body) |>
+ Syntax.check_term ctxt
+ val c2t_eqn = fold (all_on ctxt2) (rev var_skel_args_sufx) eqn |> cterm_of (Proof_Context.theory_of ctxt2)
+ val ([c2t_thm], ctxt3) =
+ if (Term.is_Const var_hd) then
+ (* if [var_hd] is an constant, try to prove [c2t_eqn] by searching
+ into the facts database *)
+ let
+ val pat_skel_args = fold (curry (op ^)) (map (K " _ ") var_args_prefx) ""
+ val pat_skel_str = "( "^ var_skel_hd_name ^ pat_skel_args ^" )"
+ val test_pat = ("wf_cpg_test _ "^ pat_skel_str ^" = (True, _)")
+ val c2t_pat = ("c2t _ "^ pat_skel_str ^" = _")
+ val (wf_test_thms, c2t_thms) = ([test_pat], [c2t_pat]) |> pairself (find_thms ctxt2)
+ in
+ ([([((0, @{thm "refl"}), ctxt2)] |>
+ goalM (c2t_eqn |> term_of)
+ |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt) addsimps c2t_thms) 1))
+ >> Goal.conclude |> normVal |> fst |> Raw_Simplifier.norm_hhf)], ctxt2)
+ end
+ else (* Otherwise, make [c2t_eqn] an assumption *)
+ Assumption.add_assumes [c2t_eqn] ctxt2
+ (* Start to prove or assume [wf_cpg_test] property (named [wf_test_thm]) of the skeleton object. *)
+ val sts = map (fn tm => @{term "Free"}) var_args_sufx |> mk_list_term ctxt3
+ val wf_test_eqn = [((), ctxt3)] |>
+ @{match ?cpg} skel_tm
+ |-- @{match ?sts} sts
+ |-- @{fterm "Trueprop (wf_cpg_test ?sts ?cpg = (True, ?sts))"} |> normVal |> fst
+ |> cterm_of (Proof_Context.theory_of ctxt3)
+ val ([wf_test_thm], ctxt4) =
+ if (Term.is_Const var_hd) then
+ let
+ val pat_skel_args = fold (curry (op ^)) (map (K " _ ") var_args_prefx) ""
+ val pat_skel_str = "( "^ var_skel_hd_name ^ pat_skel_args ^ " )"
+ val test_pat = ("wf_cpg_test _ "^ pat_skel_str ^" = (True, _)")
+ val c2t_pat = ("c2t _ "^ pat_skel_str ^" = _")
+ val wf_test_thms = [test_pat] |> (find_thms ctxt2)
+ in
+ ([([((0, @{thm "refl"}), ctxt2)] |>
+ goalM (wf_test_eqn |> term_of)
+ |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt) addsimps wf_test_thms) 1))
+ >> Goal.conclude |> normVal |> fst |> Raw_Simplifier.norm_hhf)], ctxt3)
+ end
+ else Assumption.add_assumes [wf_test_eqn] ctxt3
+ (* Start the derivation of the length theorem *)
+ val length_env = mk_list_term ctxt4 (var_args_sufx |> rev)
+ val length_thm = [((0, @{thm "init"}), ctxt4)] |>
+ @{match "(?env)"} length_env
+ |-- @{match "(?sts)"} sts
+ |-- @{fterm "Trueprop (length (?env::tstate list) = length (?sts::status list))"}
+ :|-- goalM
+ |-- tacM (fn ctxt => (Simplifier.simp_tac (simpset_of ctxt) 1))
+ >> Goal.conclude |> normVal |> fst
+ (* Start compute two adjust operations, namely [sps] and [lfs] *)
+ val locs = var_args_sufx |> map (fn arg => find_index (equal arg) env) |> rev
+ val swaps = swaps_of locs
+ val sps = swaps |> mk_npair_list_term @{context}
+ val locs' = sexec swaps (Array.fromList locs) |> list_of_array
+ val pairs = ((~1::locs') ~~ (locs' @ [length env]))
+ fun lfs_of (t, ops) [] = ops |> rev
+ | lfs_of (t, ops) ((i, j)::pairs) = let
+ val stuf = upto (i + 1, j - 1) |> map (fn idx => nth env idx)
+ in if (stuf <> []) then lfs_of (t + length stuf + 1, (stuf, t)::ops) pairs
+ else lfs_of (t + length stuf + 1, ops) pairs
+ end
+ val lfs = lfs_of (0, []) pairs |> mk_tpair_list_term @{context}
+ (* [simp_trans] is the simplification procedure used to simply the theorem after
+ instantiation.
+ *)
+ val simp_trans = full_simplify ((simpset_of @{context}) addsimps @{thms adjust_sts_def
+ adjust_env_def perm_s_def perm_b_def map_idx_len
+ map_idx_def upto_map upto_empty} @ [c2t_thm])
+ (* Instantiating adjust theorems *)
+ val adjust_c2t_thm = [((), ctxt4)] |>
+ @{match "?sps"} sps
+ |-- @{match "?lfs"} lfs
+ |-- thm_instM (@{thm adjust_c2t} OF [wf_test_thm, length_thm])
+ |> normVal |> fst |> simp_trans
+ val adjust_test_thm = [((), ctxt4)] |>
+ @{match "?sps"} sps
+ |-- @{match "?lfs"} lfs
+ |-- thm_instM (@{thm adjust_wf_cpg_test} OF [wf_test_thm])
+ |> normVal |> fst |> simp_trans
+ in
+ (* s2M ctxt4 |-- *) returnM (adjust_c2t_thm, adjust_test_thm)
+end))
+
+ fun reify t =
+ localM (reify_seq reify t ||
+ reify_local reify t ||
+ reify_label t ||
+ reify_instr t ||
+ reify_var t
+ )
+*}
+
+subsubsection {* The Checker packed up as the asmb attribute *}
+
+ML {*
+ fun asmb_attrib def_thm =
+ Context.cases (fn thy =>
+ (* val thy = @{theory} *) let
+ fun thy_exit ctxt =
+ Context.Theory (Local_Theory.exit_global (Local_Theory.assert_bottom true ctxt))
+ val ctxt0 = Named_Target.theory_init thy
+ val (((x, y), [tpg_def]), ctxt_tpg_def) = Variable.import true [def_thm] ctxt0
+ val (tpg_def_lhs, tpg_def_rhs) = [((), ctxt_tpg_def)] |>
+ @{match "Trueprop (?L = ?R)"} (prop_of tpg_def)
+ |-- @{fterm "?L"} -- @{fterm "?R"} |> normVal |> fst
+ val (tpg_def_lhd, tpg_def_largs) = Term.strip_comb tpg_def_lhs
+ val (tpg_def_largs_prefx, tpg_def_largs_sufx) =
+ take_suffix (fn tm => type_of tm = @{typ "tstate"}) tpg_def_largs
+ (* Invoking the reifyer in normal mode *)
+ val ((c2t_thm_1, test_thm_1), ((_, ctxt_r)::y)) =
+ reify tpg_def_rhs [(rev tpg_def_largs_sufx, ctxt_tpg_def)]
+ |> normVal
+ val asmb_thm_1 = (@{thm wf_c2t_combined} OF [test_thm_1, c2t_thm_1]) |> (full_simplify (simpset_of ctxt_r))
+ val (r_cpg, r_tpg) = [((), ctxt_r)] |>
+ @{match "Trueprop (c2t _ ?X = ?tpg)"} (c2t_thm_1 |> prop_of)
+ |-- (@{fterm "?X"} -- @{fterm "?tpg"}) |> normVal |> fst
+ val tpg_def_params = Variable.add_fixed ctxt_tpg_def (tpg_def_lhs) [] |> map fst
+ |> sort (Variable.fixed_ord ctxt_tpg_def)
+ val r_cpg_frees = Term.add_frees r_cpg []
+ local fun condense [] = []
+ | condense xs = [hd xs]
+ in
+ val skel_def_params =
+ tpg_def_params |> map (fn nm => condense
+ (filter (fn (tnm, _) => String.isPrefix nm tnm) r_cpg_frees))
+ |> flat |> map Free
+ end
+ val skel_def_rhs = fold Term.lambda (skel_def_params |> rev) r_cpg
+ local
+ val Const (nm, _) = tpg_def_lhs |> Term.head_of
+ in
+ val tpg_def_name = nm |> Long_Name.base_name
+ val skel_def_lhs = Free (tpg_def_name^"_skel", type_of skel_def_rhs)
+ end
+ val skel_def_eqn = [((), ctxt_r)] |>
+ @{match "?lhs"} skel_def_lhs
+ |-- @{match "?rhs"} skel_def_rhs
+ |-- @{fterm "Trueprop (?lhs = ?rhs)"} |> normVal |> fst
+ val ((skel_def_lhs, (skel_def_name, skel_def_thm)), lthy2) =
+ Specification.definition (NONE, (Attrib.empty_binding, skel_def_eqn)) ctxt_r
+ val c2t_thm_final = [((0, @{thm refl}), lthy2)] |>
+ @{match "?env"} (mk_list_term lthy2 (rev tpg_def_largs_sufx))
+ |-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params))
+ val c2t_thm_final = [((0, @{thm refl}), lthy2)] |>
+ @{match "?env"} (mk_list_term lthy2 (rev tpg_def_largs_sufx))
+ |-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params))
+ |-- @{match "?tpg"} tpg_def_lhs
+ |-- @{fterm "Trueprop (c2t ?env ?skel = ?tpg)"}
+ :|-- goalM
+ |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss)
+ addsimps [skel_def_thm, c2t_thm_1]) 1))
+ |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss)
+ addsimps [def_thm]) 1))
+ >> Goal.conclude |> normVal |> fst
+ val test_thm_final = [((0, @{thm refl}), lthy2)] |>
+ @{match "?sts"} (tpg_def_largs_sufx |> map (fn _ => @{term "Free"}) |> mk_list_term lthy2)
+ |-- @{match "?skel"} (Term.list_comb (skel_def_lhs, skel_def_params))
+ |-- @{fterm "Trueprop (wf_cpg_test ?sts ?skel = (True, ?sts))"}
+ :|-- goalM
+ |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt |> Simplifier.clear_ss)
+ addsimps [skel_def_thm, test_thm_1]) 1))
+ >> Goal.conclude |> normVal |> fst
+ val asmb_thm_final = [((0, @{thm refl}), lthy2)] |>
+ @{match "?tpg"} tpg_def_lhs
+ |-- @{fterm "Trueprop (\<forall> i. \<exists> j s. (i:[?tpg]:j) s)"}
+ :|-- goalM
+ |-- tacM (fn ctxt => (Simplifier.simp_tac ((simpset_of ctxt)
+ addsimps [tpg_def, asmb_thm_1]) 1))
+ >> Goal.conclude |> normVal |> fst
+ fun generalize thm = let
+ val hyps = (#hyps (thm |> Thm.crep_thm))
+ val thm' = if (length hyps = 0) then thm
+ else (fold Thm.implies_intr (#hyps (thm |> Thm.crep_thm) |> rev |> tl |> rev) thm)
+ in
+ thm' |> Thm.forall_intr_frees
+ end
+ val lthy3 =
+ Local_Theory.note ((Binding.name ("c2t_" ^ tpg_def_name ^ "_skel"), []),
+ [c2t_thm_final |> generalize]) lthy2 |> snd
+ val lthy4 =
+ Local_Theory.note ((Binding.name ("wf_" ^ tpg_def_name ^ "_skel"), []),
+ [test_thm_final |> generalize]) lthy3 |> snd
+ val lthy5 =
+ Local_Theory.note ((Binding.name ("asmb_" ^ tpg_def_name), []),
+ [asmb_thm_final |> Drule.export_without_context]) lthy4 |> snd
+in
+ thy_exit lthy5
+end) (fn ctxt => Context.Proof ctxt)
+*}
+
+setup {*
+ Attrib.setup @{binding asmb} (Scan.succeed (Thm.declaration_attribute asmb_attrib)) "asmb attribute"
+*}
+
+
+section {* Basic macros for TM *}
+
+definition [asmb]: "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)"
+
+definition [asmb]: "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)"
+
+definition [asmb]: "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)"
+
+definition [asmb]: "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)"
+
+definition [asmb]: "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)"
+
+definition [asmb]: "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)"
+
+definition [asmb]: "jmp e = \<guillemotright>((W0, e), (W1, e))"
+
+definition [asmb]:
+ "right_until_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ move_right;
+ jmp start;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "left_until_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ move_left;
+ jmp start;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "right_until_one =
+ (TL start exit.
