thys/Turing.thy
author Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
Wed, 19 Dec 2018 16:10:58 +0100
changeset 288 a9003e6d0463
parent 250 745547bdc1c7
child 292 293e9c6f22e1
permissions -rwxr-xr-x
Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
     1
(* Title: thys/Turing.thy
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
     2
   Author: Jian Xu, Xingyuan Zhang, and Christian Urban
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
     3
*)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
     4
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
     5
chapter {* Turing Machines *}
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
     6
163
67063c5365e1 changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 97
diff changeset
     7
theory Turing
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
     8
imports Main
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
     9
begin
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    10
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    11
section {* Basic definitions of Turing machine *}
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    12
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    13
datatype action = W0 | W1 | L | R | Nop
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    14
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    15
datatype cell = Bk | Oc
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    16
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    17
type_synonym tape = "cell list \<times> cell list"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    18
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    19
type_synonym state = nat
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    20
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    21
type_synonym instr = "action \<times> state"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    22
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    23
type_synonym tprog = "instr list \<times> nat"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    24
54
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
    25
type_synonym tprog0 = "instr list"
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
    26
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    27
type_synonym config = "state \<times> tape"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    28
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    29
fun nth_of where
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
    30
  "nth_of xs i = (if i \<ge> length xs then None else Some (xs ! i))"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    31
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    32
lemma nth_of_map [simp]:
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    33
  shows "nth_of (map f p) n = (case (nth_of p n) of None \<Rightarrow> None | Some x \<Rightarrow> Some (f x))"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    34
apply(induct p arbitrary: n)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    35
apply(auto)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    36
apply(case_tac n)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    37
apply(auto)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    38
done
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    39
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    40
fun 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    41
  fetch :: "instr list \<Rightarrow> state \<Rightarrow> cell \<Rightarrow> instr"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    42
where
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    43
  "fetch p 0 b = (Nop, 0)"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    44
| "fetch p (Suc s) Bk = 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    45
     (case nth_of p (2 * s) of
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    46
        Some i \<Rightarrow> i
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    47
      | None \<Rightarrow> (Nop, 0))"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    48
|"fetch p (Suc s) Oc = 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    49
     (case nth_of p ((2 * s) + 1) of
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    50
         Some i \<Rightarrow> i
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    51
       | None \<Rightarrow> (Nop, 0))"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    52
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    53
lemma fetch_Nil [simp]:
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    54
  shows "fetch [] s b = (Nop, 0)"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    55
apply(case_tac s)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    56
apply(auto)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    57
apply(case_tac b)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    58
apply(auto)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    59
done
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    60
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    61
fun 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    62
  update :: "action \<Rightarrow> tape \<Rightarrow> tape"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    63
where 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    64
  "update W0 (l, r) = (l, Bk # (tl r))" 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    65
| "update W1 (l, r) = (l, Oc # (tl r))"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    66
| "update L (l, r) = (if l = [] then ([], Bk # r) else (tl l, (hd l) # r))" 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    67
| "update R (l, r) = (if r = [] then (Bk # l, []) else ((hd r) # l, tl r))" 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    68
| "update Nop (l, r) = (l, r)"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    69
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    70
abbreviation 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    71
  "read r == if (r = []) then Bk else hd r"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    72
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    73
fun step :: "config \<Rightarrow> tprog \<Rightarrow> config"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    74
  where 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    75
  "step (s, l, r) (p, off) = 
50
816e84ca16d6 updated turing_basic by Jian
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 47
diff changeset
    76
     (let (a, s') = fetch p (s - off) (read r) in (s', update a (l, r)))"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    77
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
    78
abbreviation
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
    79
  "step0 c p \<equiv> step c (p, 0)"
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
    80
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    81
fun steps :: "config \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> config"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    82
  where
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    83
