25
|
1 |
(* Author: Gerwin Klein, 2012
|
|
2 |
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
|
|
3 |
Rafal Kolanski <rafal.kolanski at nicta.com.au>
|
|
4 |
*)
|
|
5 |
|
|
6 |
header "Standard Heaps as an Instance of Separation Algebra"
|
|
7 |
|
|
8 |
theory Sep_Heap_Instance
|
|
9 |
imports Separation_Algebra
|
|
10 |
begin
|
|
11 |
|
|
12 |
text {*
|
|
13 |
Example instantiation of a the separation algebra to a map, i.e.\ a
|
|
14 |
function from any type to @{typ "'a option"}.
|
|
15 |
*}
|
|
16 |
|
|
17 |
class opt =
|
|
18 |
fixes none :: 'a
|
|
19 |
begin
|
|
20 |
definition "domain f \<equiv> {x. f x \<noteq> none}"
|
|
21 |
end
|
|
22 |
|
|
23 |
instantiation option :: (type) opt
|
|
24 |
begin
|
|
25 |
definition none_def [simp]: "none \<equiv> None"
|
|
26 |
instance ..
|
|
27 |
end
|
|
28 |
|
|
29 |
instantiation "fun" :: (type, opt) zero
|
|
30 |
begin
|
|
31 |
definition zero_fun_def: "0 \<equiv> \<lambda>s. none"
|
|
32 |
instance ..
|
|
33 |
end
|
|
34 |
|
|
35 |
instantiation "fun" :: (type, opt) sep_algebra
|
|
36 |
begin
|
|
37 |
|
|
38 |
definition
|
|
39 |
plus_fun_def: "m1 + m2 \<equiv> \<lambda>x. if m2 x = none then m1 x else m2 x"
|
|
40 |
|
|
41 |
definition
|
|
42 |
sep_disj_fun_def: "sep_disj m1 m2 \<equiv> domain m1 \<inter> domain m2 = {}"
|
|
43 |
|
|
44 |
instance
|
|
45 |
apply default
|
|
46 |
apply (simp add: sep_disj_fun_def domain_def zero_fun_def)
|
|
47 |
apply (fastforce simp: sep_disj_fun_def)
|
|
48 |
apply (simp add: plus_fun_def zero_fun_def)
|
|
49 |
apply (simp add: plus_fun_def sep_disj_fun_def domain_def)
|
|
50 |
apply (rule ext)
|
|
51 |
apply fastforce
|
|
52 |
apply (rule ext)
|
|
53 |
apply (simp add: plus_fun_def)
|
|
54 |
apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
|
|
55 |
apply fastforce
|
|
56 |
apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
|
|
57 |
apply fastforce
|
|
58 |
done
|
|
59 |
|
|
60 |
end
|
|
61 |
|
|
62 |
text {*
|
|
63 |
For the actual option type @{const domain} and @{text "+"} are
|
|
64 |
just @{const dom} and @{text "++"}:
|
|
65 |
*}
|
|
66 |
|
|
67 |
lemma domain_conv: "domain = dom"
|
|
68 |
by (rule ext) (simp add: domain_def dom_def)
|
|
69 |
|
|
70 |
lemma plus_fun_conv: "a + b = a ++ b"
|
|
71 |
by (auto simp: plus_fun_def map_add_def split: option.splits)
|
|
72 |
|
|
73 |
lemmas map_convs = domain_conv plus_fun_conv
|
|
74 |
|
|
75 |
text {*
|
|
76 |
Any map can now act as a separation heap without further work:
|
|
77 |
*}
|
|
78 |
lemma
|
|
79 |
fixes h :: "(nat => nat) => 'foo option"
|
|
80 |
shows "(P ** Q ** H) h = (Q ** H ** P) h"
|
|
81 |
by (simp add: sep_conj_ac)
|
|
82 |
|
|
83 |
end
|
|
84 |
|