+ TLabel start;
+ if_one exit;
+ move_right;
+ jmp start;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "left_until_one =
+ (TL start exit.
+ TLabel start;
+ if_one exit;
+ move_left;
+ jmp start;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "left_until_double_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ left_until_zero;
+ move_left;
+ if_one start;
+ TLabel exit)"
+
+definition [asmb]:
+ "shift_right =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ write_zero;
+ move_right;
+ right_until_zero;
+ write_one;
+ move_right;
+ jmp start;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "clear_until_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ write_zero;
+ move_right;
+ jmp start;
+ TLabel exit)"
+
+definition [asmb]:
+ "shift_left =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ move_left;
+ write_one;
+ right_until_zero;
+ move_left;
+ write_zero;
+ move_right;
+ move_right;
+ jmp start;
+ TLabel exit)
+ "
+
+definition [asmb]:
+ "bone c1 c2 = (TL exit l_one.
+ if_one l_one;
+ (c1;
+ jmp exit);
+ TLabel l_one;
+ c2;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "cfill_until_one = (TL start exit.
+ TLabel start;
+ if_one exit;
+ write_one;
+ move_left;
+ jmp start;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "cmove = (TL start exit.
+ TLabel start;
+ left_until_zero;
+ left_until_one;
+ move_left;
+ if_zero exit;
+ move_right;
+ write_zero;
+ right_until_one;
+ right_until_zero;
+ write_one;
+ jmp start;
+ TLabel exit
+ )"
+
+definition [asmb]:
+ "cinit = (right_until_zero; move_right; write_one)"
+
+definition [asmb]:
+ "copy = (cinit; cmove; move_right; move_right; right_until_one;
+ move_left; move_left; cfill_until_one)"
+
+definition
+ "bzero c1 c2 = (TL exit l_zero.
+ if_zero l_zero;
+ (c1;
+ jmp exit);
+ TLabel l_zero;
+ c2;
+ TLabel exit
+ )"
+
+definition "if_reps_nz e = (move_right;
+ bzero (move_left; jmp e) (move_left)
+ )"
+
+declare if_reps_nz_def[unfolded bzero_def, asmb]
+
+definition "if_reps_z e = (move_right;
+ bone (move_left; jmp e) (move_left)
+ )"
+
+declare if_reps_z_def [unfolded bone_def, asmb]
+
+definition
+ "skip_or_set = bone (write_one; move_right; move_right)
+ (right_until_zero; move_right)"
+
+declare skip_or_set_def[unfolded bone_def, asmb]
+
+definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)"
+
+definition "cpg_fold cpgs = foldr CSeq (butlast cpgs) (last cpgs)"
+
+definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)"
+
+definition "skip_or_sets_skel n = cpg_fold (replicate n skip_or_set_skel)"
+
+lemma c2t_skip_or_sets_skel:
+ "c2t [] (skip_or_sets_skel (Suc n)) = skip_or_sets (Suc n)"
+proof(induct n)
+ case (Suc k)
+ thus ?case
+ apply (unfold skip_or_sets_skel_def cpg_fold_def skip_or_sets_def tpg_fold_def)
+ my_block
+ fix x k
+ have "(last (replicate (Suc k) x)) = x"
+ by (metis Suc_neq_Zero last_replicate)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix x k
+ have "(butlast (replicate (Suc k) x)) = replicate k x"
+ by (metis butlast_snoc replicate_Suc replicate_append_same)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix x k f y
+ have "foldr f (replicate (Suc k) x) y = f x (foldr f (replicate k x) y)"
+ by simp
+ my_block_end
+ apply (unfold this)
+ by (simp add:c2t_skip_or_set_skel)
+next
+ case 0
+ show ?case
+ by (simp add:skip_or_sets_skel_def cpg_fold_def skip_or_sets_def tpg_fold_def
+ c2t_skip_or_set_skel)
+qed
+
+lemma wf_skip_or_sets_skel:
+ "wf_cpg_test [] (skip_or_sets_skel (Suc n)) = (True, [])"
+proof(induct n)
+ case (Suc k)
+ thus ?case
+ apply (unfold skip_or_sets_skel_def cpg_fold_def)
+ my_block
+ fix x k
+ have "(last (replicate (Suc k) x)) = x"
+ by (metis Suc_neq_Zero last_replicate)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix x k
+ have "(butlast (replicate (Suc k) x)) = replicate k x"
+ by (metis butlast_snoc replicate_Suc replicate_append_same)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix x k f y
+ have "foldr f (replicate (Suc k) x) y = f x (foldr f (replicate k x) y)"
+ by simp
+ my_block_end
+ apply (unfold this)
+ by (simp add:wf_skip_or_set_skel)
+next
+ case 0
+ thus ?case
+ apply (unfold skip_or_sets_skel_def cpg_fold_def)
+ by (simp add:wf_skip_or_set_skel)
+qed
+
+lemma asmb_skip_or_sets:
+ "\<forall>i. \<exists>j s. (i :[ skip_or_sets (Suc n) ]: j) s"
+ by (rule wf_c2t_combined[OF wf_skip_or_sets_skel c2t_skip_or_sets_skel], auto)
+
+definition [asmb]: "locate n = (skip_or_sets (Suc n);
+ move_left;
+ move_left;
+ left_until_zero;
+ move_right
+ )"
+
+definition [asmb]: "Inc a = locate a;
+ right_until_zero;
+ move_right;
+ shift_right;
+ move_left;
+ left_until_double_zero;
+ write_one;
+ left_until_double_zero;
+ move_right;
+ move_right
+ "
+
+definition [asmb]: "Dec a e = (TL continue.
