author | Christian Urban <christian dot urban at kcl dot ac dot uk> |
Sat, 19 Jan 2013 14:44:07 +0000 | |
changeset 55 | cd4ef33c8fb1 |
parent 54 | e7d845acb0a7 |
child 56 | 0838b0ac52ab |
permissions | -rw-r--r-- |
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
1 |
(* Title: Turing machines |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
2 |
Author: Xu Jian <xujian817@hotmail.com> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
3 |
Maintainer: Xu Jian |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
4 |
*) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
5 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
6 |
theory turing_basic |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
7 |
imports Main |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
8 |
begin |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
9 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
10 |
section {* Basic definitions of Turing machine *} |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
11 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
12 |
datatype action = W0 | W1 | L | R | Nop |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
13 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
14 |
datatype cell = Bk | Oc |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
15 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
16 |
type_synonym tape = "cell list \<times> cell list" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
17 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
18 |
type_synonym state = nat |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
19 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
20 |
type_synonym instr = "action \<times> state" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
21 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
22 |
type_synonym tprog = "instr list \<times> nat" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
23 |
|
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
24 |
type_synonym tprog0 = "instr list" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
25 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
26 |
type_synonym config = "state \<times> tape" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
27 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
28 |
fun nth_of where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
29 |
"nth_of xs i = (if i \<ge> length xs then None |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
30 |
else Some (xs ! i))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
31 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
32 |
lemma nth_of_map [simp]: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
33 |
shows "nth_of (map f p) n = (case (nth_of p n) of None \<Rightarrow> None | Some x \<Rightarrow> Some (f x))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
34 |
apply(induct p arbitrary: n) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
35 |
apply(auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
36 |
apply(case_tac n) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
37 |
apply(auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
38 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
39 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
40 |
fun |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
41 |
fetch :: "instr list \<Rightarrow> state \<Rightarrow> cell \<Rightarrow> instr" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
42 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
43 |
"fetch p 0 b = (Nop, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
44 |
| "fetch p (Suc s) Bk = |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
45 |
(case nth_of p (2 * s) of |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
46 |
Some i \<Rightarrow> i |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
47 |
| None \<Rightarrow> (Nop, 0))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
48 |
|"fetch p (Suc s) Oc = |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
49 |
(case nth_of p ((2 * s) + 1) of |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
50 |
Some i \<Rightarrow> i |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
51 |
| None \<Rightarrow> (Nop, 0))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
52 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
53 |
lemma fetch_Nil [simp]: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
54 |
shows "fetch [] s b = (Nop, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
55 |
apply(case_tac s) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
56 |
apply(auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
57 |
apply(case_tac b) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
58 |
apply(auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
59 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
60 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
61 |
fun |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
62 |
update :: "action \<Rightarrow> tape \<Rightarrow> tape" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
63 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
64 |
"update W0 (l, r) = (l, Bk # (tl r))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
65 |
| "update W1 (l, r) = (l, Oc # (tl r))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
66 |
| "update L (l, r) = (if l = [] then ([], Bk # r) else (tl l, (hd l) # r))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
67 |
| "update R (l, r) = (if r = [] then (Bk # l, []) else ((hd r) # l, tl r))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
68 |
| "update Nop (l, r) = (l, r)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
69 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
70 |
abbreviation |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
71 |
"read r == if (r = []) then Bk else hd r" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
72 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
73 |
fun step :: "config \<Rightarrow> tprog \<Rightarrow> config" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
74 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
75 |
"step (s, l, r) (p, off) = |
50
816e84ca16d6
updated turing_basic by Jian
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
47
diff
changeset
|
76 |
(let (a, s') = fetch p (s - off) (read r) in (s', update a (l, r)))" |
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
77 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
78 |
fun steps :: "config \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> config" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
79 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
80 |
