Separation_Algebra/Map_Extra.thy
changeset 25 a5f5b9336007
equal deleted inserted replaced
24:77daf1b85cf0 25:a5f5b9336007
       
     1 (* Author: Rafal Kolanski, 2008
       
     2    Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
       
     3                 Rafal Kolanski <rafal.kolanski at nicta.com.au>
       
     4 *)
       
     5 
       
     6 header {* More properties of maps plus map disjuction. *}
       
     7 
       
     8 theory Map_Extra
       
     9   imports Main
       
    10 begin
       
    11 
       
    12 text {*
       
    13   A note on naming:
       
    14   Anything not involving heap disjuction can potentially be incorporated
       
    15   directly into Map.thy, thus uses @{text "m"} for map variable names.
       
    16   Anything involving heap disjunction is not really mergeable with Map, is
       
    17   destined for use in separation logic, and hence uses @{text "h"}
       
    18 *}
       
    19 
       
    20 section {* Things that could go into Option Type *}
       
    21 
       
    22 text {* Misc option lemmas *}
       
    23 
       
    24 lemma None_not_eq: "(None \<noteq> x) = (\<exists>y. x = Some y)" by (cases x) auto
       
    25 
       
    26 lemma None_com: "(None = x) = (x = None)" by fast
       
    27 
       
    28 lemma Some_com: "(Some y = x) = (x = Some y)" by fast
       
    29 
       
    30 
       
    31 section {* Things that go into Map.thy *}
       
    32 
       
    33 text {* Map intersection: set of all keys for which the maps agree. *}
       
    34 
       
    35 definition
       
    36   map_inter :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" (infixl "\<inter>\<^isub>m" 70) where
       
    37   "m\<^isub>1 \<inter>\<^isub>m m\<^isub>2 \<equiv> {x \<in> dom m\<^isub>1. m\<^isub>1 x = m\<^isub>2 x}"
       
    38 
       
    39 text {* Map restriction via domain subtraction *}
       
    40 
       
    41 definition
       
    42   sub_restrict_map :: "('a \<rightharpoonup> 'b) => 'a set => ('a \<rightharpoonup> 'b)" (infixl "`-"  110)
       
    43   where
       
    44   "m `- S \<equiv> (\<lambda>x. if x \<in> S then None else m x)"
       
    45 
       
    46 
       
    47 subsection {* Properties of maps not related to restriction *}
       
    48 
       
    49 lemma empty_forall_equiv: "(m = empty) = (\<forall>x. m x = None)"
       
    50   by (fastforce intro!: ext)
       
    51 
       
    52 lemma map_le_empty2 [simp]:
       
    53   "(m \<subseteq>\<^sub>m empty) = (m = empty)"
       
    54   by (auto simp: map_le_def intro: ext)
       
    55 
       
    56 lemma dom_iff:
       
    57   "(\<exists>y. m x = Some y) = (x \<in> dom m)"
       
    58   by auto
       
    59 
       
    60 lemma non_dom_eval:
       
    61   "x \<notin> dom m \<Longrightarrow> m x = None"
       
    62   by auto
       
    63 
       
    64 lemma non_dom_eval_eq:
       
    65   "x \<notin> dom m = (m x = None)"
       
    66   by auto
       
    67 
       
    68 lemma map_add_same_left_eq:
       
    69   "m\<^isub>1 = m\<^isub>1' \<Longrightarrow> (m\<^isub>0 ++ m\<^isub>1 = m\<^isub>0 ++ m\<^isub>1')"
       
    70   by simp
       
    71 
       
    72 lemma map_add_left_cancelI [intro!]:
       
    73   "m\<^isub>1 = m\<^isub>1' \<Longrightarrow> m\<^isub>0 ++ m\<^isub>1 = m\<^isub>0 ++ m\<^isub>1'"
       
    74   by simp
       
    75 
       
    76 lemma dom_empty_is_empty:
       
    77   "(dom m = {}) = (m = empty)"
       
    78 proof (rule iffI)
       
    79   assume a: "dom m = {}"
       
    80   { assume "m \<noteq> empty"
       
    81     hence "dom m \<noteq> {}"
       
    82       by - (subst (asm) empty_forall_equiv, simp add: dom_def)
       
    83     hence False using a by blast
       
    84   }
       
    85   thus "m = empty" by blast
       
    86 next
       
    87   assume a: "m = empty"
       
    88   thus "dom m = {}" by simp
       
    89 qed
       
    90 
       
    91 lemma map_add_dom_eq:
       
