25
|
1 |
header {*
|
|
2 |
{\em Abacus} defined as macros of TM
|
|
3 |
*}
|
|
4 |
|
|
5 |
theory Hoare_abc
|
|
6 |
imports Hoare_tm Finite_Set
|
|
7 |
begin
|
|
8 |
|
|
9 |
|
|
10 |
text {*
|
|
11 |
{\em Abacus} instructions
|
|
12 |
*}
|
|
13 |
|
|
14 |
(*
|
|
15 |
text {* The following Abacus instructions will be replaced by TM macros. *}
|
|
16 |
datatype abc_inst =
|
|
17 |
-- {* @{text "Inc n"} increments the memory cell (or register)
|
|
18 |
with address @{text "n"} by one.
|
|
19 |
*}
|
|
20 |
Inc nat
|
|
21 |
-- {*
|
|
22 |
@{text "Dec n label"} decrements the memory cell with address @{text "n"} by one.
|
|
23 |
If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
|
|
24 |
the instruction labeled by @{text "label"}.
|
|
25 |
*}
|
|
26 |
| Dec nat nat
|
|
27 |
-- {*
|
|
28 |
@{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
|
|
29 |
*}
|
|
30 |
| Goto nat
|
|
31 |
|
|
32 |
*)
|
|
33 |
|
|
34 |
datatype aresource =
|
|
35 |
M nat nat
|
|
36 |
(* | C nat abc_inst *) (* C resource is not needed because there is no Abacus code any more *)
|
|
37 |
| At nat
|
|
38 |
| Faults nat
|
|
39 |
|
|
40 |
|
|
41 |
section {* An interpretation from Abacus to Turing Machine *}
|
|
42 |
|
|
43 |
fun recse_map :: "nat list \<Rightarrow> aresource \<Rightarrow> tassert" where
|
|
44 |
"recse_map ks (M a v) = <(a < length ks \<and> ks!a = v \<or> a \<ge> length ks \<and> v = 0)>" |
|
|
45 |
"recse_map ks (At l) = st l" |
|
|
46 |
"recse_map ks (Faults n) = sg {TFaults n}"
|
|
47 |
|
|
48 |
definition "IA ars = (EXS ks i. ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* (reps 2 i ks) \<and>*
|
|
49 |
fam_conj {i<..} zero \<and>*
|
|
50 |
fam_conj ars (recse_map ks))"
|
|
51 |
|
|
52 |
|
|
53 |
section {* A virtually defined Abacus *}
|
|
54 |
|
|
55 |
text {* The following Abacus instructions are to be defined as TM macros *}
|
|
56 |
|
|
57 |
definition "pc l = sg {At l}"
|
|
58 |
|
|
59 |
definition "mm a v =sg ({M a v})"
|
|
60 |
|
|
61 |
type_synonym assert = "aresource set \<Rightarrow> bool"
|
|
62 |
|
|
63 |
lemma tm_hoare_inc1:
|
|
64 |
assumes h: "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0"
|
|
65 |
shows "
|
|
66 |
\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
|
|
67 |
i :[Inc a ]: j
|
|
68 |
\<lbrace>st j \<and>*
|
|
69 |
ps u \<and>*
|
|
70 |
zero (u - 2) \<and>*
|
|
71 |
zero (u - 1) \<and>*
|
|
72 |
reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
|
|
73 |
fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
|
|
74 |
using h
|
|
75 |
proof
|
|
76 |
assume hh: "a < length ks \<and> ks ! a = v"
|
|
77 |
hence "a < length ks" by simp
|
|
78 |
from list_ext_lt [OF this] tm_hoare_inc00[OF hh]
|
|
79 |
show ?thesis by simp
|
|
80 |
next
|
|
81 |
assume "length ks \<le> a \<and> v = 0"
|
|
82 |
from tm_hoare_inc01[OF this]
|
|
83 |
show ?thesis by simp
|
|
84 |
qed
|
|
85 |
|
|
86 |
lemma tm_hoare_inc2:
|
|
87 |
assumes "mm a v sr"
|
|
88 |
shows "
|
|
89 |
\<lbrace> (fam_conj sr (recse_map ks) \<and>*
|
|
90 |
st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<rbrace>
|
|
91 |
i:[ (Inc a) ]:j
|
|
92 |
\<lbrace> (fam_conj {M a (Suc v)} (recse_map (list_ext a ks[a := Suc v])) \<and>*
|
|
93 |
st j \<and>*
|
|
94 |
ps 2 \<and>*
|
|
95 |
zero 0 \<and>*
|
|
96 |
zero 1 \<and>*
|
|
97 |
reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
|
|
98 |
fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero)\<rbrace>"
|
|
99 |
proof -
|
|
100 |
from `mm a v sr` have eq_sr: "sr = {M a v}" by (auto simp:mm_def sg_def)
|
|
101 |
from tm_hoare_inc1[where u = 2]
|
|
102 |
have "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0 \<Longrightarrow>
|
|
103 |
\<lbrace>st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
|
|
104 |
i :[Inc a ]: j
|
|
105 |
\<lbrace>(st j \<and>*
|
|
106 |
ps 2 \<and>*
|
|
107 |
zero 0 \<and>*
|
|
108 |
zero 1 \<and>*
|
|
109 |
reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
|
|
110 |
fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero)\<rbrace>" by simp
|
|
111 |
thus ?thesis
|
|
112 |
apply (unfold eq_sr)
|
|
113 |
apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len)
|
|
114 |
by (rule tm.pre_condI, blast)
|
|
115 |
qed
|
|
116 |
|
|
117 |
locale IA_disjoint =
|
|
118 |
fixes s s' s1 cnf
|
|
119 |
assumes h_IA: "IA (s + s') s1"
|
|
120 |
and h_disj: "s ## s'"
|
|
121 |
and h_conf: "s1 \<subseteq> trset_of cnf"
|
|
122 |
begin
|
|
123 |
|
|
124 |
lemma at_disj1:
|
|
125 |
assumes at_in: "At i \<in> s"
|
|
126 |
shows "At j \<notin> s'"
|
|
127 |
proof
|
|
128 |
from h_IA[unfolded IA_def]
|
|
129 |
obtain ks idx
|
|
130 |
where "((ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
|
|
131 |
reps 2 idx ks \<and>* fam_conj {idx<..} zero) \<and>*
|
|
132 |
fam_conj (s + s') (recse_map ks)) s1" (is "(?P \<and>* ?Q) s1")
|
|
133 |
by (auto elim!:EXS_elim simp:sep_conj_ac)
|
|
134 |
then obtain ss1 ss2 where "s1 = ss1 + ss2" "ss1 ## ss2" "?P ss1" "?Q ss2"
|
|
135 |
by (auto elim:sep_conjE)
|
|
136 |
from `?Q ss2`[unfolded fam_conj_disj_simp[OF h_disj]]
|
|
137 |
obtain tt1 tt2
|
|
138 |
where "ss2 = tt1 + tt2" "tt1 ## tt2"
|
|
139 |
"(fam_conj s (recse_map ks)) tt1"
|
|
140 |
"(fam_conj s' (recse_map ks)) tt2"
|
|
141 |
by (auto elim:sep_conjE)
|
|
142 |
assume "At j \<in> s'"
|
|
143 |
from `(fam_conj s' (recse_map ks)) tt2` [unfolded fam_conj_elm_simp[OF this]]
|
|
144 |
`ss2 = tt1 + tt2` `s1 = ss1 + ss2` h_conf
|
|
145 |
have "TAt j \<in> trset_of cnf"
|
|
146 |
by (auto elim!:sep_conjE simp: st_def sg_def tpn_set_def set_ins_def)
|
|
147 |
moreover from `(fam_conj s (recse_map ks)) tt1` [unfolded fam_conj_elm_simp[OF at_in]]
|
|
148 |
`ss2 = tt1 + tt2` `s1 = ss1 + ss2` h_conf
|
|
149 |
have "TAt i \<in> trset_of cnf"
|
|
150 |
by (auto elim!:sep_conjE simp: st_def sg_def tpn_set_def set_ins_def)
|
|
151 |
ultimately have "i = j"
|
|
152 |
by (cases cnf, simp add:trset_of.simps tpn_set_def)
|
|
153 |
from at_in `At j \<in> s'` h_disj
|
|
154 |
show False
|
|
155 |
by (unfold `i = j`, auto simp:set_ins_def)
|
|
156 |
qed
|
|
157 |
|
|
158 |
lemma at_disj2: "At i \<in> s' \<Longrightarrow> At j \<notin> s"
|
|
159 |
by (metis at_disj1)
|
|
160 |
|
|
161 |
lemma m_disj1:
|
|
162 |
assumes m_in: "M a v \<in> s"
|
|
163 |
shows "M a v' \<notin> s'"
|
|
164 |
proof
|
|
165 |
from h_IA[unfolded IA_def]
|
|
166 |
obtain ks idx
|
|
167 |
where "((ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
|
|
168 |
reps 2 idx ks \<and>* fam_conj {idx<..} zero) \<and>*
|
|
169 |
fam_conj (s + s') (recse_map ks)) s1" (is "(?P \<and>* ?Q) s1")
|
|
170 |
by (auto elim!:EXS_elim simp:sep_conj_ac)
|
|
171 |
then obtain ss1 ss2 where "s1 = ss1 + ss2" "ss1 ## ss2" "?P ss1" "?Q ss2"
|
|
172 |
by (auto elim:sep_conjE)
|
|
173 |
from `?Q ss2`[unfolded fam_conj_disj_simp[OF h_disj]]
|
|
174 |
obtain tt1 tt2
|
|
175 |
where "ss2 = tt1 + tt2" "tt1 ## tt2"
|
|
176 |
"(fam_conj s (recse_map ks)) tt1"
|
|
177 |
"(fam_conj s' (recse_map ks)) tt2"
|
|
178 |
by (auto elim:sep_conjE)
|
|
179 |
assume "M a v' \<in> s'"
|
|
180 |