  "steps c p 0 = c" |
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    84
  "steps c p (Suc n) = steps (step c p) p n"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    85
54
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
    86
abbreviation
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
    87
  "steps0 c p n \<equiv> steps c (p, 0) n"
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
    88
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    89
lemma step_red [simp]: 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    90
  shows "steps c p (Suc n) = step (steps c p n) p"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    91
by (induct n arbitrary: c) (auto)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    92
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    93
lemma steps_add [simp]: 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    94
  shows "steps c p (m + n) = steps (steps c p m) p n"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    95
by (induct m arbitrary: c) (auto)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
    96
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
    97
lemma step_0 [simp]: 
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
    98
  shows "step (0, (l, r)) p = (0, (l, r))"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
    99
by (case_tac p, simp)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   100
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   101
lemma steps_0 [simp]: 
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   102
  shows "steps (0, (l, r)) p n = (0, (l, r))"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   103
by (induct n) (simp_all)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   104
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   105
fun
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   106
  is_final :: "config \<Rightarrow> bool"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   107
where
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   108
  "is_final (s, l, r) = (s = 0)"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   109
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   110
lemma is_final_eq: 
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   111
  shows "is_final (s, tp) = (s = 0)"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   112
by (case_tac tp) (auto)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   113
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   114
lemma is_finalI [intro]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   115
  shows "is_final (0, tp)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   116
by (simp add: is_final_eq)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   117
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   118
lemma after_is_final:
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   119
  assumes "is_final c"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   120
  shows "is_final (steps c p n)"
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   121
using assms 
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   122
apply(induct n) 
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   123
apply(case_tac [!] c)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   124
apply(auto)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   125
done
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   126
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   127
lemma is_final:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   128
  assumes a: "is_final (steps c p n1)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   129
  and b: "n1 \<le> n2"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   130
  shows "is_final (steps c p n2)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   131
proof - 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   132
  obtain n3 where eq: "n2 = n1 + n3" using b by (metis le_iff_add)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   133
  from a show "is_final (steps c p n2)" unfolding eq
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   134
    by (simp add: after_is_final)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   135
qed
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   136
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   137
lemma not_is_final:
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   138
  assumes a: "\<not> is_final (steps c p n1)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   139
  and b: "n2 \<le> n1"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   140
  shows "\<not> is_final (steps c p n2)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   141
proof (rule notI)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   142
  obtain n3 where eq: "n1 = n2 + n3" using b by (metis le_iff_add)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   143
  assume "is_final (steps c p n2)"
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   144
  then have "is_final (steps c p n1)" unfolding eq
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   145
    by (simp add: after_is_final)
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   146
  with a show "False" by simp
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   147
qed
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   148
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   149
(* if the machine is in the halting state, there must have 
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   150
   been a state just before the halting state *)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   151
lemma before_final: 
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   152
  assumes "steps0 (1, tp) A n = (0, tp')"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   153
  shows "\<exists> n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   154
using assms
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   155
proof(induct n arbitrary: tp')
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   156
  case (0 tp')
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   157
  have asm: "steps0 (1, tp) A 0 = (0, tp')" by fact
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   158
  then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   159
    by simp
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   160
next
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   161
  case (Suc n tp')
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   162
  have ih: "\<And>tp'. steps0 (1, tp) A n = (0, tp') \<Longrightarrow>
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   163
    \<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" by fact
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   164
  have asm: "steps0 (1, tp) A (Suc n) = (0, tp')" by fact
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   165
  obtain s l r where cases: "steps0 (1, tp) A n = (s, l, r)"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   166
    by (auto intro: is_final.cases)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   167
  then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   168
