A lemma about substitution in TypeSchemes.
--- a/Nominal/Ex/TypeSchemes.thy Tue May 25 17:01:37 2010 +0200
+++ b/Nominal/Ex/TypeSchemes.thy Tue May 25 17:09:29 2010 +0200
@@ -152,6 +152,53 @@
apply auto
done
+fun
+ lookup :: "(name \<times> ty) list \<Rightarrow> name \<Rightarrow> ty"
+where
+ "lookup [] n = Var n"
+| "lookup ((p, s) # t) n = (if p = n then s else lookup t n)"
+
+locale subst_loc =
+fixes
+ subst :: "(name \<times> ty) list \<Rightarrow> ty \<Rightarrow> ty"
+and substs :: "(name \<times> ty) list \<Rightarrow> tys \<Rightarrow> tys"
+assumes
+ s1: "subst \<theta> (Var n) = lookup \<theta> n"
+and s2: "subst \<theta> (Fun l r) = Fun (subst \<theta> l) (subst \<theta> r)"
+and s3: "fset_to_set (fmap atom xs) \<sharp>* \<theta> \<Longrightarrow> substs \<theta> (All xs t) = All xs (subst \<theta> t)"
+begin
+
+lemma subst_ty:
+ assumes x: "atom x \<sharp> t"
+ shows "subst [(x, S)] t = t"
+ using x
+ apply (induct t rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
+ by (simp_all add: s1 s2 fresh_def ty_tys.fv[simplified ty_tys.supp] supp_at_base)
+
+lemma subst_tyS:
+ shows "atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T"
+ apply (rule strong_induct[of
+ "\<lambda>a t. True" "\<lambda>d T. (atom (fst d) \<sharp> T \<longrightarrow> substs [d] T = T)" _ "t" "(x, S)", simplified])
+ apply (rule impI)
+ apply (subst s3)
+ apply (simp add: fresh_star_def fresh_Cons fresh_Nil)
+ apply (case_tac b)
+ apply clarify
+ apply (subst subst_ty)
+ apply simp_all
+ apply (simp add: fresh_star_prod)
+ apply clarify
+ apply (thin_tac "fset_to_set (fmap atom fset) \<sharp>* ba")
+ apply (drule fresh_star_atom)
+ apply (unfold fresh_def)
+ apply (simp only: ty_tys.fv[simplified ty_tys.supp])
+ apply (subgoal_tac "atom aa \<notin> fset_to_set (fmap atom fset)")
+ apply blast
+ apply (metis supp_finite_atom_set finite_fset)
+ done
+
+end
+
(* PROBLEM:
Type schemes with separate datatypes