thys/turing_hoare.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Mon, 28 Jan 2013 02:38:57 +0000
changeset 93 f2bda6ba4952
parent 71 8c7f10b3da7b
child 94 aeaf1374dc67
permissions -rwxr-xr-x
updated paper
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
theory turing_hoare
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
imports turing_basic
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
begin
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 56
diff changeset
     5
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
type_synonym assert = "tape \<Rightarrow> bool"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
definition 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
  assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
where
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
  "P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
fun 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
  holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
where
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
  "P holds_for (s, l, r) = P (l, r)"  
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
lemma is_final_holds[simp]:
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
  assumes "is_final c"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    20
  shows "Q holds_for (steps c p n) = Q holds_for c"
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
using assms 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
apply(induct n)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
apply(auto)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
apply(case_tac [!] c)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
apply(auto)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
done
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    28
(* Hoare Rules *)
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    29
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    30
(* halting case *)
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    31
definition
93
f2bda6ba4952 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 71
diff changeset
    32
  Hoare_halt :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    33
where
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    34
  "{P} p {Q} \<equiv> \<forall>tp. P tp \<longrightarrow> (\<exists>n. is_final (steps0 (1, tp) p n) \<and> Q holds_for (steps0 (1, tp) p n))"
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    35
93
f2bda6ba4952 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 71
diff changeset
    36
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    37
(* not halting case *)
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    38
definition
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    39
  Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" [50, 49] 50)
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    40
where
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    41
  "{P} p \<up> \<equiv> \<forall>tp. P tp \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, tp) p n)))"
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    42
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    43
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    44
lemma Hoare_haltI:
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    45
  assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    46
  shows "{P} p {Q}"
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    47
unfolding Hoare_halt_def 
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    48
using assms by auto
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    49
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    50
lemma Hoare_unhaltI:
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    51
  assumes "\<And>l r n. P (l, r) \<Longrightarrow> \<not> is_final (steps0 (1, (l, r)) p n)"
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    52
  shows "{P} p \<up>"
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    53
unfolding Hoare_unhalt_def 
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    54
using assms by auto
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    55
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    56
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    57
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
text {*
63
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    60
  {P1} A {Q1}   {P2} B {Q2}  Q1 \<mapsto> P2   A well-formed
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    61
  ---------------------------------------------------
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
  {P1} A |+| B {Q2}
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
*}
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    66
lemma Hoare_plus_halt [case_names A_halt B_halt Imp A_wf]: 
63
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    67
  assumes A_halt : "{P1} A {Q1}"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    68
  and B_halt : "{P2} B {Q2}"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    69
  and a_imp: "Q1 \<mapsto> P2"
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
  and A_wf : "tm_wf (A, 0)"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
  shows "{P1} A |+| B {Q2}"
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    72
proof(rule Hoare_haltI)
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
  fix l r
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
  assume h: "P1 (l, r)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    75
  then obtain n1 l' r' 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    76
    where "is_final (steps0 (1, l, r) A n1)"  
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    77
      and a1: "Q1 holds_for (steps0 (1, l, r) A n1)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    78
      and a2: "steps0 (1, l, r) A n1 = (0, l', r')"
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    79
    using A_halt unfolding Hoare_halt_def
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    80
    by (metis is_final_eq surj_pair) 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    81
  then obtain n2 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    82
    where "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    83
    using A_wf by (rule_tac tm_comp_pre_halt_same) 
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
  moreover
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    85
  from a1 a2 a_imp have "P2 (l', r')" by (simp add: assert_imp_def)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    86
  then obtain n3 l'' r''
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    87
    where "is_final (steps0 (1, l', r') B n3)" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    88
    and b1: "Q2 holds_for (steps0 (1, l', r') B n3)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    89
    and b2: "steps0 (1, l', r') B n3 = (0, l'', r'')"
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    90
    using B_halt unfolding Hoare_halt_def 
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    91
    by (metis is_final_eq surj_pair) 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    92
  then have "steps0 (Suc (length A div 2), l', r')  (A |+| B) n3 = (0, l'', r'')"
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
    93
    using A_wf by (rule_tac tm_comp_second_halt_same) 
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
