author | Christian Urban <urbanc@in.tum.de> |
Thu, 14 Oct 2010 04:14:22 +0100 | |
changeset 2524 | 693562f03eee |
parent 2494 | 11133eb76f61 |
child 2556 | 8ed62410236e |
permissions | -rw-r--r-- |
1795 | 1 |
theory TypeSchemes |
2454
9ffee4eb1ae1
renamed NewParser to Nominal2
Christian Urban <urbanc@in.tum.de>
parents:
2451
diff
changeset
|
2 |
imports "../Nominal2" |
1795 | 3 |
begin |
4 |
||
5 |
section {*** Type Schemes ***} |
|
6 |
||
7 |
atom_decl name |
|
2337
b151399bd2c3
fixed according to changes in quotient
Christian Urban <urbanc@in.tum.de>
parents:
2308
diff
changeset
|
8 |
|
2486
b4ea19604b0b
cleaned up two examples
Christian Urban <urbanc@in.tum.de>
parents:
2480
diff
changeset
|
9 |
(* defined as a single nominal datatype *) |
1795 | 10 |
|
11 |
nominal_datatype ty = |
|
12 |
Var "name" |
|
13 |
| Fun "ty" "ty" |
|
14 |
and tys = |
|
2434 | 15 |
All xs::"name fset" ty::"ty" bind (res) xs in ty |
16 |
||
2468 | 17 |
thm ty_tys.distinct |
18 |
thm ty_tys.induct |
|
19 |
thm ty_tys.exhaust |
|
20 |
thm ty_tys.fv_defs |
|
21 |
thm ty_tys.bn_defs |
|
22 |
thm ty_tys.perm_simps |
|
23 |
thm ty_tys.eq_iff |
|
24 |
thm ty_tys.fv_bn_eqvt |
|
25 |
thm ty_tys.size_eqvt |
|
26 |
thm ty_tys.supports |
|
2493
2e174807c891
added postprocessed fresh-lemmas for constructors
Christian Urban <urbanc@in.tum.de>
parents:
2486
diff
changeset
|
27 |
thm ty_tys.supp |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
2493
diff
changeset
|
28 |
thm ty_tys.fresh |
1795 | 29 |
|
2486
b4ea19604b0b
cleaned up two examples
Christian Urban <urbanc@in.tum.de>
parents:
2480
diff
changeset
|
30 |
(* defined as two separate nominal datatypes *) |
b4ea19604b0b
cleaned up two examples
Christian Urban <urbanc@in.tum.de>
parents:
2480
diff
changeset
|
31 |
|
2308
387fcbd33820
fixed problem with bn_info
Christian Urban <urbanc@in.tum.de>
parents:
2181
diff
changeset
|
32 |
nominal_datatype ty2 = |
387fcbd33820
fixed problem with bn_info
Christian Urban <urbanc@in.tum.de>
parents:
2181
diff
changeset
|
33 |
Var2 "name" |
387fcbd33820
fixed problem with bn_info
Christian Urban <urbanc@in.tum.de>
parents:
2181
diff
changeset
|
34 |
| Fun2 "ty2" "ty2" |
387fcbd33820
fixed problem with bn_info
Christian Urban <urbanc@in.tum.de>
parents:
2181
diff
changeset
|
35 |
|
387fcbd33820
fixed problem with bn_info
Christian Urban <urbanc@in.tum.de>
parents:
2181
diff
changeset
|
36 |
nominal_datatype tys2 = |
2434 | 37 |
All2 xs::"name fset" ty::"ty2" bind (res) xs in ty |
2337
b151399bd2c3
fixed according to changes in quotient
Christian Urban <urbanc@in.tum.de>
parents:
2308
diff
changeset
|
38 |
|
2468 | 39 |
thm tys2.distinct |
40 |
thm tys2.induct |
|
41 |
thm tys2.exhaust |
|
42 |
thm tys2.fv_defs |
|
43 |
thm tys2.bn_defs |
|
44 |
thm tys2.perm_simps |
|
45 |
thm tys2.eq_iff |
|
46 |
thm tys2.fv_bn_eqvt |
|
47 |
thm tys2.size_eqvt |
|
48 |
thm tys2.supports |
|
2493
2e174807c891
added postprocessed fresh-lemmas for constructors
Christian Urban <urbanc@in.tum.de>
parents:
2486
diff
changeset
|
49 |
thm tys2.supp |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
2493
diff
changeset
|
50 |
thm tys2.fresh |
2468 | 51 |
|
2480
ac7dff1194e8
introduced a general procedure for structural inductions; simplified reflexivity proof
Christian Urban <urbanc@in.tum.de>
parents:
2468
diff
changeset
|
52 |
|
2468 | 53 |
text {* *} |
2308
387fcbd33820
fixed problem with bn_info
Christian Urban <urbanc@in.tum.de>
parents:
2181
diff
changeset
|
54 |
|
2436
3885dc2669f9
cleaned up (almost completely) the examples
Christian Urban <urbanc@in.tum.de>
parents:
2434
diff
changeset
|
55 |
(* |
1795 | 56 |
lemma strong_induct: |
57 |
assumes a1: "\<And>name b. P b (Var name)" |
|
58 |
and a2: "\<And>t1 t2 b. \<lbrakk>\<And>c. P c t1; \<And>c. P c t2\<rbrakk> \<Longrightarrow> P b (Fun t1 t2)" |
|
2524
693562f03eee
major reorganisation of fset (renamed fset_to_set to fset, changed the definition of list_eq and fcard_raw)
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
59 |
and a3: "\<And>fset t b. \<lbrakk>\<And>c. P c t; fset (fmap atom fset) \<sharp>* b\<rbrakk> \<Longrightarrow> P' b (All fset t)" |
1795 | 60 |
shows "P (a :: 'a :: pt) t \<and> P' (d :: 'b :: {fs}) ts " |
61 |
proof - |
|
62 |
have " (\<forall>p a. P a (p \<bullet> t)) \<and> (\<forall>p d. P' d (p \<bullet> ts))" |
|
63 |
apply (rule ty_tys.induct) |
|
64 |
apply (simp add: a1) |
|
65 |
apply (simp) |
|
66 |
apply (rule allI)+ |
|
67 |
apply (rule a2) |
|
68 |
apply simp |
|
69 |
apply simp |
|
70 |
apply (rule allI) |
|
71 |
apply (rule allI) |
|
2524
693562f03eee
major reorganisation of fset (renamed fset_to_set to fset, changed the definition of list_eq and fcard_raw)
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
72 |
apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (fset (fmap atom (p \<bullet> fset)))) \<sharp>* d \<and> supp (p \<bullet> All fset ty) \<sharp>* pa)") |
1795 | 73 |
apply clarify |
74 |
apply(rule_tac t="p \<bullet> All fset ty" and |
|
75 |
s="pa \<bullet> (p \<bullet> All fset ty)" in subst) |
