--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/ex/Simple_Separation_Example.thy~ Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,109 @@
+(* Title: Adaptation of example from HOL/Hoare/Separation
+ Author: Gerwin Klein, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Example from HOL/Hoare/Separation"
+
+theory Simple_Separation_Example
+ imports "~~/src/HOL/Hoare/Hoare_Logic_Abort" "../Sep_Heap_Instance"
+ "../Sep_Tactics"
+begin
+
+declare [[syntax_ambiguity_warning = false]]
+
+type_synonym heap = "(nat \<Rightarrow> nat option)"
+
+(* This syntax isn't ideal, but this is what is used in the original *)
+definition maps_to:: "nat \<Rightarrow> nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> _" [56,51] 56)
+ where "x \<mapsto> y \<equiv> \<lambda>h. h = [x \<mapsto> y]"
+
+(* If you don't mind syntax ambiguity: *)
+notation pred_ex (binder "\<exists>" 10)
+
+(* could be generated automatically *)
+definition maps_to_ex :: "nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> -" [56] 56)
+ where "x \<mapsto> - \<equiv> \<exists>y. x \<mapsto> y"
+
+
+(* could be generated automatically *)
+lemma maps_to_maps_to_ex [elim!]:
+ "(p \<mapsto> v) s \<Longrightarrow> (p \<mapsto> -) s"
+ by (auto simp: maps_to_ex_def)
+
+(* The basic properties of maps_to: *)
+lemma maps_to_write:
+ "(p \<mapsto> - ** P) H \<Longrightarrow> (p \<mapsto> v ** P) (H (p \<mapsto> v))"
+ apply (clarsimp simp: sep_conj_def maps_to_def maps_to_ex_def split: option.splits)
+ apply (rule_tac x=y in exI)
+ apply (auto simp: sep_disj_fun_def map_convs map_add_def split: option.splits)
+ done
+
+lemma points_to:
+ "(p \<mapsto> v ** P) H \<Longrightarrow> the (H p) = v"
+ by (auto elim!: sep_conjE
+ simp: sep_disj_fun_def maps_to_def map_convs map_add_def
+ split: option.splits)
+
+
+(* This differs from the original and uses separation logic for the definition. *)
+primrec
+ list :: "nat \<Rightarrow> nat list \<Rightarrow> heap \<Rightarrow> bool"
+where
+ "list i [] = (\<langle>i=0\<rangle> and \<box>)"
+| "list i (x#xs) = (\<langle>i=x \<and> i\<noteq>0\<rangle> and (EXS j. i \<mapsto> j ** list j xs))"
+
+lemma list_empty [simp]:
+ shows "list 0 xs = (\<lambda>s. xs = [] \<and> \<box> s)"
+ by (cases xs) auto
+
+(* The examples from Hoare/Separation.thy *)
+lemma "VARS x y z w h
+ {(x \<mapsto> y ** z \<mapsto> w) h}
+ SKIP
+ {x \<noteq> z}"
+ apply vcg
+ apply(auto elim!: sep_conjE simp: maps_to_def sep_disj_fun_def domain_conv)
+done
+
+lemma "VARS H x y z w
+ {(P ** Q) H}
+ SKIP
+ {(Q ** P) H}"
+ apply vcg
+ apply(simp add: sep_conj_commute)
+done
+
+lemma "VARS H
+ {p\<noteq>0 \<and> (p \<mapsto> - ** list q qs) H}
+ H := H(p \<mapsto> q)
+ {list p (p#qs) H}"
+ apply vcg
+ apply (auto intro: maps_to_write)
+done
+
+lemma "VARS H p q r
+ {(list p Ps ** list q Qs) H}
+ WHILE p \<noteq> 0
+ INV {\<exists>ps qs. (list p ps ** list q qs) H \<and> rev ps @ qs = rev Ps @ Qs}
+ DO r := p; p := the(H p); H := H(r \<mapsto> q); q := r OD
+ {list q (rev Ps @ Qs) H}"
+ apply vcg
+ apply fastforce
+ apply clarsimp
+ apply (case_tac ps, simp)
+ apply (rename_tac p ps')
+ apply (clarsimp simp: sep_conj_exists sep_conj_ac)
+ apply (sep_subst points_to)
+ apply (rule_tac x = "ps'" in exI)
+ apply (rule_tac x = "p # qs" in exI)
+ apply (simp add: sep_conj_exists sep_conj_ac)
+ apply (rule exI)
+ apply (sep_rule maps_to_write)
+ apply (sep_cancel)+
+ apply ((sep_cancel add: maps_to_maps_to_ex)+)[1]
+ apply clarsimp
+ done
+
+end