  ultimately show 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
    "\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> Q2 holds_for (steps0 (1, l, r) (A |+| B) n)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    96
    using b1 b2 by (rule_tac x = "n2 + n3" in exI) (simp)
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
qed
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
64
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
    99
lemma Hoare_plus_halt_simple [case_names A_halt B_halt A_wf]: 
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   100
  assumes A_halt : "{P1} A {P2}"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   101
  and B_halt : "{P2} B {P3}"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   102
  and A_wf : "tm_wf (A, 0)"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   103
  shows "{P1} A |+| B {P3}"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   104
by (rule Hoare_plus_halt[OF A_halt B_halt _ A_wf])
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   105
   (simp add: assert_imp_def)
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   106
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   107
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   109
text {*
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   110
  {P1} A {Q1}   {P2} B loops    Q1 \<mapsto> P2   A well-formed
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   111
  ------------------------------------------------------
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   112
          {P1} A |+| B  loops
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   113
*}
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
   115
lemma Hoare_plus_unhalt [case_names A_halt B_unhalt Imp A_wf]:
63
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
   116
  assumes A_halt: "{P1} A {Q1}"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
   117
  and B_uhalt: "{P2} B \<up>"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
   118
  and a_imp: "Q1 \<mapsto> P2"
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
  and A_wf : "tm_wf (A, 0)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   120
  shows "{P1} (A |+| B) \<up>"
64
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   121
proof(rule_tac Hoare_unhaltI)
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   122
  fix n l r 
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
  assume h: "P1 (l, r)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   124
  then obtain n1 l' r'
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   125
    where a: "is_final (steps0 (1, l, r) A n1)" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   126
    and b: "Q1 holds_for (steps0 (1, l, r) A n1)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   127
    and c: "steps0 (1, l, r) A n1 = (0, l', r')"
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
   128
    using A_halt unfolding Hoare_halt_def 
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   129
    by (metis is_final_eq surj_pair) 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   130
  then obtain n2 where eq: "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   131
    using A_wf by (rule_tac tm_comp_pre_halt_same)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   132
  then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   133
  proof(cases "n2 \<le> n")
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   134
    case True
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   135
    from b c a_imp have "P2 (l', r')" by (simp add: assert_imp_def)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   136
    then have "\<forall> n. \<not> is_final (steps0 (1, l', r') B n)  "
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   137
      using B_uhalt unfolding Hoare_unhalt_def by simp
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   138
    then have "\<not> is_final (steps0 (Suc 0, l', r') B (n - n2))" by auto
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   139
    then obtain s'' l'' r'' 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   140
      where "steps0 (Suc 0, l', r') B (n - n2) = (s'', l'', r'')" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   141
      and "\<not> is_final (s'', l'', r'')" by (metis surj_pair)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   142
    then have "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - n2) = (s''+ length A div 2, l'', r'')"
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
   143
      using A_wf by (auto dest: tm_comp_second_same simp del: tm_wf.simps)
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   144
    then have "\<not> is_final (steps0 (1, l, r) (A |+| B) (n2 + (n  - n2)))"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   145
      using A_wf by (simp only: steps_add eq) (simp add: tm_wf.simps)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   146
    then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   147
      using `n2 \<le> n` by simp
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   148
  next 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   149
    case False
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   150
    then obtain n3 where "n = n2 - n3"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   151
      by (metis diff_le_self le_imp_diff_is_add nat_add_commute nat_le_linear)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   152
    moreover
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   153
    with eq show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   154
      by (simp add: not_is_final[where ?n1.0="n2"])
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   155
  qed
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
qed
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
64
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   158
lemma Hoare_plus_unhalt_simple [case_names A_halt B_unhalt A_wf]: 
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   159
 assumes A_halt: "{P1} A {P2}"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   160
  and B_uhalt: "{P2} B \<up>"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   161
  and A_wf : "tm_wf (A, 0)"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   162
  shows "{P1} (A |+| B) \<up>"
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   163
by (rule Hoare_plus_unhalt[OF A_halt B_uhalt _ A_wf])
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   164
   (simp add: assert_imp_def)
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   165
5c74f6b38a63 updated h_uh proof in uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   166
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
   167
lemma Hoare_weaken:
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   168
  assumes a: "{P} p {Q}"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
  and b: "P' \<mapsto> P" 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
  and c: "Q \<mapsto> Q'"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
  shows "{P'} p {Q'}"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
using assms
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 64
diff changeset
   173
unfolding Hoare_halt_def assert_imp_def
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   174
by (metis holds_for.simps surj_pair)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   175
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   176
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
end