introduced a general procedure for structural inductions; simplified reflexivity proof
--- a/IsaMakefile Sat Sep 18 06:09:43 2010 +0800
+++ b/IsaMakefile Mon Sep 20 21:52:45 2010 +0800
@@ -20,8 +20,8 @@
tests: $(LOG)/HOL-Nominal2.gz
-#$(LOG)/HOL-Nominal2.gz: Nominal/ROOT.ML Nominal/*.thy
-# @cd Nominal; $(USEDIR) -b -d "" HOL Nominal
+$(LOG)/HOL-Nominal2.gz: Nominal/ROOT.ML Nominal/*.thy
+ @cd Nominal; $(USEDIR) -b -d "" HOL Nominal
## Nominal2 Paper
--- a/Nominal-General/nominal_library.ML Sat Sep 18 06:09:43 2010 +0800
+++ b/Nominal-General/nominal_library.ML Mon Sep 20 21:52:45 2010 +0800
@@ -6,6 +6,8 @@
signature NOMINAL_LIBRARY =
sig
+ val is_true: term -> bool
+
val last2: 'a list -> 'a * 'a
val dest_listT: typ -> typ
@@ -87,6 +89,9 @@
structure Nominal_Library: NOMINAL_LIBRARY =
struct
+fun is_true @{term "Trueprop True"} = true
+ | is_true _ = false
+
fun last2 [] = raise Empty
| last2 [_] = raise Empty
| last2 [x, y] = (x, y)
@@ -256,7 +261,7 @@
SumTree.mk_sumcase fT sT @{typ nat} (mk_size_measure fT) (mk_size_measure sT)
| mk_size_measure T = size_const T
- val ((_ $ (_ $ rel)) :: tl) = prems_of st
+ val ((_ $ (_ $ rel)) :: _) = prems_of st
val measure_trm =
fastype_of rel
|> HOLogic.dest_setT
@@ -324,7 +329,7 @@
R ... /\ P ...; split_conj_i picks out
the part R or P part
*)
-fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ f2) =
+fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ _) =
(case head_of f1 of
Const (name, _) => if member (op =) names name then SOME f1 else NONE
| _ => NONE)
--- a/Nominal/Ex/CoreHaskell.thy Sat Sep 18 06:09:43 2010 +0800
+++ b/Nominal/Ex/CoreHaskell.thy Mon Sep 20 21:52:45 2010 +0800
@@ -8,7 +8,7 @@
atom_decl cvar
atom_decl tvar
-declare [[STEPS = 100]]
+declare [[STEPS = 31]]
nominal_datatype core_haskell:
tkind =
--- a/Nominal/Ex/ExPS7.thy Sat Sep 18 06:09:43 2010 +0800
+++ b/Nominal/Ex/ExPS7.thy Mon Sep 20 21:52:45 2010 +0800
@@ -6,6 +6,8 @@
atom_decl name
+declare [[STEPS = 31]]
+
nominal_datatype exp =
Var name
| Unit
--- a/Nominal/Ex/Modules.thy Sat Sep 18 06:09:43 2010 +0800
+++ b/Nominal/Ex/Modules.thy Mon Sep 20 21:52:45 2010 +0800
@@ -7,6 +7,9 @@
atom_decl name
+declare [[STEPS = 31]]
+
+
nominal_datatype modules:
mexp =
Acc "path"
--- a/Nominal/Ex/TypeSchemes.thy Sat Sep 18 06:09:43 2010 +0800
+++ b/Nominal/Ex/TypeSchemes.thy Mon Sep 20 21:52:45 2010 +0800
@@ -46,6 +46,7 @@
thm tys2.fsupp
+
text {* *}
(*
--- a/Nominal/nominal_dt_alpha.ML Sat Sep 18 06:09:43 2010 +0800
+++ b/Nominal/nominal_dt_alpha.ML Mon Sep 20 21:52:45 2010 +0800
@@ -16,6 +16,9 @@
val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list ->
thm list -> thm list
+ val induct_prove: typ list -> (typ * (term -> term)) list -> thm ->
+ (Proof.context -> int -> tactic) -> Proof.context -> thm list
+
val alpha_prove: term list -> (term * ((term * term) -> term)) list -> thm ->
(Proof.context -> int -> tactic) -> Proof.context -> thm list
