1795
|
1 |
theory TypeSchemes
|
|
2 |
imports "../Parser"
|
|
3 |
begin
|
|
4 |
|
|
5 |
section {*** Type Schemes ***}
|
|
6 |
|
|
7 |
atom_decl name
|
|
8 |
|
|
9 |
ML {* val _ = alpha_type := AlphaRes *}
|
|
10 |
|
|
11 |
nominal_datatype ty =
|
|
12 |
Var "name"
|
|
13 |
| Fun "ty" "ty"
|
|
14 |
and tys =
|
|
15 |
All xs::"name fset" ty::"ty" bind xs in ty
|
|
16 |
|
|
17 |
lemmas ty_tys_supp = ty_tys.fv[simplified ty_tys.supp]
|
|
18 |
|
|
19 |
(* below we define manually the function for size *)
|
|
20 |
|
|
21 |
lemma size_eqvt_raw:
|
|
22 |
"size (pi \<bullet> t :: ty_raw) = size t"
|
|
23 |
"size (pi \<bullet> ts :: tys_raw) = size ts"
|
|
24 |
apply (induct rule: ty_raw_tys_raw.inducts)
|
|
25 |
apply simp_all
|
|
26 |
done
|
|
27 |
|
|
28 |
instantiation ty and tys :: size
|
|
29 |
begin
|
|
30 |
|
|
31 |
quotient_definition
|
|
32 |
"size_ty :: ty \<Rightarrow> nat"
|
|
33 |
is
|
|
34 |
"size :: ty_raw \<Rightarrow> nat"
|
|
35 |
|
|
36 |
quotient_definition
|
|
37 |
"size_tys :: tys \<Rightarrow> nat"
|
|
38 |
is
|
|
39 |
"size :: tys_raw \<Rightarrow> nat"
|
|
40 |
|
|
41 |
lemma size_rsp:
|
|
42 |
"alpha_ty_raw x y \<Longrightarrow> size x = size y"
|
|
43 |
"alpha_tys_raw a b \<Longrightarrow> size a = size b"
|
|
44 |
apply (induct rule: alpha_ty_raw_alpha_tys_raw.inducts)
|
|
45 |
apply (simp_all only: ty_raw_tys_raw.size)
|
|
46 |
apply (simp_all only: alphas)
|
|
47 |
apply clarify
|
|
48 |
apply (simp_all only: size_eqvt_raw)
|
|
49 |
done
|
|
50 |
|
|
51 |
lemma [quot_respect]:
|
|
52 |
"(alpha_ty_raw ===> op =) size size"
|
|
53 |
"(alpha_tys_raw ===> op =) size size"
|
|
54 |
by (simp_all add: size_rsp)
|
|
55 |
|
|
56 |
lemma [quot_preserve]:
|
|
57 |
"(rep_ty ---> id) size = size"
|
|
58 |
"(rep_tys ---> id) size = size"
|
|
59 |
by (simp_all add: size_ty_def size_tys_def)
|
|
60 |
|
|
61 |
instance
|
|
62 |
by default
|
|
63 |
|
|
64 |
end
|
|
65 |
|
|
66 |
thm ty_raw_tys_raw.size(4)[quot_lifted]
|
|
67 |
thm ty_raw_tys_raw.size(5)[quot_lifted]
|
|
68 |
thm ty_raw_tys_raw.size(6)[quot_lifted]
|
|
69 |
|
|
70 |
|
|
71 |
thm ty_tys.fv
|
|
72 |
thm ty_tys.eq_iff
|
|
73 |
thm ty_tys.bn
|
|
74 |
thm ty_tys.perm
|
|
75 |
thm ty_tys.inducts
|
|
76 |
thm ty_tys.distinct
|
|
77 |
|
|
78 |
ML {* Sign.of_sort @{theory} (@{typ ty}, @{sort fs}) *}
|
|
79 |
|
|
80 |
lemma strong_induct:
|
|
81 |
assumes a1: "\<And>name b. P b (Var name)"
|
|
82 |
and a2: "\<And>t1 t2 b. \<lbrakk>\<And>c. P c t1; \<And>c. P c t2\<rbrakk> \<Longrightarrow> P b (Fun t1 t2)"
|
|
83 |
and a3: "\<And>fset t b. \<lbrakk>\<And>c. P c t; fset_to_set (fmap atom fset) \<sharp>* b\<rbrakk> \<Longrightarrow> P' b (All fset t)"
|
|
84 |
shows "P (a :: 'a :: pt) t \<and> P' (d :: 'b :: {fs}) ts "
|
|
85 |
proof -
|
|
86 |
have " (\<forall>p a. P a (p \<bullet> t)) \<and> (\<forall>p d. P' d (p \<bullet> ts))"
|
|
87 |
apply (rule ty_tys.induct)
|
|
88 |
apply (simp add: a1)
|
|
89 |
apply (simp)
|
|
90 |
apply (rule allI)+
|
|
91 |
apply (rule a2)
|
|
92 |
apply simp