    92   "dom m = dom m' \<Longrightarrow> m ++ m' = m'"
       
    93   by (rule ext) (auto simp: map_add_def split: option.splits)
       
    94 
       
    95 lemma map_add_right_dom_eq:
       
    96   "\<lbrakk> m\<^isub>0 ++ m\<^isub>1 = m\<^isub>0' ++ m\<^isub>1'; dom m\<^isub>1 = dom m\<^isub>1' \<rbrakk> \<Longrightarrow> m\<^isub>1 = m\<^isub>1'"
       
    97   unfolding map_add_def
       
    98   by (rule ext, rule ccontr,
       
    99       drule_tac x=x in fun_cong, clarsimp split: option.splits,
       
   100       drule sym, drule sym, force+)
       
   101 
       
   102 lemma map_le_same_dom_eq:
       
   103   "\<lbrakk> m\<^isub>0 \<subseteq>\<^sub>m m\<^isub>1 ; dom m\<^isub>0 = dom m\<^isub>1 \<rbrakk> \<Longrightarrow> m\<^isub>0 = m\<^isub>1"
       
   104   by (auto intro!: ext simp: map_le_def elim!: ballE)
       
   105 
       
   106 
       
   107 subsection {* Properties of map restriction *}
       
   108 
       
   109 lemma restrict_map_cancel:
       
   110   "(m |` S = m |` T) = (dom m \<inter> S = dom m \<inter> T)"
       
   111   by (fastforce intro: ext dest: fun_cong
       
   112                simp: restrict_map_def None_not_eq
       
   113                split: split_if_asm)
       
   114 
       
   115 lemma map_add_restricted_self [simp]:
       
   116   "m ++ m |` S = m"
       
   117   by (auto intro: ext simp: restrict_map_def map_add_def split: option.splits)
       
   118 
       
   119 lemma map_add_restrict_dom_right [simp]:
       
   120   "(m ++ m') |` dom m' = m'"
       
   121   by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
       
   122 
       
   123 lemma restrict_map_UNIV [simp]:
       
   124   "m |` UNIV = m"
       
   125   by (simp add: restrict_map_def)
       
   126 
       
   127 lemma restrict_map_dom:
       
   128   "S = dom m \<Longrightarrow> m |` S = m"
       
   129   by (auto intro!: ext simp: restrict_map_def None_not_eq)
       
   130 
       
   131 lemma restrict_map_subdom:
       
   132   "dom m \<subseteq> S \<Longrightarrow> m |` S = m"
       
   133   by (fastforce simp: restrict_map_def None_com intro: ext)
       
   134 
       
   135 lemma map_add_restrict:
       
   136   "(m\<^isub>0 ++ m\<^isub>1) |` S = ((m\<^isub>0 |` S) ++ (m\<^isub>1 |` S))"
       
   137   by (force simp: map_add_def restrict_map_def intro: ext)
       
   138 
       
   139 lemma map_le_restrict:
       
   140   "m \<subseteq>\<^sub>m m' \<Longrightarrow> m = m' |` dom m"
       
   141   by (force simp: map_le_def restrict_map_def None_com intro: ext)
       
   142 
       
   143 lemma restrict_map_le:
       
   144   "m |` S \<subseteq>\<^sub>m m"
       
   145   by (auto simp: map_le_def)
       
   146 
       
   147 lemma restrict_map_remerge:
       
   148   "\<lbrakk> S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` S ++ m |` T = m |` (S \<union> T)"
       
   149   by (rule ext, clarsimp simp: restrict_map_def map_add_def
       
   150                          split: option.splits)
       
   151 
       
   152 lemma restrict_map_empty:
       
   153   "dom m \<inter> S = {} \<Longrightarrow> m |` S = empty"
       
   154   by (fastforce simp: restrict_map_def intro: ext)
       
   155 
       
   156 lemma map_add_restrict_comp_right [simp]:
       
   157   "(m |` S ++ m |` (UNIV - S)) = m"
       
   158   by (force simp: map_add_def restrict_map_def split: option.splits intro: ext)
       
   159 
       
   160 lemma map_add_restrict_comp_right_dom [simp]:
       
   161   "(m |` S ++ m |` (dom m - S)) = m"
       
   162   by (auto simp: map_add_def restrict_map_def split: option.splits intro!: ext)
       
   163 
       
   164 lemma map_add_restrict_comp_left [simp]:
       
   165   "(m |` (UNIV - S) ++ m |` S) = m"
       
   166   by (subst map_add_comm, auto)
       
   167 
       
   168 lemma restrict_self_UNIV:
       