  proof (cases "s = 0")
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   169
    case True (* in halting state *)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   170
    then have "steps0 (1, tp) A n = (0, tp')"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   171
      using asm cases by (simp del: steps.simps)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   172
    then show ?thesis using ih by simp
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   173
  next
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   174
    case False (* not in halting state *)
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   175
    then have "\<not> is_final (steps0 (1, tp) A n) \<and> steps0 (1, tp) A (Suc n) = (0, tp')"
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   176
      using asm cases by simp
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   177
    then show ?thesis by auto
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   178
  qed
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   179
qed
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   180
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   181
lemma least_steps: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   182
  assumes "steps0 (1, tp) A n = (0, tp')"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   183
  shows "\<exists> n'. (\<forall>n'' < n'. \<not> is_final (steps0 (1, tp) A n'')) \<and> 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   184
               (\<forall>n'' \<ge> n'. is_final (steps0 (1, tp) A n''))"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   185
proof -
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   186
  from before_final[OF assms] 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   187
  obtain n' where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   188
    before: "\<not> is_final (steps0 (1, tp) A n')" and
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   189
    final: "steps0 (1, tp) A (Suc n') = (0, tp')" by auto
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   190
  from before
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   191
    have "\<forall>n'' < Suc n'. \<not> is_final (steps0 (1, tp) A n'')"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   192
      using not_is_final by auto
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   193
  moreover
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   194
  from final 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   195
    have "\<forall>n'' \<ge> Suc n'. is_final (steps0 (1, tp) A n'')" 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   196
      using is_final[of _ _ "Suc n'"] by (auto simp add: is_final_eq)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   197
  ultimately
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   198
  show "\<exists> n'. (\<forall>n'' < n'. \<not> is_final (steps0 (1, tp) A n'')) \<and> (\<forall>n'' \<ge> n'. is_final (steps0 (1, tp) A n''))"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   199
    by blast
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   200
qed
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   201
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   202
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 190
diff changeset
   203
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   204
(* well-formedness of Turing machine programs *)
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   205
abbreviation "is_even n \<equiv> (n::nat) mod 2 = 0"
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   206
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   207
fun 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   208
  tm_wf :: "tprog \<Rightarrow> bool"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   209
where
71
8c7f10b3da7b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
   210
  "tm_wf (p, off) = (length p \<ge> 2 \<and> is_even (length p) \<and> 
54
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
   211
                    (\<forall>(a, s) \<in> set p. s \<le> length p div 2 + off \<and> s \<ge> off))"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   212
63
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 61
diff changeset
   213
abbreviation
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 61
diff changeset
   214
  "tm_wf0 p \<equiv> tm_wf (p, 0)"
35fe8fe12e65 small updates
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 61
diff changeset
   215
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   216
abbreviation exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_ \<up> _" [100, 99] 100)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   217
  where "x \<up> n == replicate n x"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   218
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   219
class tape =
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   220
  fixes tape_of :: "'a \<Rightarrow> cell list" ("<_>" 100)
84
4c8325c64dab updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 71
diff changeset
   221
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 43
diff changeset
   222
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   223
instantiation nat::tape begin
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   224
  definition tape_of_nat where "tape_of_nat (n::nat) \<equiv> Oc \<up> (Suc n)"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   225
  instance by standard
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   226
end
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   227
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   228
type_synonym nat_list = "nat list"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   229
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   230
instantiation list::(tape) tape begin
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   231
  fun tape_of_nat_list :: "('a::tape) list \<Rightarrow> cell list" 
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   232
    where 
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   233
    "tape_of_nat_list [] = []" |
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   234
    "tape_of_nat_list [n] = <n>" |
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   235
    "tape_of_nat_list (n#ns) = <n> @ Bk # (tape_of_nat_list ns)"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   236
  definition tape_of_list where "tape_of_list \<equiv> tape_of_nat_list"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   237
  instance by standard
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   238
end
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   239
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   240
instantiation prod:: (tape, tape) tape begin
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   241
  fun tape_of_nat_prod :: "('a::tape) \<times> ('b::tape) \<Rightarrow> cell list" 
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   242
    where "tape_of_nat_prod (n, m) = <n> @ [Bk] @ <m>" 
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   243