|
76 |
apply (rule supp_perm_eq) |
|
77 |
apply assumption |
|
2486
b4ea19604b0b
cleaned up two examples
Christian Urban <urbanc@in.tum.de>
parents:
2480
diff
changeset
|
78 |
apply (simp only: ty_tys.perm_simps) |
1795 | 79 |
apply (rule a3) |
80 |
apply(erule_tac x="(pa + p)" in allE) |
|
81 |
apply simp |
|
82 |
apply (simp add: eqvts eqvts_raw) |
|
83 |
apply (rule at_set_avoiding2) |
|
2524
693562f03eee
major reorganisation of fset (renamed fset_to_set to fset, changed the definition of list_eq and fcard_raw)
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
84 |
apply (simp add: fin_fset) |
1795 | 85 |
apply (simp add: finite_supp) |
86 |
apply (simp add: eqvts finite_supp) |
|
1933
9eab1dfc14d2
moved lemmas from FSet.thy to do with atom to Nominal2_Base, and to do with 'a::at set to Nominal2_Atoms; moved Nominal2_Eqvt.thy one up to be loaded before Nominal2_Atoms
Christian Urban <urbanc@in.tum.de>
parents:
1795
diff
changeset
|
87 |
apply (rule_tac p=" -p" in permute_boolE) |
9eab1dfc14d2
moved lemmas from FSet.thy to do with atom to Nominal2_Base, and to do with 'a::at set to Nominal2_Atoms; moved Nominal2_Eqvt.thy one up to be loaded before Nominal2_Atoms
Christian Urban <urbanc@in.tum.de>
parents:
1795
diff
changeset
|
88 |
apply(simp add: eqvts) |
9eab1dfc14d2
moved lemmas from FSet.thy to do with atom to Nominal2_Base, and to do with 'a::at set to Nominal2_Atoms; moved Nominal2_Eqvt.thy one up to be loaded before Nominal2_Atoms
Christian Urban <urbanc@in.tum.de>
parents:
1795
diff
changeset
|
89 |
apply(simp add: permute_fun_def atom_eqvt) |
1795 | 90 |
apply (simp add: fresh_star_def) |
91 |
apply clarify |
|
92 |
apply (simp add: fresh_def) |
|
2486
b4ea19604b0b
cleaned up two examples
Christian Urban <urbanc@in.tum.de>
parents:
2480
diff
changeset
|
93 |
apply(auto) |
b4ea19604b0b
cleaned up two examples
Christian Urban <urbanc@in.tum.de>
parents:
2480
diff
changeset
|
94 |
apply (simp add: ty_tys.supp) |
1795 | 95 |
done |
96 |
then have "P a (0 \<bullet> t) \<and> P' d (0 \<bullet> ts)" by blast |
|
97 |
then show ?thesis by simp |
|
98 |
qed |
|
99 |
||
100 |
lemma |
|
101 |
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))" |
|
102 |
apply(simp add: ty_tys.eq_iff) |
|
103 |
apply(rule_tac x="0::perm" in exI) |
|
104 |
apply(simp add: alphas) |
|
2040
94e24da9ae75
Move TypeSchemes to NewParser
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1933
diff
changeset
|
105 |
apply(simp add: fresh_star_def fresh_zero_perm supp_at_base) |
1795 | 106 |
done |
107 |
||
108 |
lemma |
|
109 |
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var b) (Var a))" |
|
110 |
apply(simp add: ty_tys.eq_iff) |
|
111 |
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI) |
|
2040
94e24da9ae75
Move TypeSchemes to NewParser
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1933
diff
changeset
|
112 |
apply(simp add: alphas fresh_star_def eqvts supp_at_base) |
1795 | 113 |
done |
114 |
||
115 |
lemma |
|
116 |
shows "All {|a, b, c|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var a) (Var b))" |
|
117 |
apply(simp add: ty_tys.eq_iff) |
|
118 |
apply(rule_tac x="0::perm" in exI) |
|
2040
94e24da9ae75
Move TypeSchemes to NewParser
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1933
diff
changeset
|
119 |
apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff supp_at_base) |
1795 | 120 |
done |
121 |
||
122 |
lemma |
|
123 |
assumes a: "a \<noteq> b" |
|
124 |
shows "\<not>(All {|a, b|} (Fun (Var a) (Var b)) = All {|c|} (Fun (Var c) (Var c)))" |
|
125 |
using a |
|
126 |
apply(simp add: ty_tys.eq_iff) |
|
127 |
apply(clarify) |
|
2040
94e24da9ae75
Move TypeSchemes to NewParser
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1933
diff
changeset
|
128 |
apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff supp_at_base) |
1795 | 129 |
apply auto |
130 |
done |
|
131 |
||
2179
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
132 |
fun |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
133 |
lookup :: "(name \<times> ty) list \<Rightarrow> name \<Rightarrow> ty" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
134 |
where |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
135 |
"lookup [] n = Var n" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
136 |
| "lookup ((p, s) # t) n = (if p = n then s else lookup t n)" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
137 |
|
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
138 |
locale subst_loc = |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
139 |
fixes |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
140 |
subst :: "(name \<times> ty) list \<Rightarrow> ty \<Rightarrow> ty" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
141 |
and substs :: "(name \<times> ty) list \<Rightarrow> tys \<Rightarrow> tys" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
142 |
assumes |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
143 |
s1: "subst \<theta> (Var n) = lookup \<theta> n" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