"steps c p 0 = c" | |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
81 |
"steps c p (Suc n) = steps (step c p) p n" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
82 |
|
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
83 |
|
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
84 |
abbreviation |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
85 |
"step0 c p \<equiv> step c (p, 0)" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
86 |
|
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
87 |
abbreviation |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
88 |
"steps0 c p n \<equiv> steps c (p, 0) n" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
89 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
90 |
lemma step_red [simp]: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
91 |
shows "steps c p (Suc n) = step (steps c p n) p" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
92 |
by (induct n arbitrary: c) (auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
93 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
94 |
lemma steps_add [simp]: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
95 |
shows "steps c p (m + n) = steps (steps c p m) p n" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
96 |
by (induct m arbitrary: c) (auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
97 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
98 |
fun |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
99 |
tm_wf :: "tprog \<Rightarrow> bool" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
100 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
101 |
"tm_wf (p, off) = (length p \<ge> 2 \<and> length p mod 2 = 0 \<and> |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
102 |
(\<forall>(a, s) \<in> set p. s \<le> length p div 2 + off \<and> s \<ge> off))" |
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
103 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
104 |
lemma halt_lemma: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
105 |
"\<lbrakk>wf LE; \<forall>n. (\<not> P (f n) \<longrightarrow> (f (Suc n), (f n)) \<in> LE)\<rbrakk> \<Longrightarrow> \<exists>n. P (f n)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
106 |
by (metis wf_iff_no_infinite_down_chain) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
107 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
108 |
abbreviation exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_ \<up> _" [100, 99] 100) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
109 |
where "x \<up> n == replicate n x" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
110 |
|
47
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
111 |
consts tape_of :: "'a \<Rightarrow> cell list" ("<_>" 100) |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
112 |
|
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
113 |
fun tape_of_nat_list :: "nat list \<Rightarrow> cell list" |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
114 |
where |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
115 |
"tape_of_nat_list [] = []" | |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
116 |
"tape_of_nat_list [n] = Oc\<up>(Suc n)" | |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
117 |
"tape_of_nat_list (n#ns) = Oc\<up>(Suc n) @ Bk # (tape_of_nat_list ns)" |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
118 |
|
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
119 |
defs (overloaded) |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
120 |
tape_of_nl_abv: "<am> \<equiv> tape_of_nat_list am" |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
121 |
tape_of_nat_abv : "<(n::nat)> \<equiv> Oc\<up>(Suc n)" |
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
122 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
123 |
definition tinres :: "cell list \<Rightarrow> cell list \<Rightarrow> bool" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
124 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
125 |
"tinres xs ys = (\<exists>n. xs = ys @ Bk \<up> n \<or> ys = xs @ Bk \<up> n)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
126 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
127 |
fun |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
128 |
shift :: "instr list \<Rightarrow> nat \<Rightarrow> instr list" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
129 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
130 |
"shift p n = (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
131 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
132 |
fun |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
133 |
adjust :: "instr list \<Rightarrow> instr list" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
134 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
135 |
"adjust p = map (\<lambda> (a, s). (a, if s = 0 then (Suc (length p div 2)) else s)) p" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
136 |
|
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
137 |
lemma length_shift [simp]: |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
138 |
"length (shift p n) = length p" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
139 |
by simp |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
140 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
141 |
lemma length_adjust[simp]: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
142 |
shows "length (adjust p) = length p" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
143 |
by (induct p) (auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
144 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
145 |
fun |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
146 |
tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
147 |
where |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
148 |
"tm_comp p1 p2 = ((adjust p1) @ (shift p2 (length p1 div 2)))" |
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
149 |
|
55
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
150 |
lemma step_0 [simp]: |
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
151 |
shows "step (0, (l, r)) p = (0, (l, r))" |
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
152 |
by (case_tac p, simp) |
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
153 |
|
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
154 |
lemma steps_0 [simp]: |
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
155 |
shows "steps (0, (l, r)) p n = (0, (l, r))" |
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
156 |
by (induct n) (simp_all) |
cd4ef33c8fb1
added turing_hoare
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
54
diff
changeset
|
157 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
158 |