+ (locate a;
+ if_reps_nz continue;
+ left_until_double_zero;
+ move_right;
+ move_right;
+ jmp e);
+ (TLabel continue;
+ right_until_zero;
+ move_left;
+ write_zero;
+ move_right;
+ move_right;
+ shift_left;
+ move_left;
+ move_left;
+ move_left;
+ left_until_double_zero;
+ move_right;
+ move_right))"
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/MLs.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,61 @@
+theory MLs
+imports Pure
+keywords "ML_psf" :: prf_script and
+ "ML_goal" :: thy_goal
+begin
+
+section {* ML for proof state transformation *}
+
+ML {*
+ structure ML_psf = Proof_Data (
+ type T = Proof.state -> Proof.state
+ fun init _ = undefined
+ )
+*}
+
+
+ML {*
+ fun ml_psf (txt, pos) state =
+ (((Proof.context_of state) |>
+ Context.proof_map (ML_Context.expression Position.none
+ "val psf : Proof.state -> Proof.state"
+ "Context.map_proof (ML_psf.put psf)" (ML_Lex.read pos txt)) |>
+ ML_psf.get) state):Proof.state
+*}
+
+ML {*
+val _ =
+ Outer_Syntax.command @{command_spec "ML_psf"} "ML state transfer function"
+ (Parse.ML_source >> (Toplevel.print oo (Toplevel.proof o ml_psf)))
+*}
+
+section {* ML for global goal establishment *}
+
+ML {*
+ structure ML_goal = Proof_Data (
+ type T = local_theory -> Proof.state
+ fun init _ = undefined
+ )
+*}
+
+ML {*
+ fun ml_goal (txt, pos) ctxt =
+ ((ctxt |>
+ Context.proof_map (ML_Context.expression Position.none
+ "val goalf : local_theory -> Proof.state"
+ "Context.map_proof (ML_goal.put goalf)" (ML_Lex.read pos txt)) |>
+ ML_goal.get) ctxt) :Proof.state
+*}
+
+ML {*
+val _ =
+ Outer_Syntax.local_theory_to_proof @{command_spec "ML_goal"} "ML goal function"
+ (Parse.ML_source >> ml_goal)
+*}
+
+ML {*
+ fun start_theorem prop = Proof.theorem NONE (K I) [[(prop, [])]]
+*}
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/My_block.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,34 @@
+theory My_block
+imports Main
+keywords "my_block" :: prf_script and "my_block_end" :: prf_script
+ and "my_note" :: prf_decl
+begin
+
+ML {*
+ val my_block = Proof.assert_backward #> Proof.enter_forward #> Proof.begin_block
+*}
+
+ML {*
+ val my_block_end = Proof.end_block #> Proof.enter_backward
+*}
+
+ML {*
+ val _ = Outer_Syntax.command @{command_spec "my_block"} "begin my block"
+ (Scan.succeed (Toplevel.print o (Toplevel.proof my_block)))
+ val _ = Outer_Syntax.command @{command_spec "my_block_end"} "begin my block"
+ (Scan.succeed (Toplevel.print o (Toplevel.proof my_block_end)))
+*}
+
+ML {*
+ fun my_note x =
+ Proof.assert_backward #> Proof.enter_forward #> Proof.note_thmss_cmd x #> Proof.enter_backward
+*}
+
+ML {*
+val _ =
+ Outer_Syntax.command @{command_spec "my_note"} "define facts"
+ (Parse_Spec.name_facts >> (Toplevel.print oo (Toplevel.proof o my_note)));
+*}
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/ROOT Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,20 @@
+session "Hoare_gen" = "HOL" +
+ options [document = pdf]
+ theories [document = false]
+ Hoare_gen
+
+session "Hoare_tm_basis" = "Hoare_gen" +
+ options [document = pdf]
+ theories [document = false, document_output = "output_tm", document_variants = "hoare_tm"]
+ Hoare_tm_basis
+
+session "Hoare_tm" = "Hoare_tm_basis" +
+ options [document = pdf]
+ theories [document = false, document_output = "output_tm", document_variants = "hoare_tm"]
+ Hoare_tm
+
+session "Hoare_abc" = "Hoare_tm" +
+ options [document = pdf]
+ theories [document = false, document_output = "./output_abc"]
+ Hoare_abc
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/ROOT~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,24 @@
+session "Hoare_gen" = "HOL" +
+ options [document = pdf]
+ theories [document = false]
+ Hoare_gen
+
+session "Hoare_tm_basis" = "Hoare_gen" +
+ options [document = pdf]
+ theories [document = false, document_output = "output_tm", document_variants = "hoare_tm"]
+ Hoare_tm_basis
+ files
+ "document/root_tm.tex"
+
+session "Hoare_tm" = "Hoare_tm_basis" +
+ options [document = pdf]
+ theories [document = false, document_output = "output_tm", document_variants = "hoare_tm"]
+ Hoare_tm
+ files
+ "document/root_tm.tex"
+
+session "Hoare_abc" = "Hoare_tm" +
+ options [document = pdf]
+ theories [document = false, document_output = "./output_abc"]
+ Hoare_abc
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Recs.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,939 @@
+theory Recs
+imports Main Fact
+ "~~/src/HOL/Number_Theory/Primes"
+ "~~/src/HOL/Library/Nat_Bijection"
+ (* "~~/src/HOL/Library/Discrete" *)
+ Hoare_abc
+ LetElim
+begin
+
+declare One_nat_def[simp del]
+
+(*
+ some definitions from
+
+ A Course in Formal Languages, Automata and Groups
+ I M Chiswell
+
+ and
+
+ Lecture on undecidability
+ Michael M. Wolf
+*)
+
+lemma if_zero_one [simp]:
+ "(if P then 1 else 0) = (0::nat) \<longleftrightarrow> \<not> P"
+ "(0::nat) < (if P then 1 else 0) = P"
+ "(if P then 0 else 1) = (if \<not>P then 1 else (0::nat))"
+by (simp_all)
+
+lemma nth:
+ "(x # xs) ! 0 = x"
+ "(x # y # xs) ! 1 = y"
+ "(x # y # z # xs) ! 2 = z"
+ "(x # y # z # u # xs) ! 3 = u"
+by (simp_all)
+
+
+section {* Some auxiliary lemmas about @{text "\<Sum>"} and @{text "\<Prod>"} *}
+
+lemma setprod_atMost_Suc[simp]:
+ "(\<Prod>i \<le> Suc n. f i) = (\<Prod>i \<le> n. f i) * f(Suc n)"
+by(simp add:atMost_Suc mult_ac)
+
+lemma setprod_lessThan_Suc[simp]:
+ "(\<Prod>i < Suc n. f i) = (\<Prod>i < n. f i) * f n"
+by (simp add:lessThan_Suc mult_ac)
+
+lemma setsum_add_nat_ivl2: "n \<le> p \<Longrightarrow>
+ setsum f {..<n} + setsum f {n..p} = setsum f {..p::nat}"
+apply(subst setsum_Un_disjoint[symmetric])
+apply(auto simp add: ivl_disj_un_one)
+done
+
+lemma setsum_eq_zero [simp]:
+ fixes f::"nat \<Rightarrow> nat"
+ shows "(\<Sum>i < n. f i) = 0 \<longleftrightarrow> (\<forall>i < n. f i = 0)"
+ "(\<Sum>i \<le> n. f i) = 0 \<longleftrightarrow> (\<forall>i \<le> n. f i = 0)"
+by (auto)
+
+lemma setprod_eq_zero [simp]:
+ fixes f::"nat \<Rightarrow> nat"
+ shows "(\<Prod>i < n. f i) = 0 \<longleftrightarrow> (\<exists>i < n. f i = 0)"
+ "(\<Prod>i \<le> n. f i) = 0 \<longleftrightarrow> (\<exists>i \<le> n. f i = 0)"
+by (auto)
+
+lemma setsum_one_less:
+ fixes n::nat
+ assumes "\<forall>i < n. f i \<le> 1"
+ shows "(\<Sum>i < n. f i) \<le> n"
+using assms
+by (induct n) (auto)
+
+lemma setsum_one_le:
+ fixes n::nat
+ assumes "\<forall>i \<le> n. f i \<le> 1"
+ shows "(\<Sum>i \<le> n. f i) \<le> Suc n"
+using assms
+by (induct n) (auto)
+
+lemma setsum_eq_one_le:
+ fixes n::nat
+ assumes "\<forall>i \<le> n. f i = 1"
+ shows "(\<Sum>i \<le> n. f i) = Suc n"
+using assms
+by (induct n) (auto)
+
+lemma setsum_least_eq:
+ fixes f::"nat \<Rightarrow> nat"
+ assumes h0: "p \<le> n"
+ assumes h1: "\<forall>i \<in> {..<p}. f i = 1"
+ assumes h2: "\<forall>i \<in> {p..n}. f i = 0"
+ shows "(\<Sum>i \<le> n. f i) = p"
+proof -
+ have eq_p: "(\<Sum>i \<in> {..<p}. f i) = p"
+ using h1 by (induct p) (simp_all)
+ have eq_zero: "(\<Sum>i \<in> {p..n}. f i) = 0"
+ using h2 by auto
+ have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<p}. f i) + (\<Sum>i \<in> {p..n}. f i)"
+ using h0 by (simp add: setsum_add_nat_ivl2)
+ also have "... = (\<Sum>i \<in> {..<p}. f i)" using eq_zero by simp
+ finally show "(\<Sum>i \<le> n. f i) = p" using eq_p by simp
+qed
+
+lemma nat_mult_le_one:
+ fixes m n::nat
+ assumes "m \<le> 1" "n \<le> 1"
+ shows "m * n \<le> 1"
+using assms by (induct n) (auto)
+
+lemma setprod_one_le:
+ fixes f::"nat \<Rightarrow> nat"
+ assumes "\<forall>i \<le> n. f i \<le> 1"
+ shows "(\<Prod>i \<le> n. f i) \<le> 1"
+using assms
+by (induct n) (auto intro: nat_mult_le_one)
+
+lemma setprod_greater_zero:
+ fixes f::"nat \<Rightarrow> nat"
+ assumes "\<forall>i \<le> n. f i \<ge> 0"
+ shows "(\<Prod>i \<le> n. f i) \<ge> 0"
+using assms by (induct n) (auto)
+
+lemma setprod_eq_one:
+ fixes f::"nat \<Rightarrow> nat"
+ assumes "\<forall>i \<le> n. f i = Suc 0"
+ shows "(\<Prod>i \<le> n. f i) = Suc 0"
+using assms by (induct n) (auto)
+
+lemma setsum_cut_off_less:
+ fixes f::"nat \<Rightarrow> nat"
+ assumes h1: "m \<le> n"
+ and h2: "\<forall>i \<in> {m..<n}. f i = 0"
+ shows "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)"
+proof -
+ have eq_zero: "(\<Sum>i \<in> {m..<n}. f i) = 0"
+ using h2 by auto
+ have "(\<Sum>i < n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..<n}. f i)"
+ using h1 by (metis atLeast0LessThan le0 setsum_add_nat_ivl)
+ also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
+ finally show "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)" by simp
+qed
+
+lemma setsum_cut_off_le:
+ fixes f::"nat \<Rightarrow> nat"
+ assumes h1: "m \<le> n"
+ and h2: "\<forall>i \<in> {m..n}. f i = 0"
+ shows "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)"
+proof -
+ have eq_zero: "(\<Sum>i \<in> {m..n}. f i) = 0"
+ using h2 by auto
+ have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..n}. f i)"
+ using h1 by (simp add: setsum_add_nat_ivl2)
+ also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
+ finally show "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)" by simp
+qed
+
+lemma setprod_one [simp]:
+ fixes n::nat
+ shows "(\<Prod>i < n. Suc 0) = Suc 0"
+ "(\<Prod>i \<le> n. Suc 0) = Suc 0"
+by (induct n) (simp_all)
+
+section {* Recursive Functions *}
+
+datatype recf = Z
+ | S
+ | Id nat nat
+ | Cn nat recf "recf list"
+ | Pr nat recf recf
+ | Mn nat recf
+
+fun arity :: "recf \<Rightarrow> nat"
+ where
+ "arity Z = 1"
+| "arity S = 1"
+| "arity (Id m n) = m"
+| "arity (Cn n f gs) = n"
+| "arity (Pr n f g) = Suc n"
+| "arity (Mn n f) = n"
+
+text {* Abbreviations for calculating the arity of the constructors *}
+
+abbreviation
+ "CN f gs \<equiv> Cn (arity (hd gs)) f gs"
+
+abbreviation
+ "PR f g \<equiv> Pr (arity f) f g"
+
+abbreviation
+ "MN f \<equiv> Mn (arity f - 1) f"
+
+text {* the evaluation function and termination relation *}
+
+fun rec_eval :: "recf \<Rightarrow> nat list \<Rightarrow> nat"
+ where
+ "rec_eval Z xs = 0"
+| "rec_eval S xs = Suc (xs ! 0)"
+| "rec_eval (Id m n) xs = xs ! n"
+| "rec_eval (Cn n f gs) xs = rec_eval f (map (\<lambda>x. rec_eval x xs) gs)"
+| "rec_eval (Pr n f g) (0 # xs) = rec_eval f xs"
+| "rec_eval (Pr n f g) (Suc x # xs) =
+ rec_eval g (x # (rec_eval (Pr n f g) (x # xs)) # xs)"
+| "rec_eval (Mn n f) xs = (LEAST x. rec_eval f (x # xs) = 0)"
+
+inductive
+ terminates :: "recf \<Rightarrow> nat list \<Rightarrow> bool"
+where
+ termi_z: "terminates Z [n]"
+| termi_s: "terminates S [n]"
+| termi_id: "\<lbrakk>n < m; length xs = m\<rbrakk> \<Longrightarrow> terminates (Id m n) xs"
+| termi_cn: "\<lbrakk>terminates f (map (\<lambda>g. rec_eval g xs) gs);
+ \<forall>g \<in> set gs. terminates g xs; length xs = n\<rbrakk> \<Longrightarrow> terminates (Cn n f gs) xs"
+| termi_pr: "\<lbrakk>\<forall> y < x. terminates g (y # (rec_eval (Pr n f g) (y # xs) # xs));
+ terminates f xs;
+ length xs = n\<rbrakk>
+ \<Longrightarrow> terminates (Pr n f g) (x # xs)"
+| termi_mn: "\<lbrakk>length xs = n; terminates f (r # xs);
+ rec_eval f (r # xs) = 0;
+ \<forall> i < r. terminates f (i # xs) \<and> rec_eval f (i # xs) > 0\<rbrakk> \<Longrightarrow> terminates (Mn n f) xs"
+
+
+section {* Arithmetic Functions *}
+
+text {*
+ @{text "constn n"} is the recursive function which computes
+ natural number @{text "n"}.