from `(fam_conj s' (recse_map ks)) tt2` [unfolded fam_conj_elm_simp[OF this]
|
|
181 |
recse_map.simps]
|
|
182 |
have "(a < length ks \<and> ks ! a = v' \<or> length ks \<le> a \<and> v' = 0)"
|
|
183 |
by (auto simp:pasrt_def)
|
|
184 |
moreover from `(fam_conj s (recse_map ks)) tt1` [unfolded fam_conj_elm_simp[OF m_in]
|
|
185 |
recse_map.simps]
|
|
186 |
have "a < length ks \<and> ks ! a = v \<or> length ks \<le> a \<and> v = 0"
|
|
187 |
by (auto simp:pasrt_def)
|
|
188 |
moreover note m_in `M a v' \<in> s'` h_disj
|
|
189 |
ultimately show False
|
|
190 |
by (auto simp:set_ins_def)
|
|
191 |
qed
|
|
192 |
|
|
193 |
lemma m_disj2: "M a v \<in> s' \<Longrightarrow> M a v' \<notin> s"
|
|
194 |
by (metis m_disj1)
|
|
195 |
|
|
196 |
end
|
|
197 |
|
|
198 |
lemma EXS_elim1:
|
|
199 |
assumes "((EXS x. P(x)) \<and>* r) s"
|
|
200 |
obtains x where "(P(x) \<and>* r) s"
|
|
201 |
by (metis EXS_elim assms sep_conj_exists1)
|
|
202 |
|
|
203 |
lemma hoare_inc[step]: "IA. \<lbrace> pc i ** mm a v \<rbrace>
|
|
204 |
i:[ (Inc a) ]:j
|
|
205 |
\<lbrace> pc j ** mm a (Suc v)\<rbrace>"
|
|
206 |
(is "IA. \<lbrace> pc i ** ?P \<rbrace>
|
|
207 |
i:[ ?code ?e ]:j
|
|
208 |
\<lbrace> pc ?e ** ?Q\<rbrace>")
|
|
209 |
proof(induct rule:tm.IHoareI)
|
|
210 |
case (IPre s' s r cnf)
|
|
211 |
let ?cnf = "(trset_of cnf)"
|
|
212 |
from IPre
|
|
213 |
have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
|
|
214 |
by (metis condD)+
|
|
215 |
from h(1) obtain sr where
|
|
216 |
eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
|
|
217 |
by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def)
|
|
218 |
hence "At i \<in> s" by auto
|
|
219 |
from h(3) obtain s1 s2 s3
|
|
220 |
where hh: "?cnf = s1 + s2 + s3"
|
|
221 |
"s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
|
|
222 |
"IA (s + s') s1"
|
|
223 |
"(i :[ ?code ?e ]: j) s2"
|
|
224 |
"r s3"
|
|
225 |
apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
|
|
226 |
by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
|
|
227 |
interpret ia_disj: IA_disjoint s s' s1 cnf
|
|
228 |
proof
|
|
229 |
from `IA (s + s') s1` show "IA (s + s') s1" .
|
|
230 |
next
|
|
231 |
from `s ## s'` show "s ## s'" .
|
|
232 |
next
|
|
233 |
from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
234 |
qed
|
|
235 |
from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
236 |
from hh(3)
|
|
237 |
have "(EXS ks ia.
|
|
238 |
ps 2 \<and>*
|
|
239 |
zero 0 \<and>*
|
|
240 |
zero 1 \<and>*
|
|
241 |
reps 2 ia ks \<and>*
|
|
242 |
fam_conj {ia<..} zero \<and>*
|
|
243 |
(st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
|
|
244 |
s1"
|
|
245 |
apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
|
|
246 |
apply (unfold eq_s)
|
|
247 |
by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
|
|
248 |
then obtain ks ia
|
|
249 |
where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
|
|
250 |
reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
|
|
251 |
(is "(?PP \<and>* ?QQ) s1")
|
|
252 |
by (unfold pred_ex_def, auto simp:sep_conj_ac)
|
|
253 |
then obtain ss1 ss2 where pres:
|
|
254 |
"s1 = ss1 + ss2" "ss1 ## ss2"
|
|
255 |
"?PP ss1"
|
|
256 |
"?QQ ss2"
|
|
257 |
by (auto elim!:sep_conjE intro!:sep_conjI)
|
|
258 |
from ia_disj.at_disj1 [OF `At i \<in> s`]
|
|
259 |
have at_fresh_s': "At ?e \<notin> s'" .
|
|
260 |
have at_fresh_sr: "At ?e \<notin> sr"
|
|
261 |
proof
|
|
262 |
assume at_in: "At ?e \<in> sr"
|
|
263 |
from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
|
|
264 |
have "TAt ?e \<in> trset_of cnf"
|
|
265 |
apply (elim EXS_elim1)
|
|
266 |
apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
|
|
267 |
fam_conj_elm_simp[OF at_in])
|
|
268 |
apply (erule_tac sep_conjE, unfold set_ins_def)+
|
|
269 |
by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
|
|
270 |
moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
|
|
271 |
apply(erule_tac sep_conjE)
|
|
272 |
apply(erule_tac sep_conjE)
|
|
273 |
by (auto simp:st_def tpc_set_def sg_def set_ins_def)
|
|
274 |
ultimately have "i = ?e"
|
|
275 |
by (cases cnf, auto simp:tpn_set_def trset_of.simps)
|
|
276 |
from eq_s[unfolded this] at_in
|
|
277 |
show "False" by (auto simp:set_ins_def)
|
|
278 |
qed
|
|
279 |
from pres(3) and hh(2, 4, 5) pres(2, 4)
|
|
280 |
have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
|
|
281 |
(trset_of cnf)"
|
|
282 |
apply (unfold hh(1) pres(1))
|
|
283 |
apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
|
|
284 |
apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
|
|
285 |
apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
|
|
286 |
by (auto simp:set_ins_def)
|
|
287 |
(*****************************************************************************)
|
|
288 |
let ?ks_f = "\<lambda> sr ks. list_ext a ks[a := Suc v]"
|
|
289 |
let ?elm_f = "\<lambda> sr. {M a (Suc v)}"
|
|
290 |
let ?idx_f = "\<lambda> sr ks ia. (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)"
|
|
291 |
(*----------------------------------------------------------------------------*)
|
|
292 |
(******************************************************************************)
|
|
293 |
from tm_hoare_inc2 [OF eq_s(3), unfolded tm.Hoare_gen_def, rule_format, OF pres1]
|
|
294 |
obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
|
|
295 |
st ?e \<and>*
|
|
296 |
ps 2 \<and>*
|
|
297 |
zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
|
|
298 |
fam_conj {?idx_f sr ks ia<..} zero) \<and>*
|
|
299 |
i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
|
|
300 |
(trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
|
|
301 |
(*----------------------------------------------------------------------------*)
|
|
302 |
moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
|
|
303 |
proof -
|
|
304 |
have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
|
|
305 |
(******************************************************************************)
|
|
306 |
moreover have "?Q (?elm_f sr)"
|
|
307 |
by (simp add:mm_def sg_def)
|
|
308 |
(*----------------------------------------------------------------------------*)
|
|
309 |
moreover
|
|
310 |
(******************************************************************************)
|
|
311 |
have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
|
|
312 |
(*----------------------------------------------------------------------------*)
|
|
313 |
ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
|
|
314 |
qed
|
|
315 |
moreover
|
|
316 |
(******************************************************************************)
|
|
317 |
from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
|
|
318 |
have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
|
|
319 |
(*----------------------------------------------------------------------------*)
|
|
320 |
with at_fresh_s'
|
|
321 |
have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
|
|
322 |
moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
|
|
323 |
(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
324 |
proof -
|
|
325 |
fix elm
|
|
326 |
assume elm_in: "elm \<in> s'"
|
|
327 |