fun |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
159 |
is_final :: "config \<Rightarrow> bool" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
160 |
where |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
161 |
"is_final (s, l, r) = (s = 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
162 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
163 |
lemma is_final_steps: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
164 |
assumes "is_final (s, l, r)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
165 |
shows "is_final (steps (s, l, r) (p, off) n)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
166 |
using assms by (induct n) (auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
167 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
168 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
169 |
|
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
170 |
(* if the machine is in the halting state, there must have |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
171 |
been a state just before the halting state *) |
52
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
172 |
lemma before_final: |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
173 |
assumes "steps0 (1, tp) A n = (0, tp')" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
174 |
shows "\<exists> n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" |
52
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
175 |
using assms |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
176 |
proof(induct n arbitrary: tp') |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
177 |
case (0 tp') |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
178 |
have asm: "steps0 (1, tp) A 0 = (0, tp')" by fact |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
179 |
then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
180 |
by simp |
52
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
181 |
next |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
182 |
case (Suc n tp') |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
183 |
have ih: "\<And>tp'. steps0 (1, tp) A n = (0, tp') \<Longrightarrow> |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
184 |
\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" by fact |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
185 |
have asm: "steps0 (1, tp) A (Suc n) = (0, tp')" by fact |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
186 |
obtain s l r where cases: "steps0 (1, tp) A n = (s, l, r)" |
52
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
187 |
by (auto intro: is_final.cases) |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
188 |
then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" |
52
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
189 |
proof (cases "s = 0") |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
190 |
case True (* in halting state *) |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
191 |
then have "steps0 (1, tp) A n = (0, tp')" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
192 |
using asm cases by (simp del: steps.simps) |
52
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
193 |
then show ?thesis using ih by simp |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
194 |
next |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
195 |
case False (* not in halting state *) |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
196 |
then have "\<not> is_final (steps0 (1, tp) A n) \<and> steps0 (1, tp) A (Suc n) = (0, tp')" |
52
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
197 |
using asm cases by simp |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
198 |
then show ?thesis by auto |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
199 |
qed |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
200 |
qed |
2cb1e4499983
updated before_final
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
51
diff
changeset
|
201 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
202 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
203 |
lemma length_comp: |
54
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
204 |
shows "length (A |+| B) = length A + length B" |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
205 |
by auto |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
206 |
|
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
207 |
declare steps.simps[simp del] |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
208 |
declare tm_comp.simps [simp del] adjust.simps[simp del] shift.simps[simp del] |
e7d845acb0a7
changed slightly HOARE-def
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
53
diff
changeset
|
209 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
210 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
211 |
lemma tmcomp_fetch_in_first: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
212 |
assumes "case (fetch A a x) of (ac, ns) \<Rightarrow> ns \<noteq> 0" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
213 |
shows "fetch (A |+| B) a x = fetch A a x" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
214 |
using assms |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
215 |
apply(case_tac a, case_tac [!] x, |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
216 |
auto simp: length_comp tm_comp.simps length_adjust nth_append) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
217 |
apply(simp_all add: adjust.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
218 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
219 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
220 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
221 |
lemma is_final_eq: "is_final (ba, tp) = (ba = 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
222 |
apply(case_tac tp, simp add: is_final.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
223 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
224 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
225 |
lemma t_merge_pre_eq_step: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
226 |
assumes step: "step (a, b, c) (A, 0) = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
227 |
and tm_wf: "tm_wf (A, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
228 |
and unfinal: "\<not> is_final cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
229 |
shows "step (a, b, c) (A |+| B, 0) = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
230 |
proof - |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
231 |
have "fetch (A |+| B) a (read c) = fetch A a (read c)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
232 |
proof(rule_tac tmcomp_fetch_in_first) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
233 |