+*}
+fun constn :: "nat \<Rightarrow> recf"
+ where
+ "constn 0 = Z" |
+ "constn (Suc n) = CN S [constn n]"
+
+definition
+ "rec_swap f = CN f [Id 2 1, Id 2 0]"
+
+definition
+ "rec_add = PR (Id 1 0) (CN S [Id 3 1])"
+
+definition
+ "rec_mult = PR Z (CN rec_add [Id 3 1, Id 3 2])"
+
+definition
+ "rec_power = rec_swap (PR (constn 1) (CN rec_mult [Id 3 1, Id 3 2]))"
+
+definition
+ "rec_fact_aux = PR (constn 1) (CN rec_mult [CN S [Id 3 0], Id 3 1])"
+
+definition
+ "rec_fact = CN rec_fact_aux [Id 1 0, Id 1 0]"
+
+definition
+ "rec_pred = CN (PR Z (Id 3 0)) [Id 1 0, Id 1 0]"
+
+definition
+ "rec_minus = rec_swap (PR (Id 1 0) (CN rec_pred [Id 3 1]))"
+
+lemma constn_lemma [simp]:
+ "rec_eval (constn n) xs = n"
+by (induct n) (simp_all)
+
+lemma swap_lemma [simp]:
+ "rec_eval (rec_swap f) [x, y] = rec_eval f [y, x]"
+by (simp add: rec_swap_def)
+
+lemma add_lemma [simp]:
+ "rec_eval rec_add [x, y] = x + y"
+by (induct x) (simp_all add: rec_add_def)
+
+lemma mult_lemma [simp]:
+ "rec_eval rec_mult [x, y] = x * y"
+by (induct x) (simp_all add: rec_mult_def)
+
+lemma power_lemma [simp]:
+ "rec_eval rec_power [x, y] = x ^ y"
+by (induct y) (simp_all add: rec_power_def)
+
+lemma fact_aux_lemma [simp]:
+ "rec_eval rec_fact_aux [x, y] = fact x"
+by (induct x) (simp_all add: rec_fact_aux_def)
+
+lemma fact_lemma [simp]:
+ "rec_eval rec_fact [x] = fact x"
+by (simp add: rec_fact_def)
+
+lemma pred_lemma [simp]:
+ "rec_eval rec_pred [x] = x - 1"
+by (induct x) (simp_all add: rec_pred_def)
+
+lemma minus_lemma [simp]:
+ "rec_eval rec_minus [x, y] = x - y"
+by (induct y) (simp_all add: rec_minus_def)
+
+
+section {* Logical functions *}
+
+text {*
+ The @{text "sign"} function returns 1 when the input argument
+ is greater than @{text "0"}. *}
+
+definition
+ "rec_sign = CN rec_minus [constn 1, CN rec_minus [constn 1, Id 1 0]]"
+
+definition
+ "rec_not = CN rec_minus [constn 1, Id 1 0]"
+
+text {*
+ @{text "rec_eq"} compares two arguments: returns @{text "1"}
+ if they are equal; @{text "0"} otherwise. *}
+definition
+ "rec_eq = CN rec_minus [CN (constn 1) [Id 2 0], CN rec_add [rec_minus, rec_swap rec_minus]]"
+
+definition
+ "rec_noteq = CN rec_not [rec_eq]"
+
+definition
+ "rec_conj = CN rec_sign [rec_mult]"
+
+definition
+ "rec_disj = CN rec_sign [rec_add]"
+
+definition
+ "rec_imp = CN rec_disj [CN rec_not [Id 2 0], Id 2 1]"
+
+text {* @{term "rec_ifz [z, x, y]"} returns x if z is zero,
+ y otherwise; @{term "rec_if [z, x, y]"} returns x if z is *not*
+ zero, y otherwise *}
+
+definition
+ "rec_ifz = PR (Id 2 0) (Id 4 3)"
+
+definition
+ "rec_if = CN rec_ifz [CN rec_not [Id 3 0], Id 3 1, Id 3 2]"
+
+
+lemma sign_lemma [simp]:
+ "rec_eval rec_sign [x] = (if x = 0 then 0 else 1)"
+by (simp add: rec_sign_def)
+
+lemma not_lemma [simp]:
+ "rec_eval rec_not [x] = (if x = 0 then 1 else 0)"
+by (simp add: rec_not_def)
+
+lemma eq_lemma [simp]:
+ "rec_eval rec_eq [x, y] = (if x = y then 1 else 0)"
+by (simp add: rec_eq_def)
+
+lemma noteq_lemma [simp]:
+ "rec_eval rec_noteq [x, y] = (if x \<noteq> y then 1 else 0)"
+by (simp add: rec_noteq_def)
+
+lemma conj_lemma [simp]:
+ "rec_eval rec_conj [x, y] = (if x = 0 \<or> y = 0 then 0 else 1)"
+by (simp add: rec_conj_def)
+
+lemma disj_lemma [simp]:
+ "rec_eval rec_disj [x, y] = (if x = 0 \<and> y = 0 then 0 else 1)"
+by (simp add: rec_disj_def)
+
+lemma imp_lemma [simp]:
+ "rec_eval rec_imp [x, y] = (if 0 < x \<and> y = 0 then 0 else 1)"
+by (simp add: rec_imp_def)
+
+lemma ifz_lemma [simp]:
+ "rec_eval rec_ifz [z, x, y] = (if z = 0 then x else y)"
+by (case_tac z) (simp_all add: rec_ifz_def)
+
+lemma if_lemma [simp]:
+ "rec_eval rec_if [z, x, y] = (if 0 < z then x else y)"
+by (simp add: rec_if_def)
+
+section {* Less and Le Relations *}
+
+text {*
+ @{text "rec_less"} compares two arguments and returns @{text "1"} if
+ the first is less than the second; otherwise returns @{text "0"}. *}
+
+definition
+ "rec_less = CN rec_sign [rec_swap rec_minus]"
+
+definition
+ "rec_le = CN rec_disj [rec_less, rec_eq]"
+
+lemma less_lemma [simp]:
+ "rec_eval rec_less [x, y] = (if x < y then 1 else 0)"
+by (simp add: rec_less_def)
+
+lemma le_lemma [simp]:
+ "rec_eval rec_le [x, y] = (if (x \<le> y) then 1 else 0)"
+by(simp add: rec_le_def)
+
+
+section {* Summation and Product Functions *}
+
+definition
+ "rec_sigma1 f = PR (CN f [CN Z [Id 1 0], Id 1 0])
+ (CN rec_add [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
+
+definition
+ "rec_sigma2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1])
+ (CN rec_add [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
+
+definition
+ "rec_accum1 f = PR (CN f [CN Z [Id 1 0], Id 1 0])
+ (CN rec_mult [Id 3 1, CN f [CN S [Id 3 0], Id 3 2]])"
+
+definition
+ "rec_accum2 f = PR (CN f [CN Z [Id 2 0], Id 2 0, Id 2 1])
+ (CN rec_mult [Id 4 1, CN f [CN S [Id 4 0], Id 4 2, Id 4 3]])"
+
+definition
+ "rec_accum3 f = PR (CN f [CN Z [Id 3 0], Id 3 0, Id 3 1, Id 3 2])
+ (CN rec_mult [Id 5 1, CN f [CN S [Id 5 0], Id 5 2, Id 5 3, Id 5 4]])"
+
+
+lemma sigma1_lemma [simp]:
+ shows "rec_eval (rec_sigma1 f) [x, y] = (\<Sum> z \<le> x. rec_eval f [z, y])"
+by (induct x) (simp_all add: rec_sigma1_def)
+
+lemma sigma2_lemma [simp]:
+ shows "rec_eval (rec_sigma2 f) [x, y1, y2] = (\<Sum> z \<le> x. rec_eval f [z, y1, y2])"
+by (induct x) (simp_all add: rec_sigma2_def)
+
+lemma accum1_lemma [simp]:
+ shows "rec_eval (rec_accum1 f) [x, y] = (\<Prod> z \<le> x. rec_eval f [z, y])"
+by (induct x) (simp_all add: rec_accum1_def)
+
+lemma accum2_lemma [simp]:
+ shows "rec_eval (rec_accum2 f) [x, y1, y2] = (\<Prod> z \<le> x. rec_eval f [z, y1, y2])"
+by (induct x) (simp_all add: rec_accum2_def)
+
+lemma accum3_lemma [simp]:
+ shows "rec_eval (rec_accum3 f) [x, y1, y2, y3] = (\<Prod> z \<le> x. (rec_eval f) [z, y1, y2, y3])"
+by (induct x) (simp_all add: rec_accum3_def)
+
+
+section {* Bounded Quantifiers *}
+
+definition
+ "rec_all1 f = CN rec_sign [rec_accum1 f]"
+
+definition
+ "rec_all2 f = CN rec_sign [rec_accum2 f]"
+
+definition
+ "rec_all3 f = CN rec_sign [rec_accum3 f]"
+
+definition
+ "rec_all1_less f = (let cond1 = CN rec_eq [Id 3 0, Id 3 1] in
+ let cond2 = CN f [Id 3 0, Id 3 2]
+ in CN (rec_all2 (CN rec_disj [cond1, cond2])) [Id 2 0, Id 2 0, Id 2 1])"