show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
328 |
proof(cases elm)
|
|
329 |
(*******************************************************************)
|
|
330 |
case (M a' v')
|
|
331 |
from eq_s have "M a v \<in> s" by (auto simp:set_ins_def mm_def sg_def)
|
|
332 |
with elm_in ia_disj.m_disj1[OF this] M
|
|
333 |
have "a \<noteq> a'" by auto
|
|
334 |
thus ?thesis
|
|
335 |
apply (auto simp:M recse_map.simps pasrt_def list_ext_len)
|
|
336 |
apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt)
|
|
337 |
apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt)
|
|
338 |
by (metis (full_types) bot_nat_def
|
|
339 |
leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def)
|
|
340 |
(*-----------------------------------------------------------------*)
|
|
341 |
qed auto
|
|
342 |
qed
|
|
343 |
ultimately show ?case
|
|
344 |
apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
|
|
345 |
apply (unfold IA_def, intro condI, assumption+)
|
|
346 |
apply (rule_tac x = "?ks_f sr ks" in pred_exI)
|
|
347 |
apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
|
|
348 |
apply (unfold fam_conj_disj_simp[OF fresh_atm])
|
|
349 |
apply (auto simp:sep_conj_ac fam_conj_simps)
|
|
350 |
(***************************************************************************)
|
|
351 |
(* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *)
|
|
352 |
(*-------------------------------------------------------------------------*)
|
|
353 |
apply (sep_cancel)+
|
|
354 |
by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])
|
|
355 |
qed
|
|
356 |
|
|
357 |
lemma tm_hoare_dec_fail:
|
|
358 |
assumes "mm a 0 sr"
|
|
359 |
shows
|
|
360 |
"\<lbrace> fam_conj sr (recse_map ks) \<and>*
|
|
361 |
st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>
|
|
362 |
i:[ (Dec a e) ]:j
|
|
363 |
\<lbrace> fam_conj {M a 0} (recse_map (list_ext a ks[a := 0])) \<and>*
|
|
364 |
st e \<and>*
|
|
365 |
ps 2 \<and>*
|
|
366 |
zero 0 \<and>*
|
|
367 |
zero 1 \<and>*
|
|
368 |
reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
|
|
369 |
fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
|
|
370 |
proof -
|
|
371 |
from `mm a 0 sr` have eq_sr: "sr = {M a 0}" by (auto simp:mm_def sg_def)
|
|
372 |
{ assume h: "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
|
|
373 |
from tm_hoare_dec_fail1[where u = 2, OF this]
|
|
374 |
have "\<lbrace>st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
|
|
375 |
i :[ Dec a e ]: j
|
|
376 |
\<lbrace>st e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
|
|
377 |
reps 2 (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
|
|
378 |
fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks)<..} zero\<rbrace>"
|
|
379 |
by (simp)
|
|
380 |
}
|
|
381 |
thus ?thesis
|
|
382 |
apply (unfold eq_sr)
|
|
383 |
apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len)
|
|
384 |
by (rule tm.pre_condI, blast)
|
|
385 |
qed
|
|
386 |
|
|
387 |
lemma hoare_dec_fail: "IA. \<lbrace> pc i ** mm a 0 \<rbrace>
|
|
388 |
i:[ (Dec a e) ]:j
|
|
389 |
\<lbrace> pc e ** mm a 0 \<rbrace>"
|
|
390 |
(is "IA. \<lbrace> pc i ** ?P \<rbrace>
|
|
391 |
i:[ ?code ?e]:j
|
|
392 |
\<lbrace> pc ?e ** ?Q\<rbrace>")
|
|
393 |
proof(induct rule:tm.IHoareI)
|
|
394 |
case (IPre s' s r cnf)
|
|
395 |
let ?cnf = "(trset_of cnf)"
|
|
396 |
from IPre
|
|
397 |
have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
|
|
398 |
by (metis condD)+
|
|
399 |
from h(1) obtain sr where
|
|
400 |
eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
|
|
401 |
by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def)
|
|
402 |
hence "At i \<in> s" by auto
|
|
403 |
from h(3) obtain s1 s2 s3
|
|
404 |
where hh: "?cnf = s1 + s2 + s3"
|
|
405 |
"s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
|
|
406 |
"IA (s + s') s1"
|
|
407 |
"(i :[ ?code ?e ]: j) s2"
|
|
408 |
"r s3"
|
|
409 |
apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
|
|
410 |
by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
|
|
411 |
interpret ia_disj: IA_disjoint s s' s1 cnf
|
|
412 |
proof
|
|
413 |
from `IA (s + s') s1` show "IA (s + s') s1" .
|
|
414 |
next
|
|
415 |
from `s ## s'` show "s ## s'" .
|
|
416 |
next
|
|
417 |
from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
418 |
qed
|
|
419 |
from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
420 |
from hh(3)
|
|
421 |
have "(EXS ks ia.
|
|
422 |
ps 2 \<and>*
|
|
423 |
zero 0 \<and>*
|
|
424 |
zero 1 \<and>*
|
|
425 |
reps 2 ia ks \<and>*
|
|
426 |
fam_conj {ia<..} zero \<and>*
|
|
427 |
(st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
|
|
428 |
s1"
|
|
429 |
apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
|
|
430 |
apply (unfold eq_s)
|
|
431 |
by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
|
|
432 |
then obtain ks ia
|
|
433 |
where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
|
|
434 |
reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
|
|
435 |
(is "(?PP \<and>* ?QQ) s1")
|
|
436 |
by (unfold pred_ex_def, auto simp:sep_conj_ac)
|
|
437 |
then obtain ss1 ss2 where pres:
|
|
438 |
"s1 = ss1 + ss2" "ss1 ## ss2"
|
|
439 |
"?PP ss1"
|
|
440 |
"?QQ ss2"
|
|
441 |
by (auto elim!:sep_conjE intro!:sep_conjI)
|
|
442 |
from ia_disj.at_disj1 [OF `At i \<in> s`]
|
|
443 |
have at_fresh_s': "At ?e \<notin> s'" .
|
|
444 |
have at_fresh_sr: "At ?e \<notin> sr"
|
|
445 |
proof
|
|
446 |
assume at_in: "At ?e \<in> sr"
|
|
447 |
from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
|
|
448 |
have "TAt ?e \<in> trset_of cnf"
|
|
449 |
apply (elim EXS_elim1)
|
|
450 |
apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
|
|
451 |
fam_conj_elm_simp[OF at_in])
|
|
452 |
apply (erule_tac sep_conjE, unfold set_ins_def)+
|
|
453 |
by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
|
|
454 |
moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
|
|
455 |
apply(erule_tac sep_conjE)
|
|
456 |
apply(erule_tac sep_conjE)
|
|
457 |
by (auto simp:st_def tpc_set_def sg_def set_ins_def)
|
|
458 |
ultimately have "i = ?e"
|
|
459 |
by (cases cnf, auto simp:tpn_set_def trset_of.simps)
|
|
460 |
from eq_s[unfolded this] at_in
|
|
461 |
show "False" by (auto simp:set_ins_def)
|
|
462 |
qed
|
|
463 |
from pres(3) and hh(2, 4, 5) pres(2, 4)
|
|
464 |
have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
|
|
465 |
(trset_of cnf)"
|
|
466 |
apply (unfold hh(1) pres(1))
|
|
467 |
apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
|
|
468 |
apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
|
|
469 |
apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
|
|
470 |
by (auto simp:set_ins_def)
|
|
471 |
(*****************************************************************************)
|
|
472 |
let ?ks_f = "\<lambda> sr ks. list_ext a ks[a:=0]"
|
|
473 |
let ?elm_f = "\<lambda> sr. {M a 0}"
|
|
474 |
let ?idx_f = "\<lambda> sr ks ia. (ia + int (reps_len (list_ext a ks)) - int (reps_len ks))"
|
|
475 |
(*----------------------------------------------------------------------------*)
|
|
476 |
(******************************************************************************)
|
|