   169   "m |` (dom m - S) = m |` (UNIV - S)"
       
   170   by (auto intro!: ext simp: restrict_map_def)
       
   171 
       
   172 lemma map_add_restrict_nonmember_right:
       
   173   "x \<notin> dom m' \<Longrightarrow> (m ++ m') |` {x} = m |` {x}"
       
   174   by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
       
   175 
       
   176 lemma map_add_restrict_nonmember_left:
       
   177   "x \<notin> dom m \<Longrightarrow> (m ++ m') |` {x} = m' |` {x}"
       
   178   by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
       
   179 
       
   180 lemma map_add_restrict_right:
       
   181   "x \<subseteq> dom m' \<Longrightarrow> (m ++ m') |` x = m' |` x"
       
   182   by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
       
   183 
       
   184 lemma restrict_map_compose:
       
   185   "\<lbrakk> S \<union> T = dom m ; S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` S ++ m |` T = m"
       
   186   by (fastforce intro: ext simp: map_add_def restrict_map_def)
       
   187 
       
   188 lemma map_le_dom_subset_restrict:
       
   189   "\<lbrakk> m' \<subseteq>\<^sub>m m; dom m' \<subseteq> S \<rbrakk> \<Longrightarrow> m' \<subseteq>\<^sub>m (m |` S)"
       
   190   by (force simp: restrict_map_def map_le_def)
       
   191 
       
   192 lemma map_le_dom_restrict_sub_add:
       
   193   "m' \<subseteq>\<^sub>m m \<Longrightarrow> m |` (dom m - dom m') ++ m' = m"
       
   194   by (auto simp: None_com map_add_def restrict_map_def map_le_def
       
   195            split: option.splits
       
   196            intro!: ext)
       
   197      (force simp: Some_com)+
       
   198 
       
   199 lemma subset_map_restrict_sub_add:
       
   200   "T \<subseteq> S \<Longrightarrow> m |` (S - T) ++ m |` T = m |` S"
       
   201   by (auto simp: restrict_map_def map_add_def intro!: ext split: option.splits)
       
   202 
       
   203 lemma restrict_map_sub_union:
       
   204   "m |` (dom m - (S \<union> T)) = (m |` (dom m - T)) |` (dom m - S)"
       
   205   by (auto intro!: ext simp: restrict_map_def)
       
   206 
       
   207 lemma prod_restrict_map_add:
       
   208   "\<lbrakk> S \<union> T = U; S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` (X \<times> S) ++ m |` (X \<times> T) = m |` (X \<times> U)"
       
   209   by (auto simp: map_add_def restrict_map_def intro!: ext split: option.splits)
       
   210 
       
   211 
       
   212 section {* Things that should not go into Map.thy (separation logic) *}
       
   213 
       
   214 subsection {* Definitions *}
       
   215 
       
   216 text {* Map disjuction *}
       
   217 
       
   218 definition
       
   219   map_disj :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool" (infix "\<bottom>" 51) where
       
   220   "h\<^isub>0 \<bottom> h\<^isub>1 \<equiv> dom h\<^isub>0 \<inter> dom h\<^isub>1 = {}"
       
   221 
       
   222 declare None_not_eq [simp]
       
   223 
       
   224 
       
   225 subsection {* Properties of @{term "sub_restrict_map"} *}
       
   226 
       
   227 lemma restrict_map_sub_disj: "h |` S \<bottom> h `- S"
       
   228   by (fastforce simp: sub_restrict_map_def restrict_map_def map_disj_def
       
   229                split: option.splits split_if_asm)
       
   230 
       
   231 lemma restrict_map_sub_add: "h |` S ++ h `- S = h"
       
   232   by (fastforce simp: sub_restrict_map_def restrict_map_def map_add_def
       
   233                split: option.splits split_if
       
   234                intro: ext)
       
   235 
       
   236 
       
   237 subsection {* Properties of map disjunction *}
       
   238 
       
   239 lemma map_disj_empty_right [simp]:
       
   240   "h \<bottom> empty"
       
   241   by (simp add: map_disj_def)
       
   242 
       
   243 lemma map_disj_empty_left [simp]:
       
   244   "empty \<bottom> h"
       
   245   by (simp add: map_disj_def)
       
   246 
       
   247 lemma map_disj_com:
       
   248   "h\<^isub>0 \<bottom> h\<^isub>1 = h\<^isub>1 \<bottom> h\<^isub>0"
       
   249   by (simp add: map_disj_def, fast)
       