+
+definition
+ "rec_all2_less f = (let cond1 = CN rec_eq [Id 4 0, Id 4 1] in
+ let cond2 = CN f [Id 4 0, Id 4 2, Id 4 3] in
+ CN (rec_all3 (CN rec_disj [cond1, cond2])) [Id 3 0, Id 3 0, Id 3 1, Id 3 2])"
+
+definition
+ "rec_ex1 f = CN rec_sign [rec_sigma1 f]"
+
+definition
+ "rec_ex2 f = CN rec_sign [rec_sigma2 f]"
+
+
+lemma ex1_lemma [simp]:
+ "rec_eval (rec_ex1 f) [x, y] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
+by (simp add: rec_ex1_def)
+
+lemma ex2_lemma [simp]:
+ "rec_eval (rec_ex2 f) [x, y1, y2] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
+by (simp add: rec_ex2_def)
+
+lemma all1_lemma [simp]:
+ "rec_eval (rec_all1 f) [x, y] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
+by (simp add: rec_all1_def)
+
+lemma all2_lemma [simp]:
+ "rec_eval (rec_all2 f) [x, y1, y2] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
+by (simp add: rec_all2_def)
+
+lemma all3_lemma [simp]:
+ "rec_eval (rec_all3 f) [x, y1, y2, y3] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2, y3]) then 1 else 0)"
+by (simp add: rec_all3_def)
+
+lemma all1_less_lemma [simp]:
+ "rec_eval (rec_all1_less f) [x, y] = (if (\<forall>z < x. 0 < rec_eval f [z, y]) then 1 else 0)"
+apply(auto simp add: Let_def rec_all1_less_def)
+apply (metis nat_less_le)+
+done
+
+lemma all2_less_lemma [simp]:
+ "rec_eval (rec_all2_less f) [x, y1, y2] = (if (\<forall>z < x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
+apply(auto simp add: Let_def rec_all2_less_def)
+apply(metis nat_less_le)+
+done
+
+section {* Quotients *}
+
+definition
+ "rec_quo = (let lhs = CN S [Id 3 0] in
+ let rhs = CN rec_mult [Id 3 2, CN S [Id 3 1]] in
+ let cond = CN rec_eq [lhs, rhs] in
+ let if_stmt = CN rec_if [cond, CN S [Id 3 1], Id 3 1]
+ in PR Z if_stmt)"
+
+fun Quo where
+ "Quo x 0 = 0"
+| "Quo x (Suc y) = (if (Suc y = x * (Suc (Quo x y))) then Suc (Quo x y) else Quo x y)"
+
+lemma Quo0:
+ shows "Quo 0 y = 0"
+by (induct y) (auto)
+
+lemma Quo1:
+ "x * (Quo x y) \<le> y"
+by (induct y) (simp_all)
+
+lemma Quo2:
+ "b * (Quo b a) + a mod b = a"
+by (induct a) (auto simp add: mod_Suc)
+
+lemma Quo3:
+ "n * (Quo n m) = m - m mod n"
+using Quo2[of n m] by (auto)
+
+lemma Quo4:
+ assumes h: "0 < x"
+ shows "y < x + x * Quo x y"
+proof -
+ have "x - (y mod x) > 0" using mod_less_divisor assms by auto
+ then have "y < y + (x - (y mod x))" by simp
+ then have "y < x + (y - (y mod x))" by simp
+ then show "y < x + x * (Quo x y)" by (simp add: Quo3)
+qed
+
+lemma Quo_div:
+ shows "Quo x y = y div x"
+apply(case_tac "x = 0")
+apply(simp add: Quo0)
+apply(subst split_div_lemma[symmetric])
+apply(auto intro: Quo1 Quo4)
+done
+
+lemma Quo_rec_quo:
+ shows "rec_eval rec_quo [y, x] = Quo x y"
+by (induct y) (simp_all add: rec_quo_def)
+
+lemma quo_lemma [simp]:
+ shows "rec_eval rec_quo [y, x] = y div x"
+by (simp add: Quo_div Quo_rec_quo)
+
+
+section {* Iteration *}
+
+definition
+ "rec_iter f = PR (Id 1 0) (CN f [Id 3 1])"
+
+fun Iter where
+ "Iter f 0 = id"
+| "Iter f (Suc n) = f \<circ> (Iter f n)"
+
+lemma Iter_comm:
+ "(Iter f n) (f x) = f ((Iter f n) x)"
+by (induct n) (simp_all)
+
+lemma iter_lemma [simp]:
+ "rec_eval (rec_iter f) [n, x] = Iter (\<lambda>x. rec_eval f [x]) n x"
+by (induct n) (simp_all add: rec_iter_def)
+
+
+section {* Bounded Maximisation *}
+
+
+fun BMax_rec where
+ "BMax_rec RR 0 = 0"
+| "BMax_rec RR (Suc n) = (if RR (Suc n) then (Suc n) else BMax_rec RR n)"
+
+definition
+ BMax_set :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat"
+where
+ "BMax_set RR x = Max ({z. z \<le> x \<and> RR z} \<union> {0})"
+
+lemma BMax_rec_eq1:
+ "BMax_rec RR x = (GREATEST z. (RR z \<and> z \<le> x) \<or> z = 0)"
+apply(induct x)
+apply(auto intro: Greatest_equality Greatest_equality[symmetric])
+apply(simp add: le_Suc_eq)
+by metis
+
+lemma BMax_rec_eq2:
+ "BMax_rec RR x = Max ({z. z \<le> x \<and> RR z} \<union> {0})"
+apply(induct x)
+apply(auto intro: Max_eqI Max_eqI[symmetric])
+apply(simp add: le_Suc_eq)
+by metis
+
+lemma BMax_rec_eq3:
+ "BMax_rec RR x = Max (Set.filter (\<lambda>z. RR z) {..x} \<union> {0})"
+by (simp add: BMax_rec_eq2 Set.filter_def)
+
+definition
+ "rec_max1 f = PR Z (CN rec_ifz [CN f [CN S [Id 3 0], Id 3 2], CN S [Id 3 0], Id 3 1])"
+
+lemma max1_lemma [simp]:
+ "rec_eval (rec_max1 f) [x, y] = BMax_rec (\<lambda>u. rec_eval f [u, y] = 0) x"
+by (induct x) (simp_all add: rec_max1_def)
+
+definition
+ "rec_max2 f = PR Z (CN rec_ifz [CN f [CN S [Id 4 0], Id 4 2, Id 4 3], CN S [Id 4 0], Id 4 1])"
+
+lemma max2_lemma [simp]:
+ "rec_eval (rec_max2 f) [x, y1, y2] = BMax_rec (\<lambda>u. rec_eval f [u, y1, y2] = 0) x"
+by (induct x) (simp_all add: rec_max2_def)
+
+
+section {* Encodings using Cantor's pairing function *}
+
+text {*
+ We use Cantor's pairing function from Nat_Bijection.
+ However, we need to prove that the formulation of the
+ decoding function there is recursive. For this we first
+ prove that we can extract the maximal triangle number
+ using @{term prod_decode}.
+*}
+
+abbreviation Max_triangle_aux where
+ "Max_triangle_aux k z \<equiv> fst (prod_decode_aux k z) + snd (prod_decode_aux k z)"
+
+abbreviation Max_triangle where
+ "Max_triangle z \<equiv> Max_triangle_aux 0 z"
+
+abbreviation
+ "pdec1 z \<equiv> fst (prod_decode z)"
+
+abbreviation
+ "pdec2 z \<equiv> snd (prod_decode z)"
+
+abbreviation
+ "penc m n \<equiv> prod_encode (m, n)"
+
+lemma fst_prod_decode:
+ "pdec1 z = z - triangle (Max_triangle z)"
+by (subst (3) prod_decode_inverse[symmetric])
+ (simp add: prod_encode_def prod_decode_def split: prod.split)
+
+lemma snd_prod_decode:
+ "pdec2 z = Max_triangle z - pdec1 z"
+by (simp only: prod_decode_def)
+
+lemma le_triangle:
+ "m \<le> triangle (n + m)"
+by (induct_tac m) (simp_all)
+
+lemma Max_triangle_triangle_le:
+ "triangle (Max_triangle z) \<le> z"
+by (subst (9) prod_decode_inverse[symmetric])
+ (simp add: prod_decode_def prod_encode_def split: prod.split)
+
+lemma Max_triangle_le:
+ "Max_triangle z \<le> z"
+proof -
+ have "Max_triangle z \<le> triangle (Max_triangle z)"
+ using le_triangle[of _ 0, simplified] by simp
+ also have "... \<le> z" by (rule Max_triangle_triangle_le)
+ finally show "Max_triangle z \<le> z" .