477 |
from tm_hoare_dec_fail[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1]
|
|
478 |
obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
|
|
479 |
st ?e \<and>*
|
|
480 |
ps 2 \<and>*
|
|
481 |
zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
|
|
482 |
fam_conj {?idx_f sr ks ia<..} zero) \<and>*
|
|
483 |
i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
|
|
484 |
(trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
|
|
485 |
(*----------------------------------------------------------------------------*)
|
|
486 |
moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
|
|
487 |
proof -
|
|
488 |
have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
|
|
489 |
(******************************************************************************)
|
|
490 |
moreover have "?Q (?elm_f sr)"
|
|
491 |
by (simp add:mm_def sg_def)
|
|
492 |
(*----------------------------------------------------------------------------*)
|
|
493 |
moreover
|
|
494 |
(******************************************************************************)
|
|
495 |
have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
|
|
496 |
(*----------------------------------------------------------------------------*)
|
|
497 |
ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
|
|
498 |
qed
|
|
499 |
moreover
|
|
500 |
(******************************************************************************)
|
|
501 |
from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
|
|
502 |
have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
|
|
503 |
(*----------------------------------------------------------------------------*)
|
|
504 |
with at_fresh_s'
|
|
505 |
have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
|
|
506 |
moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
|
|
507 |
(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
508 |
proof -
|
|
509 |
fix elm
|
|
510 |
assume elm_in: "elm \<in> s'"
|
|
511 |
show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
512 |
proof(cases elm)
|
|
513 |
(*******************************************************************)
|
|
514 |
case (M a' v')
|
|
515 |
from eq_s have "M a 0 \<in> s" by (auto simp:set_ins_def mm_def sg_def)
|
|
516 |
with elm_in ia_disj.m_disj1[OF this] M
|
|
517 |
have "a \<noteq> a'" by auto
|
|
518 |
thus ?thesis
|
|
519 |
apply (auto simp:M recse_map.simps pasrt_def list_ext_len)
|
|
520 |
apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt)
|
|
521 |
apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt)
|
|
522 |
by (metis (full_types) bot_nat_def
|
|
523 |
leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def)
|
|
524 |
(*-----------------------------------------------------------------*)
|
|
525 |
qed auto
|
|
526 |
qed
|
|
527 |
ultimately show ?case
|
|
528 |
apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
|
|
529 |
apply (unfold IA_def, intro condI, assumption+)
|
|
530 |
apply (rule_tac x = "?ks_f sr ks" in pred_exI)
|
|
531 |
apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
|
|
532 |
apply (unfold fam_conj_disj_simp[OF fresh_atm])
|
|
533 |
apply (auto simp:sep_conj_ac fam_conj_simps)
|
|
534 |
(***************************************************************************)
|
|
535 |
(* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *)
|
|
536 |
(*-------------------------------------------------------------------------*)
|
|
537 |
apply (sep_cancel)+
|
|
538 |
by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])
|
|
539 |
qed
|
|
540 |
|
|
541 |
lemma hoare_dec_fail_gen[step]:
|
|
542 |
assumes "v = 0"
|
|
543 |
shows
|
|
544 |
"IA. \<lbrace> pc i ** mm a v \<rbrace>
|
|
545 |
i:[ (Dec a e) ]:j
|
|
546 |
\<lbrace> pc e ** mm a v \<rbrace>"
|
|
547 |
by (unfold assms, rule hoare_dec_fail)
|
|
548 |
|
|
549 |
|
|
550 |
lemma tm_hoare_dec_suc2:
|
|
551 |
assumes "mm a (Suc v) sr"
|
|
552 |
shows "\<lbrace> fam_conj sr (recse_map ks) \<and>*
|
|
553 |
st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>
|
|
554 |
i:[(Dec a e)]:j
|
|
555 |
\<lbrace> fam_conj {M a v} (recse_map (list_ext a ks[a := v])) \<and>*
|
|
556 |
st j \<and>*
|
|
557 |
ps 2 \<and>*
|
|
558 |
zero 0 \<and>*
|
|
559 |
zero 1 \<and>*
|
|
560 |
reps 2 (ia - 1) (list_ext a ks[a := v]) \<and>*
|
|
561 |
fam_conj {ia - 1<..} zero\<rbrace>"
|
|
562 |
proof -
|
|
563 |
from `mm a (Suc v) sr` have eq_sr: "sr = {M a (Suc v)}" by (auto simp:mm_def sg_def)
|
|
564 |
thus ?thesis
|
|
565 |
apply (unfold eq_sr)
|
|
566 |
apply (simp add:fam_conj_simps list_ext_get_upd list_ext_len)
|
|
567 |
apply (rule tm.pre_condI)
|
|
568 |
by (drule tm_hoare_dec_suc1[where u = "2"], simp)
|
|
569 |
qed
|
|
570 |
|
|
571 |
lemma hoare_dec_suc2:
|
|
572 |
"IA. \<lbrace>(pc i \<and>* mm a (Suc v))\<rbrace>
|
|
573 |
i :[ Dec a e ]: j
|
|
574 |
\<lbrace>pc j \<and>* mm a v\<rbrace>"
|
|
575 |
(is "IA. \<lbrace> pc i ** ?P \<rbrace>
|
|
576 |
i:[ ?code ?e]:j
|
|
577 |
\<lbrace> pc ?e ** ?Q\<rbrace>")
|
|
578 |
proof(induct rule:tm.IHoareI)
|
|
579 |
case (IPre s' s r cnf)
|
|
580 |
let ?cnf = "(trset_of cnf)"
|
|
581 |
from IPre
|
|
582 |
have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
|
|
583 |
by (metis condD)+
|
|
584 |
from h(1) obtain sr where
|
|
585 |
eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
|
|
586 |
by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def)
|
|
587 |
hence "At i \<in> s" by auto
|
|
588 |
from h(3) obtain s1 s2 s3
|
|
589 |
where hh: "?cnf = s1 + s2 + s3"
|
|
590 |
"s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
|
|
591 |
"IA (s + s') s1"
|
|
592 |
"(i :[ ?code ?e ]: j) s2"
|
|
593 |
"r s3"
|
|
594 |
apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
|
|
595 |
by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
|
|
596 |
interpret ia_disj: IA_disjoint s s' s1 cnf
|
|
597 |
proof
|
|
598 |
from `IA (s + s') s1` show "IA (s + s') s1" .
|
|
599 |
next
|
|
600 |
from `s ## s'` show "s ## s'" .
|
|
601 |
next
|
|
602 |
from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
603 |
qed
|
|
604 |
from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
605 |
from hh(3)
|
|
606 |
have "(EXS ks ia.
|
|
607 |
ps 2 \<and>*
|
|
608 |
zero 0 \<and>*
|
|
609 |
zero 1 \<and>*
|
|
610 |
reps 2 ia ks \<and>*
|
|
611 |
fam_conj {ia<..} zero \<and>*
|
|
612 |
(st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
|
|
613 |
s1"
|
|
614 |
apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
|
|
615 |
apply (unfold eq_s)
|
|
616 |
by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
|
|
617 |
then obtain ks ia
|
|
618 |
where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
|
|
619 |
reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
|
|
620 |
(is "(?PP \<and>* ?QQ) s1")
|
|
621 |
by (unfold pred_ex_def, auto simp:sep_conj_ac)
|
|
622 |
then obtain ss1 ss2 where pres:
|
|
623 |
"s1 = ss1 + ss2" "ss1 ## ss2"
|
|
624 |
"?PP ss1"
|
|
625 |
"?QQ ss2"
|
|
626 |
by (auto elim!:sep_conjE intro!:sep_conjI)
|
|
627 |
from ia_disj.at_disj1 [OF `At i \<in> s`]
|
|
628 |
have at_fresh_s': "At ?e \<notin> s'" .