   250 
       
   251 lemma map_disjD:
       
   252   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> dom h\<^isub>0 \<inter> dom h\<^isub>1 = {}"
       
   253   by (simp add: map_disj_def)
       
   254 
       
   255 lemma map_disjI:
       
   256   "dom h\<^isub>0 \<inter> dom h\<^isub>1 = {} \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1"
       
   257   by (simp add: map_disj_def)
       
   258 
       
   259 
       
   260 subsection {* Map associativity-commutativity based on map disjuction *}
       
   261 
       
   262 lemma map_add_com:
       
   263   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 ++ h\<^isub>1 = h\<^isub>1 ++ h\<^isub>0"
       
   264   by (drule map_disjD, rule map_add_comm, force)
       
   265 
       
   266 lemma map_add_left_commute:
       
   267   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 ++ (h\<^isub>1 ++ h\<^isub>2) = h\<^isub>1 ++ (h\<^isub>0 ++ h\<^isub>2)"
       
   268   by (simp add: map_add_com map_disj_com map_add_assoc)
       
   269 
       
   270 lemma map_add_disj:
       
   271   "h\<^isub>0 \<bottom> (h\<^isub>1 ++ h\<^isub>2) = (h\<^isub>0 \<bottom> h\<^isub>1 \<and> h\<^isub>0 \<bottom> h\<^isub>2)"
       
   272   by (simp add: map_disj_def, fast)
       
   273 
       
   274 lemma map_add_disj':
       
   275   "(h\<^isub>1 ++ h\<^isub>2) \<bottom> h\<^isub>0 = (h\<^isub>1 \<bottom> h\<^isub>0 \<and> h\<^isub>2 \<bottom> h\<^isub>0)"
       
   276   by (simp add: map_disj_def, fast)
       
   277 
       
   278 text {*
       
   279   We redefine @{term "map_add"} associativity to bind to the right, which
       
   280   seems to be the more common case.
       
   281   Note that when a theory includes Map again, @{text "map_add_assoc"} will
       
   282   return to the simpset and will cause infinite loops if its symmetric
       
   283   counterpart is added (e.g. via @{text "map_add_ac"})
       
   284   *}
       
   285 
       
   286 declare map_add_assoc [simp del]
       
   287 
       
   288 text {*
       
   289   Since the associativity-commutativity of @{term "map_add"} relies on
       
   290   map disjunction, we include some basic rules into the ac set.
       
   291   *}
       
   292 
       
   293 lemmas map_add_ac =
       
   294   map_add_assoc[symmetric] map_add_com map_disj_com
       
   295   map_add_left_commute map_add_disj map_add_disj'
       
   296 
       
   297 
       
   298 subsection {* Basic properties *}
       
   299 
       
   300 lemma map_disj_None_right:
       
   301   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; x \<in> dom h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>1 x = None"
       
   302   by (auto simp: map_disj_def dom_def)
       
   303 
       
   304 lemma map_disj_None_left:
       
   305   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; x \<in> dom h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 x = None"
       
   306   by (auto simp: map_disj_def dom_def)
       
   307 
       
   308 lemma map_disj_None_left':
       
   309   "\<lbrakk> h\<^isub>0 x = Some y ; h\<^isub>1 \<bottom> h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>1 x = None "
       
   310   by (auto simp: map_disj_def)
       
   311 
       
   312 lemma map_disj_None_right':
       
   313   "\<lbrakk> h\<^isub>1 x = Some y ; h\<^isub>1 \<bottom> h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0 x = None "
       
   314   by (auto simp: map_disj_def)
       
   315 
       
   316 lemma map_disj_common:
       
   317   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; h\<^isub>0 p = Some v ; h\<^isub>1 p = Some v' \<rbrakk> \<Longrightarrow> False"
       
   318   by (frule (1) map_disj_None_left', simp)
       
   319 
       
   320 lemma map_disj_eq_dom_left:
       
   321   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; dom h\<^isub>0' = dom h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0' \<bottom> h\<^isub>1"
       
   322   by (auto simp: map_disj_def)
       
   323 
       
   324 
       
   325 subsection {* Map disjunction and addition *}
       
   326 
       
   327 lemma map_add_eval_left:
       
   328   "\<lbrakk> x \<in> dom h ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h x"
       
   329   by (auto dest!: map_disj_None_right simp: map_add_def cong: option.case_cong)
       
   330 
       
   331 lemma map_add_eval_right:
       
   332   "\<lbrakk> x \<in> dom h' ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h' x"
       