+qed
+
+lemma w_aux:
+ "Max_triangle (triangle k + m) = Max_triangle_aux k m"
+by (simp add: prod_decode_def[symmetric] prod_decode_triangle_add)
+
+lemma y_aux: "y \<le> Max_triangle_aux y k"
+apply(induct k arbitrary: y rule: nat_less_induct)
+apply(subst (1 2) prod_decode_aux.simps)
+apply(simp)
+apply(rule impI)
+apply(drule_tac x="n - Suc y" in spec)
+apply(drule mp)
+apply(auto)[1]
+apply(drule_tac x="Suc y" in spec)
+apply(erule Suc_leD)
+done
+
+lemma Max_triangle_greatest:
+ "Max_triangle z = (GREATEST k. (triangle k \<le> z \<and> k \<le> z) \<or> k = 0)"
+apply(rule Greatest_equality[symmetric])
+apply(rule disjI1)
+apply(rule conjI)
+apply(rule Max_triangle_triangle_le)
+apply(rule Max_triangle_le)
+apply(erule disjE)
+apply(erule conjE)
+apply(subst (asm) (1) le_iff_add)
+apply(erule exE)
+apply(clarify)
+apply(simp only: w_aux)
+apply(rule y_aux)
+apply(simp)
+done
+
+
+definition
+ "rec_triangle = CN rec_quo [CN rec_mult [Id 1 0, S], constn 2]"
+
+definition
+ "rec_max_triangle =
+ (let cond = CN rec_not [CN rec_le [CN rec_triangle [Id 2 0], Id 2 1]] in
+ CN (rec_max1 cond) [Id 1 0, Id 1 0])"
+
+
+lemma triangle_lemma [simp]:
+ "rec_eval rec_triangle [x] = triangle x"
+by (simp add: rec_triangle_def triangle_def)
+
+lemma max_triangle_lemma [simp]:
+ "rec_eval rec_max_triangle [x] = Max_triangle x"
+by (simp add: Max_triangle_greatest rec_max_triangle_def Let_def BMax_rec_eq1)
+
+
+text {* Encodings for Products *}
+
+definition
+ "rec_penc = CN rec_add [CN rec_triangle [CN rec_add [Id 2 0, Id 2 1]], Id 2 0]"
+
+definition
+ "rec_pdec1 = CN rec_minus [Id 1 0, CN rec_triangle [CN rec_max_triangle [Id 1 0]]]"
+
+definition
+ "rec_pdec2 = CN rec_minus [CN rec_max_triangle [Id 1 0], CN rec_pdec1 [Id 1 0]]"
+
+lemma pdec1_lemma [simp]:
+ "rec_eval rec_pdec1 [z] = pdec1 z"
+by (simp add: rec_pdec1_def fst_prod_decode)
+
+lemma pdec2_lemma [simp]:
+ "rec_eval rec_pdec2 [z] = pdec2 z"
+by (simp add: rec_pdec2_def snd_prod_decode)
+
+lemma penc_lemma [simp]:
+ "rec_eval rec_penc [m, n] = penc m n"
+by (simp add: rec_penc_def prod_encode_def)
+
+
+text {* Encodings of Lists *}
+
+fun
+ lenc :: "nat list \<Rightarrow> nat"
+where
+ "lenc [] = 0"
+| "lenc (x # xs) = penc (Suc x) (lenc xs)"
+
+fun
+ ldec :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+ "ldec z 0 = (pdec1 z) - 1"
+| "ldec z (Suc n) = ldec (pdec2 z) n"
+
+lemma pdec_zero_simps [simp]:
+ "pdec1 0 = 0"
+ "pdec2 0 = 0"
+by (simp_all add: prod_decode_def prod_decode_aux.simps)
+
+lemma ldec_zero:
+ "ldec 0 n = 0"
+by (induct n) (simp_all add: prod_decode_def prod_decode_aux.simps)
+
+lemma list_encode_inverse:
+ "ldec (lenc xs) n = (if n < length xs then xs ! n else 0)"
+by (induct xs arbitrary: n rule: lenc.induct)
+ (auto simp add: ldec_zero nth_Cons split: nat.splits)
+
+lemma lenc_length_le:
+ "length xs \<le> lenc xs"
+by (induct xs) (simp_all add: prod_encode_def)
+
+
+text {* Membership for the List Encoding *}
+
+fun within :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
+ "within z 0 = (0 < z)"
+| "within z (Suc n) = within (pdec2 z) n"
+
+definition enclen :: "nat \<Rightarrow> nat" where
+ "enclen z = BMax_rec (\<lambda>x. within z (x - 1)) z"
+
+lemma within_False [simp]:
+ "within 0 n = False"
+by (induct n) (simp_all)
+
+lemma within_length [simp]:
+ "within (lenc xs) s = (s < length xs)"
+apply(induct s arbitrary: xs)
+apply(case_tac xs)
+apply(simp_all add: prod_encode_def)
+apply(case_tac xs)
+apply(simp_all)
+done
+
+text {* Length of Encoded Lists *}
+
+lemma enclen_length [simp]:
+ "enclen (lenc xs) = length xs"
+unfolding enclen_def
+apply(simp add: BMax_rec_eq1)
+apply(rule Greatest_equality)
+apply(auto simp add: lenc_length_le)
+done
+
+lemma enclen_penc [simp]:
+ "enclen (penc (Suc x) (lenc xs)) = Suc (enclen (lenc xs))"
+by (simp only: lenc.simps[symmetric] enclen_length) (simp)
+
+lemma enclen_zero [simp]:
+ "enclen 0 = 0"
+by (simp add: enclen_def)
+
+
+text {* Recursive Definitions for List Encodings *}
+
+fun
+ rec_lenc :: "recf list \<Rightarrow> recf"
+where
+ "rec_lenc [] = Z"
+| "rec_lenc (f # fs) = CN rec_penc [CN S [f], rec_lenc fs]"
+
+definition
+ "rec_ldec = CN rec_pred [CN rec_pdec1 [rec_swap (rec_iter rec_pdec2)]]"
+
+definition
+ "rec_within = CN rec_less [Z, rec_swap (rec_iter rec_pdec2)]"
+
+definition
+ "rec_enclen = CN (rec_max1 (CN rec_not [CN rec_within [Id 2 1, CN rec_pred [Id 2 0]]])) [Id 1 0, Id 1 0]"
+
+lemma ldec_iter:
+ "ldec z n = pdec1 (Iter pdec2 n z) - 1"
+by (induct n arbitrary: z) (simp | subst Iter_comm)+
+
+lemma within_iter:
+ "within z n = (0 < Iter pdec2 n z)"
+by (induct n arbitrary: z) (simp | subst Iter_comm)+
+
+lemma lenc_lemma [simp]:
+ "rec_eval (rec_lenc fs) xs = lenc (map (\<lambda>f. rec_eval f xs) fs)"
+by (induct fs) (simp_all)
+
+lemma ldec_lemma [simp]:
+ "rec_eval rec_ldec [z, n] = ldec z n"
+by (simp add: ldec_iter rec_ldec_def)
+
+lemma within_lemma [simp]:
+ "rec_eval rec_within [z, n] = (if within z n then 1 else 0)"
+by (simp add: within_iter rec_within_def)
+
+lemma enclen_lemma [simp]:
+ "rec_eval rec_enclen [z] = enclen z"
+by (simp add: rec_enclen_def enclen_def)
+
+section {* Compliation from Recs to Abacus *}
+
+definition "ms a xs = fam_conj {0..<(length xs)} (\<lambda> i. mm (a+i) (xs!i))"
+
+definition "za a = mm a 0"
+
+definition "zs I = fam_conj I za"
+
+consts mn_compute_g :: "(nat \<times> tpg) \<Rightarrow> tpg"
+ mn_save_arg :: "nat \<Rightarrow> tpg"
+ mn_restore_arg :: "nat \<Rightarrow> tpg"
+ mn_install_f_arg :: "nat \<Rightarrow> tpg"
+
+consts rec_ci :: "recf \<Rightarrow> (tpg \<times> nat)"
+
+lemma mn_ci:
+ "rec_ci (Cn n f gs) =
+ (let (cf, muf) = rec_ci f in
+ let cgs = map (fst o rec_ci) gs in
+ let mgs = map (snd o rec_ci) gs in
+ let mub = int (Max (set (muf#mgs))) in
+ let ps = map nat [mub+1..mub + int (length gs)] in
+ let qs = map nat [mub + int (length gs) + 1 .. mub + int (n + length gs)] in
+ let compute_gs = tpg_fold (map mn_compute_g (zip ps cgs)) in
+ let save_args = tpg_fold (map mn_save_arg qs) in
+ let restore_args = tpg_fold (map mn_restore_arg qs) in
+ let clear_all = (tpg_fold (map (clear o nat) [0..(int (length gs))])) in
+ let install_f_args = tpg_fold (map mn_install_f_arg ps) in
+ let cf = (compute_gs; save_args; clear_all; install_f_args; cf; restore_args) in
+ let mu = ((nat mub) + n + length gs) in
+ (cf, mu))"
+ sorry
+
+lemma rec_ci_cnE:
+ assumes "P (rec_ci (Cn n f gs))"
+ obtains cf muf cgs mgs mub pss qs compute_gs
+ save_args restore_args clear_all install_f_args code mu
+ where "(cf, muf) = rec_ci f"
+ "cgs = map (fst o rec_ci) gs"
+ "mgs = map (snd o rec_ci) gs"
+ "mub = int (Max (set (muf#mgs)))"
+ "pss = map nat [mub+1..mub + int (length gs)]"
+ "qs = map nat [mub + int (length gs) + 1 .. mub + int (n + length gs)]"
+ "compute_gs = tpg_fold (map mn_compute_g (zip pss cgs))"
+ "save_args = tpg_fold (map mn_save_arg qs)"
+ "restore_args = tpg_fold (map mn_restore_arg qs)"
+ "clear_all = (tpg_fold (map (clear o nat) [0..(int (length gs))]))"
+ "install_f_args = tpg_fold (map mn_install_f_arg pss)"
+ "code = (compute_gs; save_args; clear_all; install_f_args; cf; restore_args)"
+ "mu = (nat mub) + n + length gs"
+ "P (code, mu)"
+proof -
+ show ?thesis
+ apply (insert assms)
+ apply (unfold mn_ci)
+ apply (tactic {* let_elim_tac @{context} 1 *})
+ apply (insert that)
+ by metis
+qed
+
+theorem rec_ci_correct:
+ assumes "terminates rcf xs"
+ "rec_ci rcf = (c, mu)"
+ shows
+ "IA. \<lbrace> pc i \<and>* ms 0 xs \<and>* mm (length xs) 0 \<and>* zs {length xs<..(mu - length xs)}\<rbrace>
+ i:[c]:j
+ \<lbrace> pc j \<and>* ms 0 xs \<and>* mm (length xs) (rec_eval rcf xs) \<and>* zs {length xs<..(mu - length xs)}\<rbrace>"
+ using assms
+proof(induct arbitrary:c mu)
+ case (termi_cn f xs gs n c mu)
+ hence [unfolded mn_ci]: "rec_ci (Cn n f gs) = (c, mu)" by simp
+ thus ?case
+ proof(let_elim)
+ case (1 cf muf cgs mgs mub ps qs compute_gs
+ save_args restore_args clear_all install_f_args code)
+ from 1(1) have "c = code" "mu = (nat mub + n + length gs)" by auto
+ show ?thesis
+ proof(unfold `c = code`)
+ oops
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Sort_ops.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,65 @@
+theory Sort_ops
+imports Term_pat
+begin
+
+ML {*
+local
+ open Array
+in
+
+ fun swap i j a = let val ai = sub(a, i);
+ val _ = update(a, i, sub(a, j))
+ val _ = update(a, j, ai)
+ in
+ a
+ end
+
+ fun pre_ops_of a =