|
|
629 |
have at_fresh_sr: "At ?e \<notin> sr"
|
|
630 |
proof
|
|
631 |
assume at_in: "At ?e \<in> sr"
|
|
632 |
from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
|
|
633 |
have "TAt ?e \<in> trset_of cnf"
|
|
634 |
apply (elim EXS_elim1)
|
|
635 |
apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
|
|
636 |
fam_conj_elm_simp[OF at_in])
|
|
637 |
apply (erule_tac sep_conjE, unfold set_ins_def)+
|
|
638 |
by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
|
|
639 |
moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
|
|
640 |
apply(erule_tac sep_conjE)
|
|
641 |
apply(erule_tac sep_conjE)
|
|
642 |
by (auto simp:st_def tpc_set_def sg_def set_ins_def)
|
|
643 |
ultimately have "i = ?e"
|
|
644 |
by (cases cnf, auto simp:tpn_set_def trset_of.simps)
|
|
645 |
from eq_s[unfolded this] at_in
|
|
646 |
show "False" by (auto simp:set_ins_def)
|
|
647 |
qed
|
|
648 |
from pres(3) and hh(2, 4, 5) pres(2, 4)
|
|
649 |
have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
|
|
650 |
(trset_of cnf)"
|
|
651 |
apply (unfold hh(1) pres(1))
|
|
652 |
apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
|
|
653 |
apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
|
|
654 |
apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
|
|
655 |
by (auto simp:set_ins_def)
|
|
656 |
(*****************************************************************************)
|
|
657 |
let ?ks_f = "\<lambda> sr ks. list_ext a ks[a:=v]"
|
|
658 |
let ?elm_f = "\<lambda> sr. {M a v}"
|
|
659 |
let ?idx_f = "\<lambda> sr ks ia. ia - 1"
|
|
660 |
(*----------------------------------------------------------------------------*)
|
|
661 |
(******************************************************************************)
|
|
662 |
from tm_hoare_dec_suc2[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1]
|
|
663 |
obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
|
|
664 |
st ?e \<and>*
|
|
665 |
ps 2 \<and>*
|
|
666 |
zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
|
|
667 |
fam_conj {?idx_f sr ks ia<..} zero) \<and>*
|
|
668 |
i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
|
|
669 |
(trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
|
|
670 |
(*----------------------------------------------------------------------------*)
|
|
671 |
moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
|
|
672 |
proof -
|
|
673 |
have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
|
|
674 |
(******************************************************************************)
|
|
675 |
moreover have "?Q (?elm_f sr)"
|
|
676 |
by (simp add:mm_def sg_def)
|
|
677 |
(*----------------------------------------------------------------------------*)
|
|
678 |
moreover
|
|
679 |
(******************************************************************************)
|
|
680 |
have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
|
|
681 |
(*----------------------------------------------------------------------------*)
|
|
682 |
ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
|
|
683 |
qed
|
|
684 |
moreover
|
|
685 |
(******************************************************************************)
|
|
686 |
from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
|
|
687 |
have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
|
|
688 |
(*----------------------------------------------------------------------------*)
|
|
689 |
with at_fresh_s'
|
|
690 |
have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
|
|
691 |
moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
|
|
692 |
(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
693 |
proof -
|
|
694 |
fix elm
|
|
695 |
assume elm_in: "elm \<in> s'"
|
|
696 |
show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
697 |
proof(cases elm)
|
|
698 |
(*******************************************************************)
|
|
699 |
case (M a' v')
|
|
700 |
from eq_s have "M a (Suc v) \<in> s" by (auto simp:set_ins_def mm_def sg_def)
|
|
701 |
with elm_in ia_disj.m_disj1[OF this] M
|
|
702 |
have "a \<noteq> a'" by auto
|
|
703 |
thus ?thesis
|
|
704 |
apply (auto simp:M recse_map.simps pasrt_def list_ext_len)
|
|
705 |
apply (case_tac "a < length ks", auto simp:list_ext_len_eq list_ext_lt)
|
|
706 |
apply (case_tac "a' < Suc a", auto simp:list_ext_len_eq list_ext_lt)
|
|
707 |
by (metis (full_types) bot_nat_def
|
|
708 |
leI le_trans less_Suc_eq_le list_ext_lt_get list_ext_tail set_zero_def)
|
|
709 |
(*-----------------------------------------------------------------*)
|
|
710 |
qed auto
|
|
711 |
qed
|
|
712 |
ultimately show ?case
|
|
713 |
apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
|
|
714 |
apply (unfold IA_def, intro condI, assumption+)
|
|
715 |
apply (rule_tac x = "?ks_f sr ks" in pred_exI)
|
|
716 |
apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
|
|
717 |
apply (unfold fam_conj_disj_simp[OF fresh_atm])
|
|
718 |
apply (auto simp:sep_conj_ac fam_conj_simps)
|
|
719 |
(***************************************************************************)
|
|
720 |
(* apply (unfold fam_conj_insert_simp [OF h_fresh1[OF at_fresh_sr]], simp) *)
|
|
721 |
(*-------------------------------------------------------------------------*)
|
|
722 |
apply (sep_cancel)+
|
|
723 |
by (simp add: fam_conj_ext_eq[where I = "s'", OF eq_map])
|
|
724 |
qed
|
|
725 |
|
|
726 |
lemma hoare_dec_suc2_gen[step]:
|
|
727 |
assumes "v > 0"
|
|
728 |
shows
|
|
729 |
"IA. \<lbrace>pc i \<and>* mm a v\<rbrace>
|
|
730 |
i :[ Dec a e ]: j
|
|
731 |
\<lbrace>pc j \<and>* mm a (v - 1)\<rbrace>"
|
|
732 |
proof -
|
|
733 |
from assms obtain v' where "v = Suc v'"
|
|
734 |
by (metis gr_implies_not0 nat.exhaust)
|
|
735 |
show ?thesis
|
|
736 |
apply (unfold `v = Suc v'`, simp)
|
|
737 |
by (rule hoare_dec_suc2)
|
|
738 |
qed
|
|
739 |
|
|
740 |
definition [asmb]: "Goto e = jmp e"
|
|
741 |
|
|
742 |
lemma hoare_jmp_reps2:
|
|
743 |
"\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
|
|
744 |
i:[(jmp e)]:j
|
|
745 |
\<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
|
|
746 |
proof(cases "ks")
|
|
747 |
case Nil
|
|
748 |
thus ?thesis
|
|
749 |
by (simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp, hsteps)
|
|
750 |
next
|
|
751 |
case (Cons k ks')
|
|
752 |
thus ?thesis
|
|
753 |
proof(cases "ks' = []")
|
|
754 |
case True with Cons
|
|
755 |
show ?thesis
|
|
756 |
apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
|
|
757 |
by (hgoto hoare_jmp[where p = u])
|
|
758 |
next
|
|
759 |
case False
|
|
760 |
show ?thesis
|
|
761 |
apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
|
|
762 |
by (hgoto hoare_jmp[where p = u])
|
|
763 |
qed
|
|
764 |
qed
|
|
765 |
|
|
766 |
lemma tm_hoare_goto_pre: (* ccc *)
|
|
767 |
assumes "(<True>) sr"
|
|
768 |
shows "\<lbrace> fam_conj sr (recse_map ks) \<and>*
|
|
769 |
st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>
|
|
770 |
i:[(Goto e)]:j
|
|
771 |
\<lbrace> fam_conj {} (recse_map ks) \<and>*
|
|
772 |
st e \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>* reps 2 ia ks \<and>* fam_conj {ia<..} zero \<rbrace>"
|
|
773 |
apply (unfold Goto_def)
|
|
774 |
apply (subst (1 2) fam_conj_interv_simp)
|
|
775 |
apply (unfold zero_def)
|
|
776 |
apply (hstep hoare_jmp_reps2)
|
|
777 |
apply (simp add:sep_conj_ac)
|
|
778 |
my_block
|
|
779 |
from assms have "sr = {}"
|
|
780 |
by (simp add:pasrt_def set_ins_def)
|
|
781 |
my_block_end
|
|
782 |
by (unfold this, sep_cancel+)
|
|
783 |
|
|
784 |
lemma hoare_goto_pre:
|
|
785 |
"IA. \<lbrace> pc i \<and>* <True> \<rbrace>
|
|
786 |
i:[ (Goto e) ]:j
|
|
787 |
\<lbrace> pc e \<and>* <True> \<rbrace>"
|
|
788 |
(is "IA. \<lbrace> pc i ** ?P \<rbrace>
|
|
789 |
i:[ ?code ?e]:j
|
|
790 |
\<lbrace> pc ?e ** ?Q\<rbrace>")
|
|
791 |
proof(induct rule:tm.IHoareI)
|
|
792 |
case (IPre s' s r cnf)
|
|
793 |
let ?cnf = "(trset_of cnf)"
|
|
794 |
from IPre
|
|
795 |
have h: "(pc i \<and>* ?P) s" "(s ## s')" "(IA (s + s') \<and>* i :[ ?code(?e) ]: j \<and>* r) ?cnf"
|
|
796 |
by (metis condD)+
|
|
797 |
from h(1) obtain sr where
|
|
798 |
eq_s: "s = {At i} \<union> sr" "{At i} ## sr" "?P sr"
|
|
799 |
by (auto dest!:sep_conjD simp:set_ins_def pc_def sg_def pasrt_def)
|
|
800 |
hence "At i \<in> s" by auto
|
|
801 |
from h(3) obtain s1 s2 s3
|
|
802 |
where hh: "?cnf = s1 + s2 + s3"
|
|
803 |
"s1 ## s2 \<and> s2 ## s3 \<and> s1 ## s3"
|
|
804 |
"IA (s + s') s1"
|
|
805 |
"(i :[ ?code ?e ]: j) s2"
|
|
806 |
"r s3"
|
|
807 |
apply (auto elim!:sep_conjE intro!:sep_conjI simp:sep_conj_ac)
|
|
808 |
by (metis sep_add_commute sep_disj_addD1 sep_disj_addD2 sep_disj_commuteI)
|
|
809 |
interpret ia_disj: IA_disjoint s s' s1 cnf
|
|
810 |
proof
|
|
811 |
from `IA (s + s') s1` show "IA (s + s') s1" .
|
|
812 |
next
|
|
813 |
from `s ## s'` show "s ## s'" .
|
|
814 |
next
|
|
815 |
from hh(1) show "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
816 |
qed
|
|
817 |
from hh(1) have s1_belong: "s1 \<subseteq> ?cnf" by (auto simp:set_ins_def)
|
|
818 |
from hh(3)
|
|
819 |
have "(EXS ks ia.