   333   by (auto elim!: map_disjD simp: map_add_comm map_add_eval_left map_disj_com)
       
   334 
       
   335 lemma map_add_eval_left':
       
   336   "\<lbrakk> x \<notin> dom h' ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h x"
       
   337   by (clarsimp simp: map_disj_def map_add_def split: option.splits)
       
   338 
       
   339 lemma map_add_eval_right':
       
   340   "\<lbrakk> x \<notin> dom h ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h' x"
       
   341   by (clarsimp simp: map_disj_def map_add_def split: option.splits)
       
   342 
       
   343 lemma map_add_left_dom_eq:
       
   344   assumes eq: "h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'"
       
   345   assumes etc: "h\<^isub>0 \<bottom> h\<^isub>1" "h\<^isub>0' \<bottom> h\<^isub>1'" "dom h\<^isub>0 = dom h\<^isub>0'"
       
   346   shows "h\<^isub>0 = h\<^isub>0'"
       
   347 proof -
       
   348   from eq have "h\<^isub>1 ++ h\<^isub>0 = h\<^isub>1' ++ h\<^isub>0'" using etc by (simp add: map_add_ac)
       
   349   thus ?thesis using etc
       
   350     by (fastforce elim!: map_add_right_dom_eq simp: map_add_ac)
       
   351 qed
       
   352 
       
   353 lemma map_add_left_eq:
       
   354   assumes eq: "h\<^isub>0 ++ h = h\<^isub>1 ++ h"
       
   355   assumes disj: "h\<^isub>0 \<bottom> h" "h\<^isub>1 \<bottom> h"
       
   356   shows "h\<^isub>0 = h\<^isub>1"
       
   357 proof (rule ext)
       
   358   fix x
       
   359   from eq have eq': "(h\<^isub>0 ++ h) x = (h\<^isub>1 ++ h) x" by (auto intro!: ext)
       
   360   { assume "x \<in> dom h"
       
   361     hence "h\<^isub>0 x = h\<^isub>1 x" using disj by (simp add: map_disj_None_left)
       
   362   } moreover {
       
   363     assume "x \<notin> dom h"
       
   364     hence "h\<^isub>0 x = h\<^isub>1 x" using disj eq' by (simp add: map_add_eval_left')
       
   365   }
       
   366   ultimately show "h\<^isub>0 x = h\<^isub>1 x" by cases
       
   367 qed
       
   368 
       
   369 lemma map_add_right_eq:
       
   370   "\<lbrakk>h ++ h\<^isub>0 = h ++ h\<^isub>1; h\<^isub>0 \<bottom> h; h\<^isub>1 \<bottom> h\<rbrakk> \<Longrightarrow> h\<^isub>0 = h\<^isub>1"
       
   371   by (rule_tac h=h in map_add_left_eq, auto simp: map_add_ac)
       
   372 
       
   373 lemma map_disj_add_eq_dom_right_eq:
       
   374   assumes merge: "h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'" and d: "dom h\<^isub>0 = dom h\<^isub>0'" and
       
   375       ab_disj: "h\<^isub>0 \<bottom> h\<^isub>1" and cd_disj: "h\<^isub>0' \<bottom> h\<^isub>1'"
       
   376   shows "h\<^isub>1 = h\<^isub>1'"
       
   377 proof (rule ext)
       
   378   fix x
       
   379   from merge have merge_x: "(h\<^isub>0 ++ h\<^isub>1) x = (h\<^isub>0' ++ h\<^isub>1') x" by simp
       
   380   with d ab_disj cd_disj show  "h\<^isub>1 x = h\<^isub>1' x"
       
   381     by - (case_tac "h\<^isub>1 x", case_tac "h\<^isub>1' x", simp, fastforce simp: map_disj_def,
       
   382           case_tac "h\<^isub>1' x", clarsimp, simp add: Some_com,
       
   383           force simp: map_disj_def, simp)
       
   384 qed
       
   385 
       
   386 lemma map_disj_add_eq_dom_left_eq:
       
   387   assumes add: "h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'" and
       
   388           dom: "dom h\<^isub>1 = dom h\<^isub>1'" and
       
   389           disj: "h\<^isub>0 \<bottom> h\<^isub>1" "h\<^isub>0' \<bottom> h\<^isub>1'"
       
   390   shows "h\<^isub>0 = h\<^isub>0'"
       
   391 proof -
       
   392   have "h\<^isub>1 ++ h\<^isub>0 = h\<^isub>1' ++ h\<^isub>0'" using add disj by (simp add: map_add_ac)
       