144 |
and s2: "subst \<theta> (Fun l r) = Fun (subst \<theta> l) (subst \<theta> r)" |
2524
693562f03eee
major reorganisation of fset (renamed fset_to_set to fset, changed the definition of list_eq and fcard_raw)
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
145 |
and s3: "fset (fmap atom xs) \<sharp>* \<theta> \<Longrightarrow> substs \<theta> (All xs t) = All xs (subst \<theta> t)" |
2179
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
146 |
begin |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
147 |
|
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
148 |
lemma subst_ty: |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
149 |
assumes x: "atom x \<sharp> t" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
150 |
shows "subst [(x, S)] t = t" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
151 |
using x |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
152 |
apply (induct t rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified]) |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
153 |
by (simp_all add: s1 s2 fresh_def ty_tys.fv[simplified ty_tys.supp] supp_at_base) |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
154 |
|
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
155 |
lemma subst_tyS: |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
156 |
shows "atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T" |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
157 |
apply (rule strong_induct[of |
2180 | 158 |
"\<lambda>a t. True" "\<lambda>(x, S) T. (atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T)" _ "t" "(x, S)", simplified]) |
159 |
apply clarify |
|
2179
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
160 |
apply (subst s3) |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
161 |
apply (simp add: fresh_star_def fresh_Cons fresh_Nil) |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
162 |
apply (subst subst_ty) |
2180 | 163 |
apply (simp_all add: fresh_star_prod_elim) |
2179
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
164 |
apply (drule fresh_star_atom) |
2180 | 165 |
apply (simp add: fresh_def ty_tys.fv[simplified ty_tys.supp]) |
2524
693562f03eee
major reorganisation of fset (renamed fset_to_set to fset, changed the definition of list_eq and fcard_raw)
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
166 |
apply (subgoal_tac "atom a \<notin> fset (fmap atom fset)") |
2179
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
167 |
apply blast |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
168 |
apply (metis supp_finite_atom_set finite_fset) |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
169 |
done |
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
170 |
|
2181
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
171 |
lemma subst_lemma_pre: |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
172 |
"z \<sharp> (N,L) \<longrightarrow> z \<sharp> (subst [(y, L)] N)" |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
173 |
apply (induct N rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
174 |
apply (simp add: s1) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
175 |
apply (auto simp add: fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
176 |
apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])[3] |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
177 |
apply (simp add: s2) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
178 |
apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
179 |
done |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
180 |
|
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
181 |
lemma substs_lemma_pre: |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
182 |
"atom z \<sharp> (N,L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N)" |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
183 |
apply (rule strong_induct[of |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
184 |
"\<lambda>a t. True" "\<lambda>(z, y, L) N. (atom z \<sharp> (N, L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N))" _ _ "(z, y, L)", simplified]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
185 |
apply clarify |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
186 |
apply (subst s3) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
187 |
apply (simp add: fresh_star_def fresh_Cons fresh_Nil fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
188 |
apply (simp_all add: fresh_star_prod_elim fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
189 |
apply clarify |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
190 |
apply (drule fresh_star_atom) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
191 |
apply (drule fresh_star_atom) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
192 |
apply (simp add: fresh_def) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
193 |
apply (simp only: ty_tys.fv[simplified ty_tys.supp]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