from step and unfinal show "case fetch A a (read c) of (ac, ns) \<Rightarrow> ns \<noteq> 0" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
234 |
apply(auto simp: is_final.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
235 |
apply(case_tac "fetch A a (read c)", simp_all add: is_final_eq) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
236 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
237 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
238 |
thus "?thesis" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
239 |
using step |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
240 |
apply(auto simp: step.simps is_final.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
241 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
242 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
243 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
244 |
declare tm_wf.simps[simp del] step.simps[simp del] |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
245 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
246 |
lemma t_merge_pre_eq: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
247 |
"\<lbrakk>steps (Suc 0, tp) (A, 0) stp = cf; \<not> is_final cf; tm_wf (A, 0)\<rbrakk> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
248 |
\<Longrightarrow> steps (Suc 0, tp) (A |+| B, 0) stp = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
249 |
proof(induct stp arbitrary: cf, simp add: steps.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
250 |
fix stp cf |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
251 |
assume ind: "\<And>cf. \<lbrakk>steps (Suc 0, tp) (A, 0) stp = cf; \<not> is_final cf; tm_wf (A, 0)\<rbrakk> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
252 |
\<Longrightarrow> steps (Suc 0, tp) (A |+| B, 0) stp = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
253 |
and h: "steps (Suc 0, tp) (A, 0) (Suc stp) = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
254 |
"\<not> is_final cf" "tm_wf (A, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
255 |
from h show "steps (Suc 0, tp) (A |+| B, 0) (Suc stp) = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
256 |
proof(simp add: step_red, case_tac "(steps (Suc 0, tp) (A, 0) stp)", simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
257 |
fix a b c |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
258 |
assume g: "steps (Suc 0, tp) (A, 0) stp = (a, b, c)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
259 |
"step (a, b, c) (A, 0) = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
260 |
have "(steps (Suc 0, tp) (A |+| B, 0) stp) = (a, b, c)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
261 |
proof(rule ind, simp_all add: h g) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
262 |
show "0 < a" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
263 |
using g h |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
264 |
apply(simp add: step_red) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
265 |
apply(case_tac a, auto simp: step_0) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
266 |
apply(case_tac "steps (Suc 0, tp) (A, 0) stp", simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
267 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
268 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
269 |
thus "step (steps (Suc 0, tp) (A |+| B, 0) stp) (A |+| B, 0) = cf" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
270 |
apply(simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
271 |
apply(rule_tac t_merge_pre_eq_step, simp_all add: g h) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
272 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
273 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
274 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
275 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
276 |
lemma tmcomp_fetch_in_first2: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
277 |
assumes "fetch A a x = (ac, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
278 |
"tm_wf (A, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
279 |
"a \<le> length A div 2" "a > 0" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
280 |
shows "fetch (A |+| B) a x = (ac, Suc (length A div 2))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
281 |
using assms |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
282 |
apply(case_tac a, case_tac [!] x, |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
283 |
auto simp: length_comp tm_comp.simps length_adjust nth_append) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
284 |
apply(simp_all add: adjust.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
285 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
286 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
287 |
lemma tmcomp_exec_after_first: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
288 |
"\<lbrakk>0 < a; step (a, b, c) (A, 0) = (0, tp'); tm_wf (A, 0); |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
289 |
a \<le> length A div 2\<rbrakk> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
290 |
\<Longrightarrow> step (a, b, c) (A |+| B, 0) = (Suc (length A div 2), tp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
291 |
apply(simp add: step.simps, auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
292 |
apply(case_tac "fetch A a Bk", simp add: tmcomp_fetch_in_first2) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
293 |
apply(case_tac "fetch A a (hd c)", simp add: tmcomp_fetch_in_first2) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
294 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
295 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
296 |
lemma step_nothalt_pre: "\<lbrakk>step (aa, ba, ca) (A, 0) = (a, b, c); 0 < a\<rbrakk> \<Longrightarrow> 0 < aa" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
297 |
apply(case_tac "aa = 0", simp add: step_0, simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
298 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
299 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
300 |
lemma nth_in_set: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
301 |
"\<lbrakk> A ! i = x; i < length A\<rbrakk> \<Longrightarrow> x \<in> set A" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
302 |
by auto |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
303 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
304 |
lemma step_nothalt: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
305 |
"\<lbrakk>step (aa, ba, ca) (A, 0) = (a, b, c); 0 < a; tm_wf (A, 0)\<rbrakk> \<Longrightarrow> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
306 |
a \<le> length A div 2" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
307 |
apply(simp add: step.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