   393   thus ?thesis using dom disj
       
   394     by - (rule map_disj_add_eq_dom_right_eq, auto simp: map_disj_com)
       
   395 qed
       
   396 
       
   397 lemma map_add_left_cancel:
       
   398   assumes disj: "h\<^isub>0 \<bottom> h\<^isub>1" "h\<^isub>0 \<bottom> h\<^isub>1'"
       
   399   shows "(h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0 ++ h\<^isub>1') = (h\<^isub>1 = h\<^isub>1')"
       
   400 proof (rule iffI, rule ext)
       
   401   fix x
       
   402   assume "(h\<^isub>0 ++ h\<^isub>1) = (h\<^isub>0 ++ h\<^isub>1')"
       
   403   hence "(h\<^isub>0 ++ h\<^isub>1) x = (h\<^isub>0 ++ h\<^isub>1') x" by (auto intro!: ext)
       
   404   hence "h\<^isub>1 x = h\<^isub>1' x" using disj
       
   405     by - (cases "x \<in> dom h\<^isub>0",
       
   406           simp_all add: map_disj_None_right map_add_eval_right')
       
   407   thus "h\<^isub>1 x = h\<^isub>1' x" by (auto intro!: ext)
       
   408 qed auto
       
   409 
       
   410 lemma map_add_lr_disj:
       
   411   "\<lbrakk> h\<^isub>0 ++ h\<^isub>1 = h\<^isub>0' ++ h\<^isub>1'; h\<^isub>1 \<bottom> h\<^isub>1'  \<rbrakk> \<Longrightarrow> dom h\<^isub>1 \<subseteq> dom h\<^isub>0'"
       
   412   by (clarsimp simp: map_disj_def map_add_def, drule_tac x=x in fun_cong)
       
   413      (auto split: option.splits)
       
   414 
       
   415 
       
   416 subsection {* Map disjunction and map updates *}
       
   417 
       
   418 lemma map_disj_update_left [simp]:
       
   419   "p \<in> dom h\<^isub>1 \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1(p \<mapsto> v) = h\<^isub>0 \<bottom> h\<^isub>1"
       
   420   by (clarsimp simp add: map_disj_def, blast)
       
   421 
       
   422 lemma map_disj_update_right [simp]:
       
   423   "p \<in> dom h\<^isub>1 \<Longrightarrow> h\<^isub>1(p \<mapsto> v) \<bottom> h\<^isub>0 = h\<^isub>1 \<bottom> h\<^isub>0"
       
   424   by (simp add: map_disj_com)
       
   425 
       
   426 lemma map_add_update_left:
       
   427   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; p \<in> dom h\<^isub>0 \<rbrakk> \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>1)(p \<mapsto> v) = (h\<^isub>0(p \<mapsto> v) ++ h\<^isub>1)"
       
   428   by (drule (1) map_disj_None_right)
       
   429      (auto intro: ext simp: map_add_def cong: option.case_cong)
       
   430 
       
   431 lemma map_add_update_right:
       
   432   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; p \<in> dom h\<^isub>1  \<rbrakk> \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>1)(p \<mapsto> v) = (h\<^isub>0 ++ h\<^isub>1 (p \<mapsto> v))"
       
   433   by (drule (1) map_disj_None_left)
       
   434      (auto intro: ext simp: map_add_def cong: option.case_cong)
       
   435 
       
   436 lemma map_add3_update:
       
   437   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; h\<^isub>1  \<bottom> h\<^isub>2 ; h\<^isub>0 \<bottom> h\<^isub>2 ; p \<in> dom h\<^isub>0 \<rbrakk>
       
   438   \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>1 ++ h\<^isub>2)(p \<mapsto> v) = h\<^isub>0(p \<mapsto> v) ++ h\<^isub>1 ++ h\<^isub>2"
       
   439   by (auto simp: map_add_update_left[symmetric] map_add_ac)
       
   440 
       
   441 
       
   442 subsection {* Map disjunction and @{term "map_le"} *}
       
   443 
       
   444 lemma map_le_override [simp]:
       
   445   "\<lbrakk> h \<bottom> h' \<rbrakk> \<Longrightarrow> h \<subseteq>\<^sub>m h ++ h'"
       
   446   by (auto simp: map_le_def map_add_def map_disj_def split: option.splits)
       
   447 
       
   448 lemma map_leI_left:
       
   449   "\<lbrakk> h = h\<^isub>0 ++ h\<^isub>1 ; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h" by auto
       
   450 
       
   451 lemma map_leI_right:
       