  definition tape_of_prod where "tape_of_prod \<equiv> tape_of_nat_prod"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   244
  instance by standard
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   245
end
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   246
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   247
fun 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   248
  shift :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   249
where
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   250
  "shift p n = (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)"
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   251
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   252
fun 
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 168
diff changeset
   253
  adjust :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   254
where
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 168
diff changeset
   255
  "adjust p e = map (\<lambda> (a, s). (a, if s = 0 then e else s)) p"
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 168
diff changeset
   256
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 168
diff changeset
   257
abbreviation
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 168
diff changeset
   258
  "adjust0 p \<equiv> adjust p (Suc (length p div 2))"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   259
54
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
   260
lemma length_shift [simp]: 
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   261
  shows "length (shift p n) = length p"
54
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
   262
by simp
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
   263
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   264
lemma length_adjust [simp]: 
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 168
diff changeset
   265
  shows "length (adjust p n) = length p"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   266
by (induct p) (auto)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   267
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   268
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   269
(* composition of two Turing machines *)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   270
fun
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   271
  tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100)
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   272
where
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 168
diff changeset
   273
  "tm_comp p1 p2 = ((adjust0 p1) @ (shift p2 (length p1 div 2)))"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   274
56
0838b0ac52ab some small changes to turing and uncomputable
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 55
diff changeset
   275
lemma tm_comp_length:
54
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
   276
  shows "length (A |+| B) = length A + length B"
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
   277
by auto
e7d845acb0a7 changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 53
diff changeset
   278
93
f2bda6ba4952 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 84
diff changeset
   279
lemma tm_comp_wf[intro]: 
f2bda6ba4952 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 84
diff changeset
   280
  "\<lbrakk>tm_wf (A, 0); tm_wf (B, 0)\<rbrakk> \<Longrightarrow> tm_wf (A |+| B, 0)"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   281
by (fastforce)
93
f2bda6ba4952 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 84
diff changeset
   282
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   283
lemma tm_comp_step: 
58
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   284
  assumes unfinal: "\<not> is_final (step0 c A)"
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   285
  shows "step0 c (A |+| B) = step0 c A"
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   286
proof -
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   287
  obtain s l r where eq: "c = (s, l, r)" by (metis is_final.cases) 
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   288
  have "\<not> is_final (step0 (s, l, r) A)" using unfinal eq by simp
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   289
  then have "case (fetch A s (read r)) of (a, s) \<Rightarrow> s \<noteq> 0"
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   290
    by (auto simp add: is_final_eq)
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   291
  then  have "fetch (A |+| B) s (read r) = fetch A s (read r)"
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   292
    apply(case_tac [!] "read r")
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   293
    apply(case_tac [!] s)
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   294
    apply(auto simp: tm_comp_length nth_append)
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   295
    done
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   296
  then show "step0 c (A |+| B) = step0 c A" by (simp add: eq) 
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   297
qed
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   298
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   299
lemma tm_comp_steps:  
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   300
  assumes "\<not> is_final (steps0 c A n)" 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   301
  shows "steps0 c (A |+| B) n = steps0 c A n"
58
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   302
using assms
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   303
proof(induct n)
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   304
  case 0
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   305
  then show "steps0 c (A |+| B) 0 = steps0 c A 0" by auto
58
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   306
next 
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   307
  case (Suc n)
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   308
  have ih: "\<not> is_final (steps0 c A n) \<Longrightarrow> steps0 c (A |+| B) n = steps0 c A n" by fact
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   309
  have fin: "\<not> is_final (steps0 c A (Suc n))" by fact
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   310
  then have fin1: "\<not> is_final (step0 (steps0 c A n) A)" 
58
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   311
    by (auto simp only: step_red)
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   312
  then have fin2: "\<not> is_final (steps0 c A n)"
58
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   313
    by (metis is_final_eq step_0 surj_pair) 
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   314
 
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   315
  have "steps0 c (A |+| B) (Suc n) = step0 (steps0 c (A |+| B) n) (A |+| B)" 
58
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   316
    by (simp only: step_red)
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   317
  also have "... = step0 (steps0 c A n) (A |+| B)" by (simp only: ih[OF fin2])
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   318
  also have "... = step0 (steps0 c A n) A" by (simp only: tm_comp_step[OF fin1])
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   319