308 |
apply(case_tac aa, case_tac [!] aa, auto split: if_splits simp: tm_wf.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
309 |
apply(case_tac "A ! (2 * nat)", simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
310 |
apply(erule_tac x = "(aa, a)" in ballE, simp_all add: nth_in_set) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
311 |
apply(case_tac "hd ca", auto split: if_splits simp: tm_wf.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
312 |
apply(case_tac "A ! (2 * nat)", simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
313 |
apply(erule_tac x = "(aa, a)" in ballE, simp_all add: nth_in_set) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
314 |
apply(case_tac "A ! (Suc (2 * nat))") |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
315 |
apply(erule_tac x = "(aa,bb)" in ballE, simp_all add: nth_in_set) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
316 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
317 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
318 |
lemma steps_in_range: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
319 |
" \<lbrakk>0 < a; steps (Suc 0, tp) (A, 0) stp = (a, b, c); tm_wf (A, 0)\<rbrakk> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
320 |
\<Longrightarrow> a \<le> length A div 2" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
321 |
proof(induct stp arbitrary: a b c) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
322 |
fix a b c |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
323 |
assume h: "0 < a" "steps (Suc 0, tp) (A, 0) 0 = (a, b, c)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
324 |
"tm_wf (A, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
325 |
thus "a \<le> length A div 2" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
326 |
apply(simp add: steps.simps tm_wf.simps, auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
327 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
328 |
next |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
329 |
fix stp a b c |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
330 |
assume ind: "\<And>a b c. \<lbrakk>0 < a; steps (Suc 0, tp) (A, 0) stp = (a, b, c); |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
331 |
tm_wf (A, 0)\<rbrakk> \<Longrightarrow> a \<le> length A div 2" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
332 |
and h: "0 < a" "steps (Suc 0, tp) (A, 0) (Suc stp) = (a, b, c)" "tm_wf (A, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
333 |
from h show "a \<le> length A div 2" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
334 |
proof(simp add: step_red, case_tac "(steps (Suc 0, tp) (A, 0) stp)", simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
335 |
fix aa ba ca |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
336 |
assume g: "step (aa, ba, ca) (A, 0) = (a, b, c)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
337 |
"steps (Suc 0, tp) (A, 0) stp = (aa, ba, ca)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
338 |
hence "aa \<le> length A div 2" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
339 |
apply(rule_tac ind, auto simp: h step_nothalt_pre) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
340 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
341 |
thus "?thesis" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
342 |
using g h |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
343 |
apply(rule_tac step_nothalt, auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
344 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
345 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
346 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
347 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
348 |
lemma t_merge_pre_halt_same: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
349 |
assumes a_ht: "steps (1, tp) (A, 0) n = (0, tp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
350 |
and a_wf: "tm_wf (A, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
351 |
obtains n' where "steps (1, tp) (A |+| B, 0) n' = (Suc (length A div 2), tp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
352 |
proof - |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
353 |
assume a: "\<And>n. steps (1, tp) (A |+| B, 0) n = (Suc (length A div 2), tp') \<Longrightarrow> thesis" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
354 |
obtain stp' where "\<not> is_final (steps (1, tp) (A, 0) stp')" and |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
355 |
"steps (1, tp) (A, 0) (Suc stp') = (0, tp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
356 |
using a_ht before_final by blast |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
357 |
then have "steps (1, tp) (A |+| B, 0) (Suc stp') = (Suc (length A div 2), tp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
358 |
proof(simp add: step_red) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
359 |
assume "\<not> is_final (steps (Suc 0, tp) (A, 0) stp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
360 |
" step (steps (Suc 0, tp) (A, 0) stp') (A, 0) = (0, tp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
361 |
moreover hence "(steps (Suc 0, tp) (A |+| B, 0) stp') = (steps (Suc 0, tp) (A, 0) stp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
362 |
apply(rule_tac t_merge_pre_eq) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
363 |
apply(simp_all add: a_wf a_ht) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
364 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
365 |
ultimately show "step (steps (Suc 0, tp) (A |+| B, 0) stp') (A |+| B, 0) = (Suc (length A div 2), tp')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
366 |
apply(case_tac " steps (Suc 0, tp) (A, 0) stp'", simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
367 |
apply(rule tmcomp_exec_after_first, simp_all add: a_wf) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
368 |
apply(erule_tac steps_in_range, auto simp: a_wf) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
369 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
370 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
371 |
with a show thesis by blast |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
372 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
373 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
374 |
lemma tm_comp_fetch_second_zero: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
375 |
"\<lbrakk>fetch B sa' x = (a, 0); tm_wf (A, 0); tm_wf (B, 0); sa' > 0\<rbrakk> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
376 |
\<Longrightarrow> fetch (A |+| B) (sa' + (length A div 2)) x = (a, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
377 |
apply(case_tac x) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