   452   "\<lbrakk> h = h\<^isub>0 ++ h\<^isub>1 ; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>1 \<subseteq>\<^sub>m h" by auto
       
   453 
       
   454 lemma map_disj_map_le:
       
   455   "\<lbrakk> h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0' \<bottom> h\<^isub>1"
       
   456   by (force simp: map_disj_def map_le_def)
       
   457 
       
   458 lemma map_le_on_disj_left:
       
   459   "\<lbrakk> h' \<subseteq>\<^sub>m h ; h\<^isub>0 \<bottom> h\<^isub>1 ; h' = h\<^isub>0 ++ h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h"
       
   460   unfolding map_le_def
       
   461   by (rule ballI, erule_tac x=a in ballE, auto simp: map_add_eval_left)+
       
   462 
       
   463 lemma map_le_on_disj_right:
       
   464   "\<lbrakk> h' \<subseteq>\<^sub>m h ; h\<^isub>0 \<bottom> h\<^isub>1 ; h' = h\<^isub>1 ++ h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h"
       
   465   by (auto simp: map_le_on_disj_left map_add_ac)
       
   466 
       
   467 lemma map_le_add_cancel:
       
   468   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1 ; h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0 \<rbrakk> \<Longrightarrow> h\<^isub>0' ++ h\<^isub>1 \<subseteq>\<^sub>m h\<^isub>0 ++ h\<^isub>1"
       
   469   by (auto simp: map_le_def map_add_def map_disj_def split: option.splits)
       
   470 
       
   471 lemma map_le_override_bothD:
       
   472   assumes subm: "h\<^isub>0' ++ h\<^isub>1 \<subseteq>\<^sub>m h\<^isub>0 ++ h\<^isub>1"
       
   473   assumes disj': "h\<^isub>0' \<bottom> h\<^isub>1"
       
   474   assumes disj: "h\<^isub>0 \<bottom> h\<^isub>1"
       
   475   shows "h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0"
       
   476 unfolding map_le_def
       
   477 proof (rule ballI)
       
   478   fix a
       
   479   assume a: "a \<in> dom h\<^isub>0'"
       
   480   hence sumeq: "(h\<^isub>0' ++ h\<^isub>1) a = (h\<^isub>0 ++ h\<^isub>1) a"
       
   481     using subm unfolding map_le_def by auto
       
   482   from a have "a \<notin> dom h\<^isub>1" using disj' by (auto dest!: map_disj_None_right)
       
   483   thus "h\<^isub>0' a = h\<^isub>0 a" using a sumeq disj disj'
       
   484     by (simp add: map_add_eval_left map_add_eval_left')
       
   485 qed
       
   486 
       
   487 lemma map_le_conv:
       
   488   "(h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0 \<and> h\<^isub>0' \<noteq> h\<^isub>0) = (\<exists>h\<^isub>1. h\<^isub>0 = h\<^isub>0' ++ h\<^isub>1 \<and> h\<^isub>0' \<bottom> h\<^isub>1 \<and> h\<^isub>0' \<noteq> h\<^isub>0)"
       
   489   unfolding map_le_def map_disj_def map_add_def
       
   490   by (rule iffI,
       
   491       clarsimp intro!: exI[where x="\<lambda>x. if x \<notin> dom h\<^isub>0' then h\<^isub>0 x else None"])
       
   492      (fastforce intro: ext intro: split: option.splits split_if_asm)+
       
   493 
       
   494 lemma map_le_conv2:
       
   495   "h\<^isub>0' \<subseteq>\<^sub>m h\<^isub>0 = (\<exists>h\<^isub>1. h\<^isub>0 = h\<^isub>0' ++ h\<^isub>1 \<and> h\<^isub>0' \<bottom> h\<^isub>1)"
       
   496   by (case_tac "h\<^isub>0'=h\<^isub>0", insert map_le_conv, auto intro: exI[where x=empty])
       
   497 
       
   498 
       
   499 subsection {* Map disjunction and restriction *}
       
   500 
       
   501 lemma map_disj_comp [simp]:
       
   502   "h\<^isub>0 \<bottom> h\<^isub>1 |` (UNIV - dom h\<^isub>0)"
       
   503   by (force simp: map_disj_def)
       
   504 
       
   505 lemma restrict_map_disj:
       
   506   "S \<inter> T = {} \<Longrightarrow> h |` S \<bottom> h |` T"
       
   507   by (auto simp: map_disj_def restrict_map_def dom_def)
       
   508 
       
   509 lemma map_disj_restrict_dom [simp]:
       
