thys/turing_hoare.thy
changeset 55 cd4ef33c8fb1
child 56 0838b0ac52ab
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/turing_hoare.thy	Sat Jan 19 14:44:07 2013 +0000
@@ -0,0 +1,173 @@
+theory turing_hoare
+imports turing_basic
+begin
+
+
+
+type_synonym assert = "tape \<Rightarrow> bool"
+
+definition 
+  assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
+where
+  "P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
+
+
+
+fun 
+  holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
+where
+  "P holds_for (s, l, r) = P (l, r)"  
+
+lemma is_final_holds[simp]:
+  assumes "is_final c"
+  shows "Q holds_for (steps c (p, off) n) = Q holds_for c"
+using assms 
+apply(induct n)
+apply(auto)
+apply(case_tac [!] c)
+apply(auto)
+done
+
+lemma holds_for_imp:
+  assumes "P holds_for c"
+  and "P \<mapsto> Q"
+  shows "Q holds_for c"
+using assms unfolding assert_imp_def 
+by (case_tac c) (auto)
+
+definition
+  Hoare :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
+where
+  "{P} p {Q} \<equiv> 
+     (\<forall>l r. P (l, r) \<longrightarrow> (\<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)))"
+
+lemma HoareI:
+  assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
+  shows "{P} p {Q}"
+unfolding Hoare_def using assms by auto
+
+
+text {*
+  {P1} A {Q1}   {P2} B {Q2}  Q1 \<mapsto> P2
+  -----------------------------------
+  {P1} A |+| B {Q2}
+*}
+
+
+lemma Hoare_plus_halt: 
+  assumes aimpb: "Q1 \<mapsto> P2"
+  and A_wf : "tm_wf (A, 0)"
+  and B_wf : "tm_wf (B, 0)"
+  and A_halt : "{P1} A {Q1}"
+  and B_halt : "{P2} B {Q2}"
+  shows "{P1} A |+| B {Q2}"
+proof(rule HoareI)
+  fix l r
+  assume h: "P1 (l, r)"
+  then obtain n1 
+    where "is_final (steps0 (1, l, r) A n1)" and "Q1 holds_for (steps0 (1, l, r) A n1)"
+    using A_halt unfolding Hoare_def by auto
+  then obtain l' r' where "steps0 (1, l, r) A n1 = (0, l', r')" and c: "Q1 holds_for (0, l', r')"
+    by(case_tac "steps0 (1, l, r) A n1") (auto)
+  then obtain stpa where d: "steps0 (1, l, r) (A |+| B) stpa = (Suc (length A div 2), l', r')"
+    using A_wf by(rule_tac t_merge_pre_halt_same) (auto)
+  moreover
+  from c aimpb have "P2 holds_for (0, l', r')"
+    by (rule holds_for_imp)
+  then have "P2 (l', r')" by auto
+  then obtain n2 
+    where "is_final (steps0 (1, l', r') B n2)" and "Q2 holds_for (steps0 (1, l', r') B n2)"
+    using B_halt unfolding Hoare_def by auto
+  then obtain l'' r'' where "steps0 (1, l', r') B n2 = (0, l'', r'')" and g: "Q2 holds_for (0, l'', r'')"
+    by (case_tac "steps0 (1, l', r') B n2", auto)
+  then have "steps0 (Suc (length A div 2), l', r')  (A |+| B) n2 = (0, l'', r'')"
+    by (rule_tac t_merge_second_halt_same) (auto simp: A_wf B_wf)
+  ultimately show 
+    "\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> Q2 holds_for (steps0 (1, l, r) (A |+| B) n)"
+    using g
+    apply(rule_tac x = "stpa + n2" in exI)
+    apply(simp add: steps_add)
+    done
+qed
+
+definition
+  Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_))" 50)
+where
+  "{P} p \<equiv> 
+     (\<forall>l r. P (l, r) \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, (l, r)) p n))))"
+
+lemma Hoare_unhalt_I:
+  assumes "\<And>l r. P (l, r) \<Longrightarrow> \<forall> n. \<not> is_final (steps0 (1, (l, r)) p n)"
+  shows "{P} p"
+unfolding Hoare_unhalt_def using assms by auto
+
+lemma Hoare_plus_unhalt:
+  fixes A B :: tprog0 
+  assumes aimpb: "Q1 \<mapsto> P2"
+  and A_wf : "tm_wf (A, 0)"
+  and B_wf : "tm_wf (B, 0)"
+  and A_halt : "{P1} A {Q1}"
+  and B_uhalt : "{P2} B"
+  shows "{P1} (A |+| B)"
+proof(rule_tac Hoare_unhalt_I)
+  fix l r
+  assume h: "P1 (l, r)"
+  then obtain n1 where a: "is_final (steps0 (1, l, r) A n1)" and b: "Q1 holds_for (steps0 (1, l, r) A n1)"
+    using A_halt unfolding Hoare_def by auto
+  then obtain l' r' where "steps0 (1, l, r) A n1 = (0, l', r')" and c: "Q1 holds_for (0, l', r')"
+    by(case_tac "steps0 (1, l, r) A n1", auto)
+  then obtain stpa where d: "steps0 (1, l, r) (A |+| B) stpa = (Suc (length A div 2), l', r')"
+    using A_wf
+    by(rule_tac t_merge_pre_halt_same, auto)
+  from c aimpb have "P2 holds_for (0, l', r')"
+    by(rule holds_for_imp)
+  from this have "P2 (l', r')" by auto
+  from this have e: "\<forall> n. \<not> is_final (steps0 (Suc 0, l', r') B n)  "
+    using B_uhalt unfolding Hoare_unhalt_def
+    by auto
+  from e show "\<forall>n. \<not> is_final (steps0 (1, l, r) (A |+| B) n)"
+  proof(rule_tac allI, case_tac "n > stpa")
+    fix n
+    assume h2: "stpa < n"
+    hence "\<not> is_final (steps0 (Suc 0, l', r') B (n - stpa))"
+      using e
+      apply(erule_tac x = "n - stpa" in allE) by simp
+    then obtain s'' l'' r'' where f: "steps0 (Suc 0, l', r') B (n - stpa) = (s'', l'', r'')" and g: "s'' \<noteq> 0"
+      apply(case_tac "steps0 (Suc 0, l', r') B (n - stpa)", auto)
+      done
+    have k: "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - stpa) = (s''+ length A div 2, l'', r'') "
+      using A_wf B_wf f g
+      apply(drule_tac t_merge_second_same, auto)
+      done
+    show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
+    proof -
+      have "\<not> is_final (steps0 (1, l, r) (A |+| B) (stpa + (n  - stpa)))"
+        using d k A_wf
+        apply(simp only: steps_add d, simp add: tm_wf.simps)
+        done
+      thus "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
+        using h2 by simp
+    qed
+  next
+    fix n
+    assume h2: "\<not> stpa < n"
+    with d show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
+      apply(auto)
+      apply(subgoal_tac "\<exists> d. stpa = n + d", auto)
+      apply(case_tac "(steps0 (Suc 0, l, r) (A |+| B) n)", simp)
+      apply(rule_tac x = "stpa - n" in exI, simp)
+      done
+  qed
+qed
+
+lemma Hoare_weak:
+  fixes p::tprog0
+  assumes a: "{P} p {Q}"
+  and b: "P' \<mapsto> P" 
+  and c: "Q \<mapsto> Q'"
+  shows "{P'} p {Q'}"
+using assms
+unfolding Hoare_def assert_imp_def
+by (blast intro: holds_for_imp[simplified assert_imp_def])
+
+end
\ No newline at end of file