|
|
820 |
ps 2 \<and>*
|
|
821 |
zero 0 \<and>*
|
|
822 |
zero 1 \<and>*
|
|
823 |
reps 2 ia ks \<and>*
|
|
824 |
fam_conj {ia<..} zero \<and>*
|
|
825 |
(st i \<and>* fam_conj sr (recse_map ks)) \<and>* fam_conj s' (recse_map ks))
|
|
826 |
s1"
|
|
827 |
apply (unfold IA_def fam_conj_disj_simp[OF h(2)])
|
|
828 |
apply (unfold eq_s)
|
|
829 |
by (insert eq_s(2), simp add: fam_conj_disj_simp[OF eq_s(2)] fam_conj_simps set_ins_def)
|
|
830 |
then obtain ks ia
|
|
831 |
where "((fam_conj sr (recse_map ks) \<and>* st i \<and>* ps 2 \<and>* zero 0 \<and>* zero 1 \<and>*
|
|
832 |
reps 2 ia ks \<and>* fam_conj {ia<..} zero) \<and>* fam_conj s' (recse_map ks)) s1"
|
|
833 |
(is "(?PP \<and>* ?QQ) s1")
|
|
834 |
by (unfold pred_ex_def, auto simp:sep_conj_ac)
|
|
835 |
then obtain ss1 ss2 where pres:
|
|
836 |
"s1 = ss1 + ss2" "ss1 ## ss2"
|
|
837 |
"?PP ss1"
|
|
838 |
"?QQ ss2"
|
|
839 |
by (auto elim!:sep_conjE intro!:sep_conjI)
|
|
840 |
from ia_disj.at_disj1 [OF `At i \<in> s`]
|
|
841 |
have at_fresh_s': "At ?e \<notin> s'" .
|
|
842 |
have at_fresh_sr: "At ?e \<notin> sr"
|
|
843 |
proof
|
|
844 |
assume at_in: "At ?e \<in> sr"
|
|
845 |
from h(3)[unfolded IA_def fam_conj_disj_simp[OF h(2)]]
|
|
846 |
have "TAt ?e \<in> trset_of cnf"
|
|
847 |
apply (elim EXS_elim1)
|
|
848 |
apply (unfold eq_s fam_conj_disj_simp[OF eq_s(2), unfolded set_ins_def]
|
|
849 |
fam_conj_elm_simp[OF at_in])
|
|
850 |
apply (erule_tac sep_conjE, unfold set_ins_def)+
|
|
851 |
by (auto simp:sep_conj_ac fam_conj_simps st_def sg_def tpn_set_def)
|
|
852 |
moreover from pres(1, 3) hh(1) have "TAt i \<in> trset_of cnf"
|
|
853 |
apply(erule_tac sep_conjE)
|
|
854 |
apply(erule_tac sep_conjE)
|
|
855 |
by (auto simp:st_def tpc_set_def sg_def set_ins_def)
|
|
856 |
ultimately have "i = ?e"
|
|
857 |
by (cases cnf, auto simp:tpn_set_def trset_of.simps)
|
|
858 |
from eq_s[unfolded this] at_in
|
|
859 |
show "False" by (auto simp:set_ins_def)
|
|
860 |
qed
|
|
861 |
from pres(3) and hh(2, 4, 5) pres(2, 4)
|
|
862 |
have pres1: "(?PP \<and>* i :[ ?code(?e)]: j \<and>* (r \<and>* (fam_conj s' (recse_map ks))))
|
|
863 |
(trset_of cnf)"
|
|
864 |
apply (unfold hh(1) pres(1))
|
|
865 |
apply (rule sep_conjI[where x=ss1 and y = "ss2 + s2 + s3"], assumption+)
|
|
866 |
apply (rule sep_conjI[where x="s2" and y = "ss2 + s3"], assumption+)
|
|
867 |
apply (rule sep_conjI[where x="s3" and y = ss2], assumption+)
|
|
868 |
by (auto simp:set_ins_def)
|
|
869 |
(*****************************************************************************)
|
|
870 |
let ?ks_f = "\<lambda> sr ks. ks"
|
|
871 |
let ?elm_f = "\<lambda> sr. {}"
|
|
872 |
let ?idx_f = "\<lambda> sr ks ia. ia"
|
|
873 |
(*----------------------------------------------------------------------------*)
|
|
874 |
(******************************************************************************)
|
|
875 |
from tm_hoare_goto_pre[OF `?P sr`, unfolded tm.Hoare_gen_def, rule_format, OF pres1]
|
|
876 |
obtain k where "((fam_conj (?elm_f sr) (recse_map (?ks_f sr ks)) \<and>*
|
|
877 |
st ?e \<and>*
|
|
878 |
ps 2 \<and>*
|
|
879 |
zero 0 \<and>* zero 1 \<and>* reps 2 (?idx_f sr ks ia) (?ks_f sr ks) \<and>*
|
|
880 |
fam_conj {?idx_f sr ks ia<..} zero) \<and>*
|
|
881 |
i :[ ?code ?e ]: j \<and>* r \<and>* fam_conj s' (recse_map ks))
|
|
882 |
(trset_of (sep_exec.run tstep (Suc k) cnf))" by blast
|
|
883 |
(*----------------------------------------------------------------------------*)
|
|
884 |
moreover have "(pc ?e \<and>* ?Q) ({At ?e} \<union> ?elm_f sr)"
|
|
885 |
proof -
|
|
886 |
have "pc ?e {At ?e}" by (simp add:pc_def sg_def)
|
|
887 |
(******************************************************************************)
|
|
888 |
moreover have "?Q (?elm_f sr)"
|
|
889 |
by (simp add:pasrt_def set_ins_def)
|
|
890 |
(*----------------------------------------------------------------------------*)
|
|
891 |
moreover
|
|
892 |
(******************************************************************************)
|
|
893 |
have "{At ?e} ## ?elm_f sr" by (simp add:set_ins_def)
|
|
894 |
(*----------------------------------------------------------------------------*)
|
|
895 |
ultimately show ?thesis by (auto intro!:sep_conjI simp:set_ins_def)
|
|
896 |
qed
|
|
897 |
moreover
|
|
898 |
(******************************************************************************)
|
|
899 |
from ia_disj.m_disj1 `?P sr` `s = {At i} \<union> sr`
|
|
900 |
have "?elm_f sr ## s'" by (auto simp:set_ins_def mm_def sg_def)
|
|
901 |
(*----------------------------------------------------------------------------*)
|
|
902 |
with at_fresh_s'
|
|
903 |
have fresh_atm: "{At ?e} \<union> ?elm_f sr ## s'" by (auto simp:set_ins_def)
|
|
904 |
moreover have eq_map: "\<And> elm. elm \<in> s' \<Longrightarrow>
|
|
905 |
(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
906 |
proof -
|
|
907 |
fix elm
|
|
908 |
assume elm_in: "elm \<in> s'"
|
|
909 |
show "(recse_map ks elm) = (recse_map (?ks_f sr ks) elm)"
|
|
910 |
by simp
|
|
911 |
qed
|
|
912 |
ultimately show ?case
|
|
913 |
apply (rule_tac x = k in exI, rule_tac x = "{At ?e} \<union> ?elm_f sr" in exI)
|
|
914 |
apply (unfold IA_def, intro condI, assumption+)
|
|
915 |
apply (rule_tac x = "?ks_f sr ks" in pred_exI)
|
|
916 |
apply (rule_tac x = "?idx_f sr ks ia" in pred_exI)
|
|
917 |
apply (unfold fam_conj_disj_simp[OF fresh_atm])
|
|
918 |
by (auto simp:sep_conj_ac fam_conj_simps)
|
|
919 |
qed
|
|
920 |
|
|
921 |
lemma hoare_goto[step]: "IA. \<lbrace> pc i \<rbrace>
|
|
922 |
i:[ (Goto e) ]:j
|
|
923 |
\<lbrace> pc e \<rbrace>"
|
|
924 |
proof(rule tm.I_hoare_adjust [OF hoare_goto_pre])
|
|
925 |
fix s assume "pc i s" thus "(pc i \<and>* <True>) s"
|
|
926 |
by (metis cond_true_eq2)
|
|
927 |
next
|
|
928 |
fix s assume "(pc e \<and>* <True>) s" thus "pc e s"
|
|
929 |
by (metis cond_true_eq2)
|
|
930 |
qed
|
|
931 |
|
|
932 |
lemma I_hoare_sequence:
|
|
933 |
assumes h1: "\<And> i j. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j \<lbrace>pc j ** q\<rbrace>"
|
|
934 |
and h2: "\<And> j k. I. \<lbrace>pc j ** q\<rbrace> j:[c2]:k \<lbrace>pc k ** r\<rbrace>"
|
|
935 |
shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>pc k ** r\<rbrace>"
|
|
936 |
proof(unfold tassemble_to.simps, intro tm.I_code_exI)
|
|
937 |
fix j'
|
|
938 |
show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k \<and>* r\<rbrace>"
|
|
939 |
proof(rule tm.I_sequencing)
|
|
940 |
from tm.I_code_extension[OF h1 [of i j'], of" j' :[ c2 ]: k"]
|
|
941 |
show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc j' \<and>* q\<rbrace>" .
