Nominal/Ex/TypeSchemes.thy
changeset 2179 7687f97eca53
parent 2120 2786ff1df475
child 2180 d8750d1aaed9
equal deleted inserted replaced
2178:e559513143e9 2179:7687f97eca53
   150   apply(clarify)
   150   apply(clarify)
   151   apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff supp_at_base)
   151   apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff supp_at_base)
   152   apply auto
   152   apply auto
   153   done
   153   done
   154 
   154 
       
   155 fun
       
   156   lookup :: "(name \<times> ty) list \<Rightarrow> name \<Rightarrow> ty"
       
   157 where
       
   158   "lookup [] n = Var n"
       
   159 | "lookup ((p, s) # t) n = (if p = n then s else lookup t n)"
       
   160 
       
   161 locale subst_loc =
       
   162 fixes
       
   163     subst  :: "(name \<times> ty) list \<Rightarrow> ty \<Rightarrow> ty"
       
   164 and substs :: "(name \<times> ty) list \<Rightarrow> tys \<Rightarrow> tys"
       
   165 assumes
       
   166     s1: "subst \<theta> (Var n) = lookup \<theta> n"
       
   167 and s2: "subst \<theta> (Fun l r) = Fun (subst \<theta> l) (subst \<theta> r)"
       
   168 and s3: "fset_to_set (fmap atom xs) \<sharp>* \<theta> \<Longrightarrow> substs \<theta> (All xs t) = All xs (subst \<theta> t)"
       
   169 begin
       
   170 
       
   171 lemma subst_ty:
       
   172   assumes x: "atom x \<sharp> t"
       
   173   shows "subst [(x, S)] t = t"
       
   174   using x
       
   175   apply (induct t rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
       
   176   by (simp_all add: s1 s2 fresh_def ty_tys.fv[simplified ty_tys.supp] supp_at_base)
       
   177 
       
   178 lemma subst_tyS:
       
   179   shows "atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T"
       
   180   apply (rule strong_induct[of
       
   181     "\<lambda>a t. True" "\<lambda>d T. (atom (fst d) \<sharp> T \<longrightarrow> substs [d] T = T)" _ "t" "(x, S)", simplified])
       
   182   apply (rule impI)
       
   183   apply (subst s3)
       
   184   apply (simp add: fresh_star_def fresh_Cons fresh_Nil)
       
   185   apply (case_tac b)
       
   186   apply clarify
       
   187   apply (subst subst_ty)
       
   188   apply simp_all
       
   189   apply (simp add: fresh_star_prod)
       
   190   apply clarify
       
   191   apply (thin_tac "fset_to_set (fmap atom fset) \<sharp>* ba")
       
   192   apply (drule fresh_star_atom)
       
   193   apply (unfold fresh_def)
       
   194   apply (simp only: ty_tys.fv[simplified ty_tys.supp])
       
   195   apply (subgoal_tac "atom aa \<notin> fset_to_set (fmap atom fset)")
       
   196   apply blast
       
   197   apply (metis supp_finite_atom_set finite_fset)
       
   198   done
       
   199 
       
   200 end
       
   201 
   155 (* PROBLEM:
   202 (* PROBLEM:
   156 Type schemes with separate datatypes
   203 Type schemes with separate datatypes
   157 
   204 
   158 nominal_datatype T =
   205 nominal_datatype T =
   159   TVar "name"
   206   TVar "name"