@@ -351,10 +354,44 @@
end
-(** proof by induction over the alpha-definitions **)
+(** proof by induction over types **)
+
+fun induct_prove tys props induct_thm cases_tac ctxt =
+ let
+ val (arg_names, ctxt') =
+ Variable.variant_fixes (replicate (length tys) "x") ctxt
+
+ val args = map2 (curry Free) arg_names tys
-fun is_true @{term "Trueprop True"} = true
- | is_true _ = false
+ val true_trms = replicate (length tys) (K @{term True})
+
+ fun apply_all x fs = map (fn f => f x) fs
+
+ val goals =
+ group (props @ (tys ~~ true_trms))
+ |> map snd
+ |> map2 apply_all args
+ |> map fold_conj
+ |> foldr1 HOLogic.mk_conj
+ |> HOLogic.mk_Trueprop
+
+ fun tac ctxt =
+ HEADGOAL
+ (DETERM o (rtac induct_thm)
+ THEN_ALL_NEW
+ (REPEAT_ALL_NEW (FIRST' [resolve_tac @{thms TrueI conjI}, cases_tac ctxt])))
+ in
+ Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
+ |> singleton (ProofContext.export ctxt' ctxt)
+ |> Datatype_Aux.split_conj_thm
+ |> map Datatype_Aux.split_conj_thm
+ |> flat
+ |> filter_out (is_true o concl_of)
+ |> map zero_var_indexes
+ end
+
+
+(** proof by induction over the alpha-definitions **)
fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
let
@@ -397,8 +434,8 @@
|> map (fn th => th RS mp)
|> map Datatype_Aux.split_conj_thm
|> flat
+ |> filter_out (is_true o concl_of)
|> map zero_var_indexes
- |> filter_out (is_true o concl_of)
end
@@ -406,7 +443,7 @@
val exi_zero = @{lemma "P (0::perm) ==> (? x. P x)" by auto}
-fun cases_tac intros =
+fun cases_tac intros ctxt =
let
val prod_simps = @{thms split_conv prod_alpha_def prod_rel.simps}
@@ -417,8 +454,7 @@
resolve_tac @{thms alpha_refl},
asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
in
- REPEAT o FIRST' [rtac @{thm conjI},
- resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]]
+ resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]
end
fun raw_prove_refl alpha_trms alpha_bns alpha_intros raw_dt_induct ctxt =
@@ -427,27 +463,17 @@
alpha_trms
|> map fastype_of
|> map domain_type
+
val arg_bn_tys =
alpha_bns
|> map fastype_of
|> map domain_type
- val arg_names = Datatype_Prop.make_tnames arg_tys
- val arg_bn_names = map (lookup (arg_tys ~~ arg_names)) arg_bn_tys
- val args = map Free (arg_names ~~ arg_tys)
- val arg_bns = map Free (arg_bn_names ~~ arg_bn_tys)
- val goal =
- group ((arg_bns ~~ alpha_bns) @ (args ~~ alpha_trms))
- |> map (fn (ar, cnsts) => map (fn c => c $ ar $ ar) cnsts)
- |> map (foldr1 HOLogic.mk_conj)
- |> foldr1 HOLogic.mk_conj
- |> HOLogic.mk_Trueprop
+
+ val props =
+ map (fn (ty, c) => (ty, fn x => c $ x $ x))
+ ((arg_tys ~~ alpha_trms) @ (arg_bn_tys ~~ alpha_bns))
in
- Goal.prove ctxt arg_names [] goal
- (fn {context, ...} =>
- HEADGOAL (DETERM o (rtac raw_dt_induct) THEN_ALL_NEW cases_tac alpha_intros))
- |> Datatype_Aux.split_conj_thm
- |> map Datatype_Aux.split_conj_thm
- |> flat
+ induct_prove arg_tys props raw_dt_induct (cases_tac alpha_intros) ctxt
end