194 |
apply (subgoal_tac "atom a \<notin> supp (subst [(aa, b)] t)") |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
195 |
apply blast |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
196 |
apply (subgoal_tac "atom a \<notin> supp t") |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
197 |
apply (fold fresh_def)[1] |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
198 |
apply (rule mp[OF subst_lemma_pre]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
199 |
apply (simp add: fresh_Pair) |
2524
693562f03eee
major reorganisation of fset (renamed fset_to_set to fset, changed the definition of list_eq and fcard_raw)
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
200 |
apply (subgoal_tac "atom a \<notin> (fset (fmap atom fset))") |
2181
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
201 |
apply blast |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
202 |
apply (metis supp_finite_atom_set finite_fset) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
203 |
done |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
204 |
|
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
205 |
lemma subst_lemma: |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
206 |
shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow> |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
207 |
subst [(y, L)] (subst [(x, N)] M) = |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
208 |
subst [(x, (subst [(y, L)] N))] (subst [(y, L)] M)" |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
209 |
apply (induct M rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
210 |
apply (simp_all add: s1 s2) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
211 |
apply clarify |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
212 |
apply (subst (2) subst_ty) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
213 |
apply simp_all |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
214 |
done |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
215 |
|
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
216 |
lemma substs_lemma: |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
217 |
shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow> |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
218 |
substs [(y, L)] (substs [(x, N)] M) = |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
219 |
substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)" |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
220 |
apply (rule strong_induct[of |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
221 |
"\<lambda>a t. True" "\<lambda>(x, y, N, L) M. x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow> |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
222 |
substs [(y, L)] (substs [(x, N)] M) = |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
223 |
substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)" _ _ "(x, y, N, L)", simplified]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
224 |
apply clarify |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
225 |
apply (simp_all add: fresh_star_prod_elim fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
226 |
apply (subst s3) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
227 |
apply (unfold fresh_star_def)[1] |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
228 |
apply (simp add: fresh_Cons fresh_Nil fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
229 |
apply (subst s3) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
230 |
apply (unfold fresh_star_def)[1] |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
231 |
apply (simp add: fresh_Cons fresh_Nil fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
232 |
apply (subst s3) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
233 |
apply (unfold fresh_star_def)[1] |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
234 |
apply (simp add: fresh_Cons fresh_Nil fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
235 |
apply (subst s3) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
236 |
apply (unfold fresh_star_def)[1] |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
237 |
apply (simp add: fresh_Cons fresh_Nil fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
238 |
apply (rule ballI) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
239 |
apply (rule mp[OF subst_lemma_pre]) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
240 |
apply (simp add: fresh_Pair) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
241 |
apply (subst subst_lemma) |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
242 |
apply simp_all |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
243 |
done |
b997c22805ae
Substitution Lemma for TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2180
diff
changeset
|
244 |
|
2179
7687f97eca53
A lemma about substitution in TypeSchemes.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2120
diff
changeset
|
245 |
end |
1795 | 246 |
*) |
247 |
||
248 |
||
249 |
end |