  finally show "steps0 c (A |+| B) (Suc n) = steps0 c A (Suc n)"
58
fbd346f5af86 more proofs polished
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 57
diff changeset
   320
    by (simp only: step_red)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   321
qed
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   322
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   323
lemma tm_comp_fetch_in_A:
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   324
  assumes h1: "fetch A s x = (a, 0)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   325
  and h2: "s \<le> length A div 2" 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   326
  and h3: "s \<noteq> 0"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   327
  shows "fetch (A |+| B) s x = (a, Suc (length A div 2))"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   328
using h1 h2 h3
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   329
apply(case_tac s)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   330
apply(case_tac [!] x)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   331
apply(auto simp: tm_comp_length nth_append)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   332
done
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   333
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   334
lemma tm_comp_exec_after_first:
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   335
  assumes h1: "\<not> is_final c" 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   336
  and h2: "step0 c A = (0, tp)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   337
  and h3: "fst c \<le> length A div 2"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   338
  shows "step0 c (A |+| B) = (Suc (length A div 2), tp)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   339
using h1 h2 h3
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   340
apply(case_tac c)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   341
apply(auto simp del: tm_comp.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   342
apply(case_tac "fetch A a Bk")
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   343
apply(simp del: tm_comp.simps)
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   344
apply(subst tm_comp_fetch_in_A;force)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   345
apply(case_tac "fetch A a (hd ca)")
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   346
apply(simp del: tm_comp.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   347
apply(subst tm_comp_fetch_in_A)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   348
apply(auto)[4]
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   349
done
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   350
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   351
lemma step_in_range: 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   352
  assumes h1: "\<not> is_final (step0 c A)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   353
  and h2: "tm_wf (A, 0)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   354
  shows "fst (step0 c A) \<le> length A div 2"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   355
using h1 h2
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   356
apply(case_tac c)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   357
apply(case_tac a)
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   358
apply(auto simp add: Let_def case_prod_beta')
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   359
apply(case_tac "hd ca")
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 250
diff changeset
   360
apply(auto simp add: case_prod_beta')
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   361
done
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   362
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   363
lemma steps_in_range: 
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   364
  assumes h1: "\<not> is_final (steps0 (1, tp) A stp)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   365
  and h2: "tm_wf (A, 0)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   366
  shows "fst (steps0 (1, tp) A stp) \<le> length A div 2"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   367
using h1
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   368
proof(induct stp)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   369
  case 0
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   370
  then show "fst (steps0 (1, tp) A 0) \<le> length A div 2" using h2
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   371
    by (auto simp add: steps.simps tm_wf.simps)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   372
next
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   373
  case (Suc stp)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   374
  have ih: "\<not> is_final (steps0 (1, tp) A stp) \<Longrightarrow> fst (steps0 (1, tp) A stp) \<le> length A div 2" by fact
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   375
  have h: "\<not> is_final (steps0 (1, tp) A (Suc stp))" by fact
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   376
  from ih h h2 show "fst (steps0 (1, tp) A (Suc stp)) \<le> length A div 2"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   377
    by (metis step_in_range step_red)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   378
qed
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   379
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   380
(* if A goes into the final state, then A |+| B will go into the first state of B *)
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   381
lemma tm_comp_next: 
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   382
  assumes a_ht: "steps0 (1, tp) A n = (0, tp')"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   383
  and a_wf: "tm_wf (A, 0)"
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   384
  obtains n' where "steps0 (1, tp) (A |+| B) n' = (Suc (length A div 2), tp')"
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   385
proof -
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   386
  assume a: "\<And>n. steps (1, tp) (A |+| B, 0) n = (Suc (length A div 2), tp') \<Longrightarrow> thesis"
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   387
  obtain stp' where fin: "\<not> is_final (steps0 (1, tp) A stp')" and h: "steps0 (1, tp) A (Suc stp') = (0, tp')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   388
  using before_final[OF a_ht] by blast
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   389
  from fin have h1:"steps0 (1, tp) (A |+| B) stp' = steps0 (1, tp) A stp'"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 59
diff changeset
   390
    by (rule tm_comp_steps)
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   391
  from h have h2: "step0 (steps0 (1, tp) A stp') A = (0, tp')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   392
    by (simp only: step_red)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   393
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   394
  have "steps0 (1, tp) (A |+| B) (Suc stp') = step0 (steps0 (1, tp) (A |+| B) stp') (A |+| B)" 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   395
    by (simp only: step_red)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   396