|
|
942 |
next
|
|
943 |
from tm.I_code_extension[OF h2 [of j' k], of" i :[ c1 ]: j'"]
|
|
944 |
show "I.\<lbrace>pc j' \<and>* q\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k \<and>* r\<rbrace>"
|
|
945 |
by (auto simp:sep_conj_ac)
|
|
946 |
qed
|
|
947 |
qed
|
|
948 |
|
|
949 |
lemma I_hoare_seq1:
|
|
950 |
assumes h1: "\<And>j'. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j' \<lbrace>pc j' ** q\<rbrace>"
|
|
951 |
and h2: "\<And>j' . I. \<lbrace>pc j' ** q\<rbrace> j':[c2]:k \<lbrace>pc k' ** r\<rbrace>"
|
|
952 |
shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>pc k' ** r\<rbrace>"
|
|
953 |
proof(unfold tassemble_to.simps, intro tm.I_code_exI)
|
|
954 |
fix j'
|
|
955 |
show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k' \<and>* r\<rbrace>"
|
|
956 |
proof(rule tm.I_sequencing)
|
|
957 |
from tm.I_code_extension[OF h1 [of j'], of "j' :[ c2 ]: k "]
|
|
958 |
show "I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc j' \<and>* q\<rbrace>" .
|
|
959 |
next
|
|
960 |
from tm.I_code_extension[OF h2 [of j'], of" i :[ c1 ]: j'"]
|
|
961 |
show "I.\<lbrace>pc j' \<and>* q\<rbrace> i :[ c1 ]: j' \<and>* j' :[ c2 ]: k \<lbrace>pc k' \<and>* r\<rbrace>"
|
|
962 |
by (auto simp:sep_conj_ac)
|
|
963 |
qed
|
|
964 |
qed
|
|
965 |
|
|
966 |
lemma t_hoare_local1:
|
|
967 |
"(\<And>l. \<lbrace>p\<rbrace> i :[ c l ]: j \<lbrace>q\<rbrace>) \<Longrightarrow>
|
|
968 |
\<lbrace>p\<rbrace> i:[TLocal c]:j \<lbrace>q\<rbrace>"
|
|
969 |
by (unfold tassemble_to.simps, rule tm.code_exI, auto)
|
|
970 |
|
|
971 |
lemma I_hoare_local:
|
|
972 |
assumes h: "(\<And>l. I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>pc k \<and>* q\<rbrace>)"
|
|
973 |
shows "I. \<lbrace>pc i ** p\<rbrace> i:[TLocal c]:j \<lbrace>pc k ** q\<rbrace>"
|
|
974 |
proof(unfold tassemble_to.simps, rule tm.I_code_exI)
|
|
975 |
fix l
|
|
976 |
from h[of l]
|
|
977 |
show " I.\<lbrace>pc i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>pc k \<and>* q\<rbrace>" .
|
|
978 |
qed
|
|
979 |
|
|
980 |
lemma t_hoare_label1:
|
|
981 |
"(\<And>l. l = i \<Longrightarrow> \<lbrace>p\<rbrace> l :[ c (l::tstate) ]: j \<lbrace>q\<rbrace>) \<Longrightarrow>
|
|
982 |
\<lbrace>p \<rbrace>
|
|
983 |
i:[(TLabel l; c l)]:j
|
|
984 |
\<lbrace>q\<rbrace>"
|
|
985 |
by
|
|
986 |
(unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, case_tac l, auto)
|
|
987 |
|
|
988 |
lemma I_hoare_label:
|
|
989 |
assumes h:"\<And>l. l = i \<Longrightarrow> I. \<lbrace>pc l \<and>* p\<rbrace> l :[ c (l::tstate) ]: j \<lbrace>pc k \<and>* q\<rbrace>"
|
|
990 |
shows "I. \<lbrace>pc i \<and>* p \<rbrace>
|
|
991 |
i:[(TLabel l; c l)]:j
|
|
992 |
\<lbrace>pc k \<and>* q\<rbrace>"
|
|
993 |
proof(unfold tm.IHoare_def, default)
|
|
994 |
fix s'
|
|
995 |
show " \<lbrace>EXS s. <(pc i \<and>* p) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ (TLabel l ; c l) ]: j
|
|
996 |
\<lbrace>EXS s. <(pc k \<and>* q) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
|
|
997 |
proof(rule t_hoare_label1)
|
|
998 |
fix l assume "l = i"
|
|
999 |
from h[OF this, unfolded tm.IHoare_def]
|
|
1000 |
show "\<lbrace>EXS s. <(pc i \<and>* p) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> l :[ c l ]: j
|
|
1001 |
\<lbrace>EXS s. <(pc k \<and>* q) s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
|
|
1002 |
by (simp add:`l = i`)
|
|
1003 |
qed
|
|
1004 |
qed
|
|
1005 |
|
|
1006 |
lemma I_hoare_label_last:
|
|
1007 |
assumes h1: "t_last_cmd c = Some (TLabel l)"
|
|
1008 |
and h2: "l = j \<Longrightarrow> I. \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
|
|
1009 |
shows "I. \<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
|
|
1010 |
proof(unfold tm.IHoare_def, default)
|
|
1011 |
fix s'
|
|
1012 |
show "\<lbrace>EXS s. <p s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ c ]: j
|
|
1013 |
\<lbrace>EXS s. <q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
|
|
1014 |
proof(rule t_hoare_label_last[OF h1])
|
|
1015 |
assume "l = j"
|
|
1016 |
from h2[OF this, unfolded tm.IHoare_def]
|
|
1017 |
show "\<lbrace>EXS s. <p s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace> i :[ t_blast_cmd c ]: j
|
|
1018 |
\<lbrace>EXS s. <q s> \<and>* <(s ## s')> \<and>* I (s + s')\<rbrace>"
|
|
1019 |
by fast
|
|
1020 |
qed
|
|
1021 |
qed
|
|
1022 |
|
|
1023 |
lemma I_hoare_seq2:
|
|
1024 |
assumes h: "\<And>j'. I. \<lbrace>pc i ** p\<rbrace> i:[c1]:j' \<lbrace>pc k' \<and>* r\<rbrace>"
|
|
1025 |
shows "I. \<lbrace>pc i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>pc k' ** r\<rbrace>"
|
|
1026 |
apply (unfold tassemble_to.simps, intro tm.I_code_exI)
|
|
1027 |
apply (unfold tm.IHoare_def, default)
|
|
1028 |
apply (rule tm.code_extension)
|
|
1029 |
by (rule h[unfolded tm.IHoare_def, rule_format])
|
|
1030 |
|
|
1031 |
lemma IA_pre_stren:
|
|
1032 |
assumes h1: "IA. \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
|
|
1033 |
and h2: "\<And>s. r s \<Longrightarrow> p s"
|
|
1034 |
shows "IA. \<lbrace>r\<rbrace> c \<lbrace>q\<rbrace>"
|
|
1035 |
by (rule tm.I_pre_stren[OF assms], simp)
|
|
1036 |
|
|
1037 |
lemma IA_post_weaken:
|
|
1038 |
assumes h1: "IA. \<lbrace>p\<rbrace> c \<lbrace>q\<rbrace>"
|
|
1039 |
and h2: "\<And> s. q s \<Longrightarrow> r s"
|
|
1040 |
shows "IA. \<lbrace>p\<rbrace> c \<lbrace>r\<rbrace>"
|
|
1041 |
by (rule tm.I_post_weaken[OF assms], simp)
|
|
1042 |
|
|
1043 |
section {* Making triple processor for IA *}
|
|
1044 |
|
|
1045 |
ML {* (* Functions specific to Hoare triple: IA {P} c {Q} *)
|
|
1046 |
fun get_pre ctxt t =
|
|
1047 |
let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
|
|
1048 |
val env = match ctxt pat t
|
|
1049 |
in inst env (term_of @{cpat "?P::aresource set \<Rightarrow> bool"}) end
|
|
1050 |
|
|
1051 |
fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)
|
|
1052 |
|
|
1053 |
fun get_post ctxt t =
|
|
1054 |
let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
|
|
1055 |
val env = match ctxt pat t
|
|
1056 |
in inst env (term_of @{cpat "?Q::aresource set \<Rightarrow> bool"}) end;
|
|
1057 |
|
|
1058 |
fun get_mid ctxt t =
|
|
1059 |
let val pat = term_of @{cpat "IA. \<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
|
|
1060 |
val env = match ctxt pat t
|
|
1061 |
in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;
|
|
1062 |
|
|
1063 |
fun is_pc_term (Const (@{const_name pc}, _) $ _) = true
|
|
1064 |
| is_pc_term _ = false
|
|
1065 |
|
|
1066 |
fun mk_pc_term x =
|
|
