thys/turing_hoare.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 23 Jan 2013 08:01:35 +0100
changeset 63 35fe8fe12e65
parent 62 e33306b4c62e
child 64 5c74f6b38a63
permissions -rwxr-xr-x
small updates
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
theory turing_hoare
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
imports turing_basic
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
begin
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 56
diff changeset
     5
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
type_synonym assert = "tape \<Rightarrow> bool"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
definition 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
  assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
where
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
  "P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
fun 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
  holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
where
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
  "P holds_for (s, l, r) = P (l, r)"  
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    18
(* halting case *)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    19
definition
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    20
  Hoare :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" [50, 49] 50)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    21
where
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    22
  "{P} p {Q} \<equiv> 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    23
     (\<forall>tp. P tp \<longrightarrow> (\<exists>n. is_final (steps0 (1, tp) p n) \<and> Q holds_for (steps0 (1, tp) p n)))"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    24
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    25
(* not halting case *)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    26
definition
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    27
  Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" [50, 49] 50)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    28
where
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    29
  "{P} p \<up> \<equiv> (\<forall>tp. P tp \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, tp) p n))))"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    30
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    31
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    32
lemma HoareI:
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    33
  assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    34
  shows "{P} p {Q}"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    35
unfolding Hoare_def 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    36
using assms by auto
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    37
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    38
lemma Hoare_unhalt_I:
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    39
  assumes "\<And>l r n. P (l, r) \<Longrightarrow> \<not> is_final (steps0 (1, (l, r)) p n)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    40
  shows "{P} p \<up>"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    41
unfolding Hoare_unhalt_def 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    42
using assms by auto
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    43
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
lemma is_final_holds[simp]:
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
  assumes "is_final c"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    46
  shows "Q holds_for (steps c p n) = Q holds_for c"
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
using assms 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
apply(induct n)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
apply(auto)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
apply(case_tac [!] c)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
apply(auto)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
done
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
text {*
63
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    56
  {P1} A {Q1}   {P2} B {Q2}  Q1 \<mapsto> P2   A well-formed
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    57
  ---------------------------------------------------
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
  {P1} A |+| B {Q2}
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
*}
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
lemma Hoare_plus_halt: 
63
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    63
  assumes A_halt : "{P1} A {Q1}"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    64
  and B_halt : "{P2} B {Q2}"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
    65
  and a_imp: "Q1 \<mapsto> P2"
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
  and A_wf : "tm_wf (A, 0)"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
  shows "{P1} A |+| B {Q2}"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
proof(rule HoareI)
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
  fix l r
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
  assume h: "P1 (l, r)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    71
  then obtain n1 l' r' 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    72
    where "is_final (steps0 (1, l, r) A n1)"  
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    73
      and a1: "Q1 holds_for (steps0 (1, l, r) A n1)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    74
      and a2: "steps0 (1, l, r) A n1 = (0, l', r')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    75
    using A_halt unfolding Hoare_def
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    76
    by (metis is_final_eq surj_pair) 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    77
  then obtain n2 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    78
    where "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    79
    using A_wf by (rule_tac tm_comp_pre_halt_same) 
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
  moreover
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    81
  from a1 a2 a_imp have "P2 (l', r')" by (simp add: assert_imp_def)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    82
  then obtain n3 l'' r''
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    83
    where "is_final (steps0 (1, l', r') B n3)" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    84
    and b1: "Q2 holds_for (steps0 (1, l', r') B n3)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    85
    and b2: "steps0 (1, l', r') B n3 = (0, l'', r'')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    86
    using B_halt unfolding Hoare_def 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    87
    by (metis is_final_eq surj_pair) 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    88
  then have "steps0 (Suc (length A div 2), l', r')  (A |+| B) n3 = (0, l'', r'')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    89
    using A_wf by (rule_tac t_merge_second_halt_same) 
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
  ultimately show 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
    "\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> Q2 holds_for (steps0 (1, l, r) (A |+| B) n)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    92
    using b1 b2 by (rule_tac x = "n2 + n3" in exI) (simp)
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
qed
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    96
text {*
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    97
  {P1} A {Q1}   {P2} B loops    Q1 \<mapsto> P2   A well-formed
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    98
  ------------------------------------------------------
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
    99
          {P1} A |+| B  loops
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   100
*}
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
62
e33306b4c62e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 61
diff changeset
   102
e33306b4c62e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 61
diff changeset
   103
e33306b4c62e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 61
diff changeset
   104
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
lemma Hoare_plus_unhalt:
63
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
   106
  assumes A_halt: "{P1} A {Q1}"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
   107
  and B_uhalt: "{P2} B \<up>"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 62
diff changeset
   108
  and a_imp: "Q1 \<mapsto> P2"
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
  and A_wf : "tm_wf (A, 0)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   110
  shows "{P1} (A |+| B) \<up>"
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
proof(rule_tac Hoare_unhalt_I)
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   112
  fix n l r 
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
  assume h: "P1 (l, r)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   114
  then obtain n1 l' r'
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   115
    where a: "is_final (steps0 (1, l, r) A n1)" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   116
    and b: "Q1 holds_for (steps0 (1, l, r) A n1)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   117
    and c: "steps0 (1, l, r) A n1 = (0, l', r')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   118
    using A_halt unfolding Hoare_def 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   119
    by (metis is_final_eq surj_pair) 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   120
  then obtain n2 where eq: "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   121
    using A_wf by (rule_tac tm_comp_pre_halt_same)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   122
  then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   123
  proof(cases "n2 \<le> n")
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   124
    case True
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   125
    from b c a_imp have "P2 (l', r')" by (simp add: assert_imp_def)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   126
    then have "\<forall> n. \<not> is_final (steps0 (1, l', r') B n)  "
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   127
      using B_uhalt unfolding Hoare_unhalt_def by simp
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   128
    then have "\<not> is_final (steps0 (Suc 0, l', r') B (n - n2))" by auto
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   129
    then obtain s'' l'' r'' 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   130
      where "steps0 (Suc 0, l', r') B (n - n2) = (s'', l'', r'')" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   131
      and "\<not> is_final (s'', l'', r'')" by (metis surj_pair)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   132
    then have "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - n2) = (s''+ length A div 2, l'', r'')"
62
e33306b4c62e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 61
diff changeset
   133
      using A_wf by (auto dest: t_merge_second_same simp del: tm_wf.simps)
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   134
    then have "\<not> is_final (steps0 (1, l, r) (A |+| B) (n2 + (n  - n2)))"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   135
      using A_wf by (simp only: steps_add eq) (simp add: tm_wf.simps)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   136
    then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)" 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   137
      using `n2 \<le> n` by simp
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   138
  next 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   139
    case False
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   140
    then obtain n3 where "n = n2 - n3"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   141
      by (metis diff_le_self le_imp_diff_is_add nat_add_commute nat_le_linear)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   142
    moreover
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   143
    with eq show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   144
      by (simp add: not_is_final[where ?n1.0="n2"])
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
  qed
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
qed
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
lemma Hoare_weak:
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
  assumes a: "{P} p {Q}"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
  and b: "P' \<mapsto> P" 
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
  and c: "Q \<mapsto> Q'"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
  shows "{P'} p {Q'}"
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
using assms
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
unfolding Hoare_def assert_imp_def
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   155
by (metis holds_for.simps surj_pair)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   156
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   157
55
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
cd4ef33c8fb1 added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
end