+ getM :|-- (fn (l, r, piv, i, j) => let
+ (* val _ = Output.tracing ("("^string_of_int i^","^string_of_int j^")") *)
+ in
+ if (j < i) then (returnM (swap l j a) |-- returnM [(l, j)])
+ else (if (sub(a, i) <= piv andalso i <= r) then (setM (l, r, piv, i + 1, j)
+ |-- pre_ops_of a)
+ else if (sub(a, j) > piv ) then (setM (l, r, piv, i, j - 1) |-- pre_ops_of a)
+ else (pre_ops_of (swap i j a) :|-- (fn ops => returnM ((i,j)::ops))))
+ end
+ )
+
+ fun ops_of i j a =
+ if (j < i) then []
+ else let
+ val piv = sub(a, i)
+ val (ops1, (_, _, _, i', j')) = pre_ops_of a (i, j, piv, i, j) |> normVal
+ val ops2 = ops_of i (j' - 1) a
+ val ops3 = ops_of (j' + 1) j a
+ in
+ ops1 @ ops2 @ ops3
+ end
+
+ fun rem_sdup [] = []
+ | rem_sdup [c] = [c]
+ | rem_sdup ((i, j)::(i', j')::xs) = if ((i = i' andalso j = j') orelse
+ (i = j' andalso j = i')) then rem_sdup (xs)
+ else (i, j)::rem_sdup ((i', j')::xs)
+ fun sexec [] a = a
+ | sexec ((i, j)::ops) a = sexec ops (swap i j a)
+
+ fun swaps_of (l:int list) =
+ ops_of 0 (List.length l - 1) (fromList l) |> rem_sdup
+ |> filter (fn (i, j) => i <> j)
+end
+
+*}
+
+text {* Examples *}
+
+ML {*
+ val l = [8, 9, 10, 1, 12, 13, 14]
+ val ops = (swaps_of l)
+ val a = (sexec ops (Array.fromList l))
+ val l' = Array.vector a
+ val a = sexec (rev ops) a
+*}
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Sort_ops.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,65 @@
+theory Sort_ops
+imports Main
+begin
+
+ML {*
+local
+ open Array
+in
+
+ fun swap i j a = let val ai = sub(a, i);
+ val _ = update(a, i, sub(a, j))
+ val _ = update(a, j, ai)
+ in
+ a
+ end
+
+ fun pre_ops_of a =
+ getM :|-- (fn (l, r, piv, i, j) => let
+ (* val _ = Output.tracing ("("^string_of_int i^","^string_of_int j^")") *)
+ in
+ if (j < i) then (returnM (swap l j a) |-- returnM [(l, j)])
+ else (if (sub(a, i) <= piv andalso i <= r) then (setM (l, r, piv, i + 1, j)
+ |-- pre_ops_of a)
+ else if (sub(a, j) > piv ) then (setM (l, r, piv, i, j - 1) |-- pre_ops_of a)
+ else (pre_ops_of (swap i j a) :|-- (fn ops => returnM ((i,j)::ops))))
+ end
+ )
+
+ fun ops_of i j a =
+ if (j < i) then []
+ else let
+ val piv = sub(a, i)
+ val (ops1, (_, _, _, i', j')) = pre_ops_of a (i, j, piv, i, j) |> normVal
+ val ops2 = ops_of i (j' - 1) a
+ val ops3 = ops_of (j' + 1) j a
+ in
+ ops1 @ ops2 @ ops3
+ end
+
+ fun rem_sdup [] = []
+ | rem_sdup [c] = [c]
+ | rem_sdup ((i, j)::(i', j')::xs) = if ((i = i' andalso j = j') orelse
+ (i = j' andalso j = i')) then rem_sdup (xs)
+ else (i, j)::rem_sdup ((i', j')::xs)
+ fun sexec [] a = a
+ | sexec ((i, j)::ops) a = sexec ops (swap i j a)
+
+ fun swaps_of (l:int list) =
+ ops_of 0 (List.length l - 1) (fromList l) |> rem_sdup
+ |> filter (fn (i, j) => i <> j)
+end
+
+*}
+
+text {* Examples *}
+
+ML {*
+ val l = [8, 9, 10, 1, 12, 13, 14]
+ val ops = (swaps_of l)
+ val a = (sexec ops (Array.fromList l))
+ val l' = Array.vector a
+ val a = sexec (rev ops) a
+*}
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Subgoal.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,76 @@
+theory Subgoal
+imports Term_pat
+begin
+
+section {* Monad for goal and subgoal manipulation, useful for debugging tactics *}
+
+subsection {* Implementation *}
+
+ML {*
+ fun goalM raw_goal = m0M' (fn ((i, _), ctxt) =>
+ let
+ val thy = Proof_Context.theory_of ctxt
+ val goal = raw_goal |> cterm_of thy |> Goal.init
+ (* val ctxt' = Variable.auto_fixes raw_goal ctxt *)
+ val ctxt' = ctxt
+ in (s2M ctxt' |-- (s1M (i, goal)) |-- returnM goal) end)
+
+local
+ fun pr_goal ctxt goal = Goal_Display.pretty_goals ctxt goal |>
+ Pretty.markup_chunks Markup.state |> Pretty.writeln
+in
+ fun tacM tac = m1M' (fn (i, goal) => m2M (fn ctxt =>
+ let
+ val goal' = (Seq.hd (tac ctxt goal))
+ val _ = pr_goal ctxt goal'
+ in
+ s1M (i, goal') |-- returnM goal'
+ end))
+end
+
+ fun focusM i = pushM |-- (liftM (m0M (fn ((_, goal), ctxt) =>
+ let val (focus as {context = ctxt', ...}, goal') = Subgoal.focus ctxt i goal
+ in
+ setM ((i, goal'), ctxt') |-- returnM focus
+ end)))
+
+ fun end_focusM x = ( popM
+ :|-- (fn ((i, goal'), _) => topM (fn ((old_i, goal), ctxt) =>
+ let val ({context = ctxt', params, asms, ...}, _) =
+ Subgoal.focus ctxt i goal
+ val new_goal = Seq.lifts (Subgoal.retrofit ctxt' ctxt params asms i)
+ (Seq.single goal') goal |> Seq.hd
+ in s1M (old_i, new_goal) |-- returnM new_goal end ))) x
+*}
+
+subsection {* Examples *}
+
+lemma init: "A \<Longrightarrow> A"
+ by simp
+
+ML {*
+ val r as (result, _)= [((0, @{thm "init"}), @{context})] |>
+ @{fterm "(A \<and> B \<Longrightarrow> A)"}
+ :|-- goalM
+ |-- focusM 1
+ :|--(fn {prems, ...} => let
+ val conj = hd prems
+ val r = rtac (conj RS @{thm HOL.conjunct1}) 1
+ in tacM (K r) end )
+ |-- end_focusM >> Drule.export_without_context |> normVal
+*}
+
+
+ML {*
+ val r = [((0, @{thm "init"}), @{context})] |>
+ @{fterm "(A \<and> B \<Longrightarrow> A)"}
+ :|-- goalM
+ |-- tacM (fn ctxt => Subgoal.FOCUS (fn {prems, ...} => let
+ val conj = hd prems
+ val r = rtac (conj RS @{thm HOL.conjunct1}) 1
+ in r end ) ctxt 1) >> Drule.export_without_context
+ |> normVal
+*}
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Term_pat.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,244 @@
+theory Term_pat
+imports Main
+begin
+
+text {*
+ @{text "trace_match"} is the flag to control the tracing of matching activities.
+*}
+
+ML {*
+ val trace_match = Attrib.setup_config_bool @{binding trace_match} (K false)
+*}
+
+section {* Monad with support of excepion *}
+
+ML {*
+
+structure Exceptional =
+struct
+ datatype ('a, 'b) Exceptional =
+ Exception of 'a | Success of 'b
+ fun (scan1 :|-- scan2) st =
+ case scan1 st of
+ Success (v, st') => scan2 v st'
+ | Exception e => Exception e
+ fun returnM v = (fn st => Success (v, st))
+ fun (scan1 |-- scan2) = scan1 :|-- (K scan2)
+ fun (scan1 -- scan2) = scan1 :|-- (fn v1 => scan2 :|-- (fn v2 => returnM (v1, v2)))
+ fun liftE scan st = let
+ val (v, st') = scan st
+ in Success (v, st') end
+ fun getM y = Success (y, y)
+ fun setM v = (fn _ => Success (v, v))
+ fun failM x = (fn _ => raise (Scan.fail x))
+ fun m0M f = getM :|-- f
+ fun pushM x = (m0M (fn (top::rest) => setM (top::top::rest) |-- returnM top)) x
+ fun popM x = (m0M (fn (top::rest) => setM rest |-- returnM top)) x
+ (* [f] is assumed to be a monad valued function, so that it can be constructed using monad combinators.
+ For this reason, [f] is assumed to take two arguments.
+ *)
+ fun topM f = m0M (fn (top::rest) =>
+ case f top top of
+ Success (v, top') => (setM (top'::rest) |-- returnM v)
+ | Exception e => (K (Exception e)))
+ (* all the [f] in the following are monad or moand function on stack element (not on stack itself )*)
+ (* [f] in the following is assumed to be plain monad on stack element, not a monad valued function *)
+ fun liftM f = topM (K f)
+ (* [f] in the following is a monad valued funtion depending only on the first component *)
+ fun m1M f = m0M (fn (st1, st2) => f st1)
+ (* [f] in the following is a monad valued funtion depending only on the second component *)
+ fun m2M f = m0M (fn (st1, st2) => f st2)
+ fun localM f = pushM |-- f :|-- (fn res => popM |-- returnM res)
+ fun s1M n1 = m0M (fn (_, st2) => setM (n1, st2))
+ fun s2M n2 = m0M (fn (st1, _) => setM (st1, n2))
+ (* The flowing primed version is meant to substitute the unprimed version *)
+ fun m0M' f = liftM (m0M f)
+ fun m1M' f = liftM (m1M f)
+ fun m2M' f = liftM (m2M f)
+ fun lift scan = (fn (d, a) =>
+ case scan a of
+ Success (v, b) => Success (v, (d, b))
+ | Exception e => Exception e
+ )
+ fun normVal (Success v) = v
+ fun normExcp (Exception e) = e
+ fun (scan >> f) = scan :|-- (fn v => returnM (f v))
+ fun raiseM v = K (Exception v)
+end
+*}
+
+(* ccc *)
+
+section {* State monad with stack *}
+
+ML {*
+structure StackMonad = struct
+ (* getM fetches the underlying state *)
+ fun getM y = (y, y)
+ (* setM sets the underlying state *)
+ fun setM v = (fn _ => (v, v))
+ (* returnM retruns any value *)
+ fun returnM v = (fn st => (v, st))
+ (* failM failes the current process *)
+ fun failM x = (fn _ => raise (Scan.fail x))
+ (* [m0M f] applies function f to the underlying state *)
+ fun m0M f = getM :|-- f
+ fun pushM x = (m0M (fn (top::rest) => setM (top::top::rest) |-- returnM top)) x
+ fun popM x = (m0M (fn (top::rest) => setM rest |-- returnM top)) x
+ (* [f] is assumed to be a monad valued function, so that it can be constructed using monad combinators.
