(* Title: Adaptation of example from HOL/Hoare/Separation
Author: Gerwin Klein, 2012
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
Rafal Kolanski <rafal.kolanski at nicta.com.au>
*)
header "Example from HOL/Hoare/Separation"
theory Simple_Separation_Example
imports "~~/src/HOL/Hoare/Hoare_Logic_Abort" "../Sep_Heap_Instance"
"../Sep_Tactics"
begin
declare [[syntax_ambiguity_warning = false]]
type_synonym heap = "(nat \<Rightarrow> nat option)"
(* This syntax isn't ideal, but this is what is used in the original *)
definition maps_to:: "nat \<Rightarrow> nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> _" [56,51] 56)
where "x \<mapsto> y \<equiv> \<lambda>h. h = [x \<mapsto> y]"
(* If you don't mind syntax ambiguity: *)
notation pred_ex (binder "\<exists>" 10)
(* could be generated automatically *)
definition maps_to_ex :: "nat \<Rightarrow> heap \<Rightarrow> bool" ("_ \<mapsto> -" [56] 56)
where "x \<mapsto> - \<equiv> \<exists>y. x \<mapsto> y"
(* could be generated automatically *)
lemma maps_to_maps_to_ex [elim!]:
"(p \<mapsto> v) s \<Longrightarrow> (p \<mapsto> -) s"
by (auto simp: maps_to_ex_def)
(* The basic properties of maps_to: *)
lemma maps_to_write:
"(p \<mapsto> - ** P) H \<Longrightarrow> (p \<mapsto> v ** P) (H (p \<mapsto> v))"
apply (clarsimp simp: sep_conj_def maps_to_def maps_to_ex_def split: option.splits)
apply (rule_tac x=y in exI)
apply (auto simp: sep_disj_fun_def map_convs map_add_def split: option.splits)
done
lemma points_to:
"(p \<mapsto> v ** P) H \<Longrightarrow> the (H p) = v"
by (auto elim!: sep_conjE
simp: sep_disj_fun_def maps_to_def map_convs map_add_def
split: option.splits)
(* This differs from the original and uses separation logic for the definition. *)
primrec
list :: "nat \<Rightarrow> nat list \<Rightarrow> heap \<Rightarrow> bool"
where
"list i [] = (\<langle>i=0\<rangle> and \<box>)"
| "list i (x#xs) = (\<langle>i=x \<and> i\<noteq>0\<rangle> and (EXS j. i \<mapsto> j ** list j xs))"
lemma list_empty [simp]:
shows "list 0 xs = (\<lambda>s. xs = [] \<and> \<box> s)"
by (cases xs) auto
(* The examples from Hoare/Separation.thy *)
lemma "VARS x y z w h
{(x \<mapsto> y ** z \<mapsto> w) h}
SKIP
{x \<noteq> z}"
apply vcg
apply(auto elim!: sep_conjE simp: maps_to_def sep_disj_fun_def domain_conv)
done
lemma "VARS H x y z w
{(P ** Q) H}
SKIP
{(Q ** P) H}"
apply vcg
apply(simp add: sep_conj_commute)
done
lemma "VARS H
{p\<noteq>0 \<and> (p \<mapsto> - ** list q qs) H}
H := H(p \<mapsto> q)
{list p (p#qs) H}"
apply vcg
apply (auto intro: maps_to_write)
done
lemma "VARS H p q r
{(list p Ps ** list q Qs) H}
WHILE p \<noteq> 0
INV {\<exists>ps qs. (list p ps ** list q qs) H \<and> rev ps @ qs = rev Ps @ Qs}
DO r := p; p := the(H p); H := H(r \<mapsto> q); q := r OD
{list q (rev Ps @ Qs) H}"
apply vcg
apply fastforce
apply clarsimp
apply (case_tac ps, simp)
apply (rename_tac p ps')
apply (clarsimp simp: sep_conj_exists sep_conj_ac)
apply (sep_subst points_to)
apply (rule_tac x = "ps'" in exI)
apply (rule_tac x = "p # qs" in exI)
apply (simp add: sep_conj_exists sep_conj_ac)
apply (rule exI)
apply (sep_rule maps_to_write)
apply (sep_cancel)+
apply ((sep_cancel add: maps_to_maps_to_ex)+)[1]
apply clarsimp
done
end