378 |
apply(case_tac [!] sa', |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
379 |
auto simp: fetch.simps length_comp length_adjust nth_append tm_comp.simps |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
380 |
tm_wf.simps shift.simps split: if_splits) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
381 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
382 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
383 |
lemma tm_comp_fetch_second_inst: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
384 |
"\<lbrakk>sa > 0; s > 0; tm_wf (A, 0); tm_wf (B, 0); fetch B sa x = (a, s)\<rbrakk> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
385 |
\<Longrightarrow> fetch (A |+| B) (sa + length A div 2) x = (a, s + length A div 2)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
386 |
apply(case_tac x) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
387 |
apply(case_tac [!] sa, |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
388 |
auto simp: fetch.simps length_comp length_adjust nth_append tm_comp.simps |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
389 |
tm_wf.simps shift.simps split: if_splits) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
390 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
391 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
392 |
lemma t_merge_second_same: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
393 |
assumes a_wf: "tm_wf (A, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
394 |
and b_wf: "tm_wf (B, 0)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
395 |
and steps: "steps (Suc 0, l, r) (B, 0) stp = (s, l', r')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
396 |
shows "steps (Suc (length A div 2), l, r) (A |+| B, 0) stp |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
397 |
= (if s = 0 then 0 |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
398 |
else s + length A div 2, l', r')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
399 |
using a_wf b_wf steps |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
400 |
proof(induct stp arbitrary: s l' r', simp add: steps.simps, simp) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
401 |
fix stpa sa l'a r'a |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
402 |
assume ind: "\<And>s l' r'. steps (Suc 0, l, r) (B, 0) stpa = (s, l', r') \<Longrightarrow> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
403 |
steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa = |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
404 |
(if s = 0 then 0 else s + length A div 2, l', r')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
405 |
and h: "step (steps (Suc 0, l, r) (B, 0) stpa) (B, 0) = (sa, l'a, r'a)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
406 |
obtain sa' l'' r'' where a: "(steps (Suc 0, l, r) (B, 0) stpa) = (sa', l'', r'')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
407 |
apply(case_tac "steps (Suc 0, l, r) (B, 0) stpa", auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
408 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
409 |
from this have b: "steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa = |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
410 |
(if sa' = 0 then 0 else sa' + length A div 2, l'', r'')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
411 |
apply(erule_tac ind) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
412 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
413 |
from a b h show |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
414 |
"(sa = 0 \<longrightarrow> step (steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa) (A |+| B, 0) = (0, l'a, r'a)) \<and> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
415 |
(0 < sa \<longrightarrow> step (steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa) (A |+| B, 0) = (sa + length A div 2, l'a, r'a))" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
416 |
proof(case_tac "sa' = 0", auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
417 |
assume "step (sa', l'', r'') (B, 0) = (0, l'a, r'a)" "0 < sa'" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
418 |
thus "step (sa' + length A div 2, l'', r'') (A |+| B, 0) = (0, l'a, r'a)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
419 |
using a_wf b_wf |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
420 |
apply(simp add: step.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
421 |
apply(case_tac "fetch B sa' (read r'')", auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
422 |
apply(simp_all add: step.simps tm_comp_fetch_second_zero) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
423 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
424 |
next |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
425 |
assume "step (sa', l'', r'') (B, 0) = (sa, l'a, r'a)" "0 < sa'" "0 < sa" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
426 |
thus "step (sa' + length A div 2, l'', r'') (A |+| B, 0) = (sa + length A div 2, l'a, r'a)" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
427 |
using a_wf b_wf |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
428 |
apply(simp add: step.simps) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
429 |
apply(case_tac "fetch B sa' (read r'')", auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
430 |
apply(simp_all add: step.simps tm_comp_fetch_second_inst) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
431 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
432 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
433 |
qed |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
434 |
|
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
435 |
lemma t_merge_second_halt_same: |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
436 |
"\<lbrakk>tm_wf (A, 0); tm_wf (B, 0); |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
437 |
steps (1, l, r) (B, 0) stp = (0, l', r')\<rbrakk> |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
438 |
\<Longrightarrow> steps (Suc (length A div 2), l, r) (A |+| B, 0) stp |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
439 |
= (0, l', r')" |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
440 |
using t_merge_second_same[where s = "0"] |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
441 |
apply(auto) |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
442 |
done |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
443 |
|
47
251e192339b7
added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
43
diff
changeset
|
444 |
|
43
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
445 |
end |
a8785fa80278
updated literature
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
41
diff
changeset
|
446 |