+ For this reason, [f] is assumed to take two arguments.
+ *)
+ fun topM f = m0M (fn (top::rest) => let val (v, top') = f top top in
+ setM (top'::rest) |-- returnM v
+ end)
+ (* all the [f] in the following are monad or moand function on stack element (not on stack itself )*)
+ (* [f] in the following is assumed to be plain monad on stack element, not a monad valued function *)
+ fun liftM f = topM (K f)
+ (* [f] in the following is a monad valued funtion depending only on the first component *)
+ fun m1M f = m0M (fn (st1, st2) => f st1)
+ (* [f] in the following is a monad valued funtion depending only on the second component *)
+ fun m2M f = m0M (fn (st1, st2) => f st2)
+ fun localM f = pushM |-- f :|-- (fn res => popM |-- returnM res)
+ fun s1M n1 = m0M (fn (_, st2) => setM (n1, st2))
+ fun s2M n2 = m0M (fn (st1, _) => setM (st1, n2))
+ fun dgM scan arg = let val (v, [arg']) = scan [arg] in (v, arg') end
+ (* The flowing primed version is meant to substitute the unprimed version *)
+ fun m0M' f = liftM (m0M f)
+ fun m1M' f = liftM (m1M f)
+ fun m2M' f = liftM (m2M f)
+ val liftE = I
+ val lift = Scan.lift
+ val :|-- = Scan.:|--
+ val |-- = Scan.|--
+ val -- = Scan.--
+ val >> = Scan.>>
+ val normVal = I
+end
+*}
+
+ML {*
+ open StackMonad
+ open Exceptional
+*}
+
+section {* State monad with stack *}
+
+ML {*
+local
+ val tracing = (fn ctxt => fn str =>
+ if (Config.get ctxt trace_match) then tracing str else ())
+ fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
+ fun pterm ctxt t =
+ t |> string_of_term ctxt |> tracing ctxt
+in
+ fun tracingM s = liftM (m2M (fn ctxt => returnM (tracing ctxt s)))
+ fun ptermM t = liftM (m2M (fn ctxt => returnM (pterm ctxt t)))
+ fun presultM tag scan = scan :|-- (fn res =>
+ tracingM tag |--
+ ptermM res |--
+ returnM res
+ )
+end
+*}
+
+ML {*
+local
+ val tracing = (fn ctxt => fn str =>
+ if (Config.get ctxt trace_match) then tracing str else ())
+ fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
+ fun pterm ctxt t =
+ t |> string_of_term ctxt |> tracing ctxt
+ fun match_fun1 pat term (st, ctxt) = let
+ val _ = tracing ctxt "match_fun on:"
+ val _ = tracing ctxt pat
+ val _ = pterm ctxt term
+ in
+ (Proof_Context.match_bind_i true
+ [([Proof_Context.read_term_pattern ctxt pat], term)] ctxt |>
+ (fn (_, ctxt) => (term, (st, ctxt))))
+ handle (ERROR x) =>
+ raise (Scan.fail x)
+ end
+in
+ fun match_fun pat term = liftE (match_fun1 pat term)
+end
+*}
+
+ML {*
+ fun err_trans (ERROR x) = raise (Scan.fail x)
+ | err_trans e = e
+*}
+
+ML {*
+ fun exnM f monad = (fn inp => monad inp handle e => raise (f e))
+*}
+
+ML {*
+ fun match_fun pat term =
+ tracingM "match_fun on:" |--
+ tracingM pat |--
+ ptermM term |--
+ liftM (lift (m0M (fn ctxt => (* setM (Variable.auto_fixes term ctxt) |-- *)
+ (liftE (Proof_Context.match_bind_i true [([Proof_Context.read_term_pattern ctxt pat], term)])) |--
+ returnM term
+ )) |> exnM err_trans)
+*}
+
+ML {*
+local
+ val >> = Scan.>>
+in
+ val match_parser =
+ (Args.name_source) >> (fn s => "(match_fun "^ML_Syntax.print_string s^")")
+end
+*}
+
+ML {*
+local
+ val >> = Scan.>>
+in
+ val fterm_parser =
+ Args.name_source >>
+ (fn term => "liftM (exnM err_trans (lift (m0M (fn ctxt => returnM ((Syntax.read_term ctxt) "^ML_Syntax.print_string term ^")))))")
+end
+*}
+
+setup {*
+ ML_Antiquote.inline @{binding match} (Scan.lift match_parser) #>
+ ML_Antiquote.inline @{binding fterm} (Scan.lift fterm_parser)
+*}
+
+ML {*
+ infixr 0 |||
+ fun (scan1 ||| scan2) xs = scan1 xs handle _ => scan2 xs
+*}
+
+declare [[trace_match = false]]
+
+ML {*
+ val t = [((), @{context})] |>
+ (@{match "(?x::nat) + ?y"} @{term "(1::nat) + 2"} |--
+ @{fterm "?x"})
+*}
+
+
+ML {* (* testings and examples *)
+ fun trans t = (@{match "(?x ::nat) + ?y"} t |--
+ (@{fterm "?x"} :|-- trans) :|-- @{match "?u"} |--
+ (@{fterm "?y"} :|-- trans) :|-- @{match "?v"} |--
+ @{fterm "?v * ?v * ?u"}
+ ||
+ @{match "(?x ::nat) - ?y"} t |--
+ (@{fterm "?x"} :|-- trans) :|-- @{match "?u"} |--
+ (@{fterm "?y"} :|-- trans) :|-- @{match "v"} |--
+ @{fterm "?v - ?v * ?u"}
+ ||
+ (returnM t))
+*}
+
+ML {*
+ val t = trans @{term "(u - (x::nat) + y)"} [((), @{context})] |> normVal |>
+ apfst (cterm_of @{theory}) |> fst
+ *}
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Thm_inst.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,130 @@
+theory Thm_inst
+imports Term_pat
+begin
+
+section {* Monad for theorem instantiation based on bindings in proof contexts *}
+
+subsection {* Implementation *}
+
+ML {*
+local
+fun read_termTs ctxt schematic ts Ts =
+ let
+ val ts' =
+ map2 (Type.constraint o Type_Infer.paramify_vars) Ts ts
+ |> Syntax.check_terms ((schematic ? Proof_Context.set_mode Proof_Context.mode_schematic) ctxt)
+ |> Variable.polymorphic ctxt;
+ val Ts' = map Term.fastype_of ts';
+ val tyenv = fold Type.raw_match (Ts ~~ Ts') Vartab.empty;
+ in (ts', map (apsnd snd) (Vartab.dest tyenv)) end;
+
+fun make_inst f v =
+ let
+ val t = Var v;
+ val t' = f t;
+ in if t aconv t' then NONE else SOME (t, t') end;
+
+
+fun error_var msg xi = error (msg ^ quote (Term.string_of_vname xi));
+
+fun the_type vars (xi: indexname) =
+ (case AList.lookup (op =) vars xi of
+ SOME T => T
+ | NONE => error_var "No such variable in theorem: " xi);
+
+fun instantiate inst =
+ Term_Subst.instantiate ([], map (fn (xi, t) => ((xi, Term.fastype_of t), t)) inst) #>
+ Envir.beta_norm;
+
+fun make_instT f v =
+ let
+ val T = TVar v;
+ val T' = f T;
+ in if T = T' then NONE else SOME (T, T') end;
+
+fun read_insts ctxt term_insts (tvars, vars) =
+ let
+ val thy = Proof_Context.theory_of ctxt;
+ val cert = Thm.cterm_of thy;
+ val certT = Thm.ctyp_of thy;
+
+
+ (* type instantiations *)
+
+ val instT1 = Term_Subst.instantiateT [];
+ val vars1 = map (apsnd instT1) vars;
+
+
+ (* term instantiations *)
+
+ val (xs, ts) = split_list term_insts;
+ val Ts = map (the_type vars1) xs;
+ val (ts, inferred) = read_termTs ctxt false ts Ts;
+
+ val instT2 = Term.typ_subst_TVars inferred;
+ val vars2 = map (apsnd instT2) vars1;
+ val inst2 = instantiate (xs ~~ ts);
+
+
+ (* result *)
+
+ val inst_tvars = map_filter (make_instT (instT2 o instT1)) tvars;
+ val inst_vars = map_filter (make_inst inst2) vars2;
+ in
+ (map (pairself certT) inst_tvars, map (pairself cert) inst_vars)
+ end
+
+ val add_used =
+ (Thm.fold_terms o fold_types o fold_atyps)
+ (fn TFree (a, _) => insert (op =) a
+ | TVar ((a, _), _) => insert (op =) a
+ | _ => I)
+
+fun term_instantiate ctxt term_insts thm =
+ let
+ val ctxt' = ctxt
+ |> Variable.declare_thm thm
+ |> fold (fn a => Variable.declare_names (Logic.mk_type (TFree (a, dummyS)))) (add_used thm []);
+ (* FIXME !? *)
+ val tvars = Thm.fold_terms Term.add_tvars thm [];
+ val vars = Thm.fold_terms Term.add_vars thm [];
+ val insts = read_insts ctxt' term_insts (tvars, vars);
+ in
+ Drule.instantiate_normalize insts thm
+ |> Rule_Cases.save thm
+ end
+
+in
+ fun ctxt_instantiate ctxt thm = let
+ val binds = Variable.binds_of ctxt
+ val vars = Thm.fold_terms Term.add_vars thm [] |> map fst
+ val inst = map_filter ( Vartab.lookup_key binds) vars |> map (apsnd snd)
+ val thm' = term_instantiate ctxt inst thm
+ in thm' end
+
+ fun thm_instM thm =
+ liftM (lift (m0M (fn ctxt =>
+ returnM (ctxt_instantiate ctxt thm)
+ )) |> exnM err_trans)
+
+end
+*}
+
+subsection {* Examples *}
+
+lemma h: "x = x \<and> y = y"
+ by simp
+
+ML {*
+ val ctxt = @{context}
+ val t = ctxt_instantiate ctxt @{thm h} |> prop_of
+*}
+
+ML {*
+ val t = [((), @{context})] |> @{match "?x"} @{term "[]::nat list"} |--
+ @{match "?y"} @{term "1::nat"} |--
+ thm_instM @{thm h}
+*}
+
+end
+