   510   "h\<^isub>0 \<bottom> h\<^isub>1 |` (dom h\<^isub>1 - dom h\<^isub>0)"
       
   511   by (force simp: map_disj_def)
       
   512 
       
   513 lemma restrict_map_disj_dom_empty:
       
   514   "h \<bottom> h' \<Longrightarrow> h |` dom h' = empty"
       
   515   by (fastforce simp: map_disj_def restrict_map_def intro: ext)
       
   516 
       
   517 lemma restrict_map_univ_disj_eq:
       
   518   "h \<bottom> h' \<Longrightarrow> h |` (UNIV - dom h') = h"
       
   519   by (rule ext, auto simp: map_disj_def restrict_map_def)
       
   520 
       
   521 lemma restrict_map_disj_dom:
       
   522   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h |` dom h\<^isub>0 \<bottom> h |` dom h\<^isub>1"
       
   523   by (auto simp: map_disj_def restrict_map_def dom_def)
       
   524 
       
   525 lemma map_add_restrict_dom_left:
       
   526   "h \<bottom> h' \<Longrightarrow> (h ++ h') |` dom h = h"
       
   527   by (rule ext, auto simp: restrict_map_def map_add_def dom_def map_disj_def
       
   528                      split: option.splits)
       
   529 
       
   530 lemma map_add_restrict_dom_left':
       
   531   "h \<bottom> h' \<Longrightarrow> S = dom h \<Longrightarrow> (h ++ h') |` S = h"
       
   532   by (rule ext, auto simp: restrict_map_def map_add_def dom_def map_disj_def
       
   533                      split: option.splits)
       
   534 
       
   535 lemma restrict_map_disj_left:
       
   536   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 |` S \<bottom> h\<^isub>1"
       
   537   by (auto simp: map_disj_def)
       
   538 
       
   539 lemma restrict_map_disj_right:
       
   540   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1 |` S"
       
   541   by (auto simp: map_disj_def)
       
   542 
       
   543 lemmas restrict_map_disj_both = restrict_map_disj_right restrict_map_disj_left
       
   544 
       
   545 lemma map_dom_disj_restrict_right:
       
   546   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> (h\<^isub>0 ++ h\<^isub>0') |` dom h\<^isub>1 = h\<^isub>0' |` dom h\<^isub>1"
       
   547   by (simp add: map_add_restrict restrict_map_empty map_disj_def)
       
   548 
       
   549 lemma restrict_map_on_disj:
       
   550   "h\<^isub>0' \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 |` dom h\<^isub>0' \<bottom> h\<^isub>1"
       
   551   unfolding map_disj_def by auto
       
   552 
       
   553 lemma restrict_map_on_disj':
       
   554   "h\<^isub>0 \<bottom> h\<^isub>1 \<Longrightarrow> h\<^isub>0 \<bottom> h\<^isub>1 |` S"
       
   555   by (auto simp: map_disj_def map_add_def)
       
   556 
       
   557 lemma map_le_sub_dom:
       
   558   "\<lbrakk> h\<^isub>0 ++ h\<^isub>1 \<subseteq>\<^sub>m h ; h\<^isub>0 \<bottom> h\<^isub>1 \<rbrakk> \<Longrightarrow> h\<^isub>0 \<subseteq>\<^sub>m h |` (dom h - dom h\<^isub>1)"
       
   559   by (rule map_le_override_bothD, subst map_le_dom_restrict_sub_add)
       
   560      (auto elim: map_add_le_mapE simp: map_add_ac)
       
   561 
       
   562 lemma map_submap_break:
       
   563   "\<lbrakk> h \<subseteq>\<^sub>m h' \<rbrakk> \<Longrightarrow> h' = (h' |` (UNIV - dom h)) ++ h"
       
   564   by (fastforce intro!: ext split: option.splits
       
   565                simp: map_le_restrict restrict_map_def map_le_def map_add_def
       
   566                      dom_def)
       
   567 
       
   568 lemma map_add_disj_restrict_both:
       
   569   "\<lbrakk> h\<^isub>0 \<bottom> h\<^isub>1; S \<inter> S' = {}; T \<inter> T' = {} \<rbrakk>
       
   570    \<Longrightarrow> (h\<^isub>0 |` S) ++ (h\<^isub>1 |` T) \<bottom> (h\<^isub>0 |` S') ++ (h\<^isub>1 |` T')"
       
   571   by (auto simp: map_add_ac intro!: restrict_map_disj_both restrict_map_disj)
       
   572 
       
   573 end