  also have "... = step0 (steps0 (1, tp) A stp') (A |+| B)" using h1 by simp
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   397
  also have "... = (Suc (length A div 2), tp')" 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   398
    by (rule tm_comp_exec_after_first[OF fin h2 steps_in_range[OF fin a_wf]])
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   399
  finally show thesis using a by blast
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   400
qed
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   401
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   402
lemma tm_comp_fetch_second_zero:
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   403
  assumes h1: "fetch B s x = (a, 0)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   404
  and hs: "tm_wf (A, 0)" "s \<noteq> 0"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   405
  shows "fetch (A |+| B) (s + (length A div 2)) x = (a, 0)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   406
using h1 hs
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   407
apply(case_tac x)
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   408
apply(case_tac [!] s)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   409
apply(auto simp: tm_comp_length nth_append)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   410
done 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   411
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   412
lemma tm_comp_fetch_second_inst:
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   413
  assumes h1: "fetch B sa x = (a, s)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   414
  and hs: "tm_wf (A, 0)" "sa \<noteq> 0" "s \<noteq> 0"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   415
  shows "fetch (A |+| B) (sa + length A div 2) x = (a, s + length A div 2)"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   416
using h1 hs
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   417
apply(case_tac x)
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   418
apply(case_tac [!] sa)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   419
apply(auto simp: tm_comp_length nth_append)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   420
done 
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   421
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   422
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   423
lemma tm_comp_second:
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   424
  assumes a_wf: "tm_wf (A, 0)"
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   425
  and steps: "steps0 (1, l, r) B stp = (s', l', r')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   426
  shows "steps0 (Suc (length A div 2), l, r)  (A |+| B) stp 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   427
    = (if s' = 0 then 0 else s' + length A div 2, l', r')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   428
using steps
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   429
proof(induct stp arbitrary: s' l' r')
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   430
  case 0
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   431
  then show ?case by (simp add: steps.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   432
next
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   433
  case (Suc stp s' l' r')
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   434
  obtain s'' l'' r'' where a: "steps0 (1, l, r) B stp = (s'', l'', r'')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   435
    by (metis is_final.cases)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   436
  then have ih1: "s'' = 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (0, l'', r'')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   437
  and ih2: "s'' \<noteq> 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (s'' + length A div 2, l'', r'')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   438
    using Suc by (auto)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   439
  have h: "steps0 (1, l, r) B (Suc stp) = (s', l', r')" by fact
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   440
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   441
  { assume "s'' = 0"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   442
    then have ?case using a h ih1 by (simp del: steps.simps) 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   443
  } moreover
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   444
  { assume as: "s'' \<noteq> 0" "s' = 0"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   445
    from as a h 
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   446
    have "step0 (s'', l'', r'') B = (0, l', r')" by (simp del: steps.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   447
    with as have ?case
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   448
    apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   449
    apply(case_tac "fetch B s'' (read r'')")
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   450
    apply(auto simp add: tm_comp_fetch_second_zero[OF _ a_wf] simp del: tm_comp.simps)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   451
    done
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   452
  } moreover
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   453
  { assume as: "s'' \<noteq> 0" "s' \<noteq> 0"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   454
    from as a h
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   455
    have "step0 (s'', l'', r'') B = (s', l', r')" by (simp del: steps.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   456
    with as have ?case
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   457
    apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   458
    apply(case_tac "fetch B s'' (read r'')")
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   459
    apply(auto simp add: tm_comp_fetch_second_inst[OF _ a_wf as] simp del: tm_comp.simps)
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   460
    done
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   461
  }
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   462
  ultimately show ?case by blast
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   463
qed
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   464
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   465
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   466
lemma tm_comp_final:
59
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   467
  assumes "tm_wf (A, 0)"  
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   468
  and "steps0 (1, l, r) B stp = (0, l', r')"
30950dadd09f polished turing_basic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 58
diff changeset
   469
  shows "steps0 (Suc (length A div 2), l, r)  (A |+| B) stp = (0, l', r')"
168
d7570dbf9f06 small changes
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   470
using tm_comp_second[OF assms] by (simp)
43
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   471
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   472
end
a8785fa80278 updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 41
diff changeset
   473