|
|
93 |
apply simp
|
|
94 |
apply (rule allI)
|
|
95 |
apply (rule allI)
|
|
96 |
apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (fset_to_set (fmap atom (p \<bullet> fset)))) \<sharp>* d \<and> supp (p \<bullet> All fset ty) \<sharp>* pa)")
|
|
97 |
apply clarify
|
|
98 |
apply(rule_tac t="p \<bullet> All fset ty" and
|
|
99 |
s="pa \<bullet> (p \<bullet> All fset ty)" in subst)
|
|
100 |
apply (rule supp_perm_eq)
|
|
101 |
apply assumption
|
|
102 |
apply (simp only: ty_tys.perm)
|
|
103 |
apply (rule a3)
|
|
104 |
apply(erule_tac x="(pa + p)" in allE)
|
|
105 |
apply simp
|
|
106 |
apply (simp add: eqvts eqvts_raw)
|
|
107 |
apply (rule at_set_avoiding2)
|
|
108 |
apply (simp add: fin_fset_to_set)
|
|
109 |
apply (simp add: finite_supp)
|
|
110 |
apply (simp add: eqvts finite_supp)
|
|
111 |
apply (subst atom_eqvt_raw[symmetric])
|
|
112 |
apply (subst fmap_eqvt[symmetric])
|
|
113 |
apply (subst fset_to_set_eqvt[symmetric])
|
|
114 |
apply (simp only: fresh_star_permute_iff)
|
|
115 |
apply (simp add: fresh_star_def)
|
|
116 |
apply clarify
|
|
117 |
apply (simp add: fresh_def)
|
|
118 |
apply (simp add: ty_tys_supp)
|
|
119 |
done
|
|
120 |
then have "P a (0 \<bullet> t) \<and> P' d (0 \<bullet> ts)" by blast
|
|
121 |
then show ?thesis by simp
|
|
122 |
qed
|
|
123 |
|
|
124 |
lemma
|
|
125 |
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))"
|
|
126 |
apply(simp add: ty_tys.eq_iff)
|
|
127 |
apply(rule_tac x="0::perm" in exI)
|
|
128 |
apply(simp add: alphas)
|
|
129 |
apply(simp add: fresh_star_def fresh_zero_perm)
|
|
130 |
done
|
|
131 |
|
|
132 |
lemma
|
|
133 |
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var b) (Var a))"
|
|
134 |
apply(simp add: ty_tys.eq_iff)
|
|
135 |
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
|
|
136 |
apply(simp add: alphas fresh_star_def eqvts)
|
|
137 |
done
|
|
138 |
|
|
139 |
lemma
|
|
140 |
shows "All {|a, b, c|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var a) (Var b))"
|
|
141 |
apply(simp add: ty_tys.eq_iff)
|
|
142 |
apply(rule_tac x="0::perm" in exI)
|
|
143 |
apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff)
|
|
144 |
done
|
|
145 |
|
|
146 |
lemma
|
|
147 |
assumes a: "a \<noteq> b"
|
|
148 |
shows "\<not>(All {|a, b|} (Fun (Var a) (Var b)) = All {|c|} (Fun (Var c) (Var c)))"
|
|
149 |
using a
|
|
150 |
apply(simp add: ty_tys.eq_iff)
|
|
151 |
apply(clarify)
|
|
152 |
apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff)
|
|
153 |
apply auto
|
|
154 |
done
|
|
155 |
|
|
156 |
(* PROBLEM:
|
|
157 |
Type schemes with separate datatypes
|
|
158 |
|
|
159 |
nominal_datatype T =
|
|
160 |
TVar "name"
|
|
161 |
| TFun "T" "T"
|
|
162 |
nominal_datatype TyS =
|
|
163 |
TAll xs::"name list" ty::"T" bind xs in ty
|
|
164 |
|
|
165 |
*** exception Datatype raised
|
|
166 |
*** (line 218 of "/usr/local/src/Isabelle_16-Mar-2010/src/HOL/Tools/Datatype/datatype_aux.ML")
|
|
167 |
*** At command "nominal_datatype".
|
|
168 |
*)
|
|
169 |
|
|
170 |
|
|
171 |
end
|