1067 |
Const (@{const_name pc}, @{typ "nat \<Rightarrow> aresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})
|
|
1068 |
|
|
1069 |
val sconj_term = term_of @{cterm "sep_conj::assert \<Rightarrow> assert \<Rightarrow> assert"}
|
|
1070 |
|
|
1071 |
val abc_triple = {binding = @{binding "abc_triple"},
|
|
1072 |
can_process = can_process,
|
|
1073 |
get_pre = get_pre,
|
|
1074 |
get_mid = get_mid,
|
|
1075 |
get_post = get_post,
|
|
1076 |
is_pc_term = is_pc_term,
|
|
1077 |
mk_pc_term = mk_pc_term,
|
|
1078 |
sconj_term = sconj_term,
|
|
1079 |
sep_conj_ac_tac = sep_conj_ac_tac,
|
|
1080 |
hoare_seq1 = @{thm I_hoare_seq1},
|
|
1081 |
hoare_seq2 = @{thm I_hoare_seq2},
|
|
1082 |
pre_stren = @{thm IA_pre_stren},
|
|
1083 |
post_weaken = @{thm IA_post_weaken},
|
|
1084 |
frame_rule = @{thm tm.I_frame_rule}
|
|
1085 |
}:HoareTriple
|
|
1086 |
|
|
1087 |
val _ = (HoareTriples_get ()) |> (fn orig => HoareTriples_store (abc_triple::orig))
|
|
1088 |
*}
|
|
1089 |
|
|
1090 |
section {* Example proofs *}
|
|
1091 |
|
|
1092 |
definition [asmb]: "clear a = (TL start exit. TLabel start; Dec a exit; Goto start; TLabel exit)"
|
|
1093 |
|
|
1094 |
lemma hoare_clear[step]:
|
|
1095 |
"IA. \<lbrace>pc i ** mm a v\<rbrace>
|
|
1096 |
i:[clear a]:j
|
|
1097 |
\<lbrace>pc j ** mm a 0\<rbrace>"
|
|
1098 |
proof(unfold clear_def, intro I_hoare_local I_hoare_label, simp,
|
|
1099 |
rule I_hoare_label_last, simp+, prune)
|
|
1100 |
show "IA.\<lbrace>pc i \<and>* mm a v\<rbrace> i :[ (Dec a j ; Goto i) ]: j \<lbrace>pc j \<and>* mm a 0\<rbrace>"
|
|
1101 |
proof(induct v)
|
|
1102 |
case 0
|
|
1103 |
show ?case
|
|
1104 |
by hgoto
|
|
1105 |
next
|
|
1106 |
case (Suc v)
|
|
1107 |
show ?case
|
|
1108 |
apply (rule_tac Q = "pc i \<and>* mm a v" in tm.I_sequencing)
|
|
1109 |
by hsteps
|
|
1110 |
qed
|
|
1111 |
qed
|
|
1112 |
|
|
1113 |
definition [asmb]:
|
|
1114 |
"dup a b c =
|
|
1115 |
(TL start exit. TLabel start; Dec a exit; Inc b; Inc c; Goto start; TLabel exit)"
|
|
1116 |
|
|
1117 |
lemma hoare_dup[step]:
|
|
1118 |
"IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace>
|
|
1119 |
i:[dup a b c]:j
|
|
1120 |
\<lbrace>pc j ** mm a 0 ** mm b (va + vb) ** mm c (va + vc)\<rbrace>"
|
|
1121 |
proof(unfold dup_def, intro I_hoare_local I_hoare_label, clarsimp,
|
|
1122 |
rule I_hoare_label_last, simp+, prune)
|
|
1123 |
show "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm b vb \<and>* mm c vc\<rbrace>
|
|
1124 |
i :[ (Dec a j ; Inc b ; Inc c ; Goto i) ]: j
|
|
1125 |
\<lbrace>pc j \<and>* mm a 0 \<and>* mm b (va + vb) \<and>* mm c (va + vc)\<rbrace>"
|
|
1126 |
proof(induct va arbitrary: vb vc)
|
|
1127 |
case (0 vb vc)
|
|
1128 |
show ?case
|
|
1129 |
by hgoto
|
|
1130 |
next
|
|
1131 |
case (Suc va vb vc)
|
|
1132 |
show ?case
|
|
1133 |
apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm b (Suc vb) \<and>* mm c (Suc vc)" in tm.I_sequencing)
|
|
1134 |
by (hsteps Suc)
|
|
1135 |
qed
|
|
1136 |
qed
|
|
1137 |
|
|
1138 |
definition [asmb]:
|
|
1139 |
"clear_add a b =
|
|
1140 |
(TL start exit. TLabel start; Dec a exit; Inc b; Goto start; TLabel exit)"
|
|
1141 |
|
|
1142 |
lemma hoare_clear_add[step]:
|
|
1143 |
"IA. \<lbrace>pc i ** mm a va ** mm b vb \<rbrace>
|
|
1144 |
i:[clear_add a b]:j
|
|
1145 |
\<lbrace>pc j ** mm a 0 ** mm b (va + vb)\<rbrace>"
|
|
1146 |
proof(unfold clear_add_def, intro I_hoare_local I_hoare_label, clarsimp,
|
|
1147 |
rule I_hoare_label_last, simp+, prune)
|
|
1148 |
show "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm b vb\<rbrace>
|
|
1149 |
i :[ (Dec a j ; Inc b ; Goto i) ]: j
|
|
1150 |
\<lbrace>pc j \<and>* mm a 0 \<and>* mm b (va + vb)\<rbrace>"
|
|
1151 |
proof(induct va arbitrary: vb)
|
|
1152 |
case 0
|
|
1153 |
show ?case
|
|
1154 |
by hgoto
|
|
1155 |
next
|
|
1156 |
case (Suc va vb)
|
|
1157 |
show ?case
|
|
1158 |
apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm b (Suc vb)" in tm.I_sequencing)
|
|
1159 |
by (hsteps Suc)
|
|
1160 |
qed
|
|
1161 |
qed
|
|
1162 |
|
|
1163 |
definition [asmb]:
|
|
1164 |
"copy_to a b c = clear b; clear c; dup a b c; clear_add c a"
|
|
1165 |
|
|
1166 |
lemma hoare_copy_to[step]:
|
|
1167 |
"IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace>
|
|
1168 |
i:[copy_to a b c]:j
|
|
1169 |
\<lbrace>pc j ** mm a va ** mm b va ** mm c 0\<rbrace>"
|
|
1170 |
by (unfold copy_to_def, hsteps)
|
|
1171 |
|
|
1172 |
definition [asmb]:
|
|
1173 |
"preserve_add a b c = clear c; dup a b c; clear_add c a"
|
|
1174 |
|
|
1175 |
lemma hoare_preserve_add[step]:
|
|
1176 |
"IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc \<rbrace>
|
|
1177 |
i:[preserve_add a b c]:j
|
|
1178 |
\<lbrace>pc j ** mm a va ** mm b (va + vb) ** mm c 0\<rbrace>"
|
|
1179 |
by (unfold preserve_add_def, hsteps)
|
|
1180 |
|
|
1181 |
definition [asmb]:
|
|
1182 |
"mult a b c t1 t2 =
|
|
1183 |
clear c;
|
|
1184 |
copy_to a t2 t1;
|
|
1185 |
(TL start exit.
|
|
1186 |
TLabel start;
|
|
1187 |
Dec a exit;
|
|
1188 |
preserve_add b c t1;
|
|
1189 |
Goto start;
|
|
1190 |
TLabel exit
|
|
1191 |
);
|
|
1192 |
clear_add t2 a"
|
|
1193 |
|
|
1194 |
lemma hoare_mult[step]:
|
|
1195 |
"IA. \<lbrace>pc i ** mm a va ** mm b vb ** mm c vc ** mm t1 vt1 ** mm t2 vt2 \<rbrace>
|
|
1196 |
i:[mult a b c t1 t2]:j
|
|
1197 |
\<lbrace>pc j ** mm a va ** mm b vb ** mm c (va * vb) ** mm t1 0 ** mm t2 0 \<rbrace>"
|
|
1198 |
apply (unfold mult_def, hsteps)
|
|
1199 |
apply (rule_tac q = "mm a 0 \<and>* mm b vb \<and>* mm c (va * vb) \<and>* mm t1 0 \<and>* mm t2 va" in I_hoare_seq1)
|
|
1200 |
apply (intro I_hoare_local I_hoare_label, clarify,
|
|
1201 |
rule I_hoare_label_last, simp+, clarify, prune)
|
|
1202 |
my_block
|
|
1203 |
fix i j vc
|
|
1204 |
have "IA. \<lbrace>pc i \<and>* mm a va \<and>* mm t1 0 \<and>* mm c vc \<and>* mm b vb\<rbrace>
|
|
1205 |
i :[ (Dec a j ; preserve_add b c t1 ; Goto i) ]: j
|
|
1206 |
\<lbrace>pc j \<and>* mm a 0 \<and>* mm b vb \<and>* mm c (va * vb + vc) \<and>* mm t1 0 \<rbrace>"
|
|
1207 |
proof(induct va arbitrary:vc)
|
|
1208 |
case (0 vc)
|
|
1209 |
show ?case
|
|
1210 |
by hgoto
|
|
1211 |
next
|
|
1212 |
case (Suc va vc)
|
|
1213 |
show ?case
|
|
1214 |
apply (rule_tac Q = "pc i \<and>* mm a va \<and>* mm t1 0 \<and>* mm c (vb + vc) \<and>* mm b vb"
|
|
1215 |
in tm.I_sequencing)
|
|
1216 |
apply (hsteps Suc)
|
|
1217 |
by (sep_cancel+, simp, smt)
|
|
1218 |
qed
|
|
1219 |
my_block_end
|
|
1220 |
by (hsteps this)
|
|
1221 |
|
|
1222 |
end
|
|
1223 |
|