thys/turing_basic.thy
changeset 55 cd4ef33c8fb1
parent 54 e7d845acb0a7
child 56 0838b0ac52ab
equal deleted inserted replaced
54:e7d845acb0a7 55:cd4ef33c8fb1
   145 fun
   145 fun
   146   tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100)
   146   tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100)
   147 where
   147 where
   148   "tm_comp p1 p2 = ((adjust p1) @ (shift p2 (length p1 div 2)))"
   148   "tm_comp p1 p2 = ((adjust p1) @ (shift p2 (length p1 div 2)))"
   149 
   149 
       
   150 lemma step_0 [simp]: 
       
   151   shows "step (0, (l, r)) p = (0, (l, r))"
       
   152 by (case_tac p, simp)
       
   153 
       
   154 lemma steps_0 [simp]: 
       
   155   shows "steps (0, (l, r)) p n = (0, (l, r))"
       
   156 by (induct n) (simp_all)
       
   157 
   150 fun
   158 fun
   151   is_final :: "config \<Rightarrow> bool"
   159   is_final :: "config \<Rightarrow> bool"
   152 where
   160 where
   153   "is_final (s, l, r) = (s = 0)"
   161   "is_final (s, l, r) = (s = 0)"
   154 
   162 
   155 lemma is_final_steps:
   163 lemma is_final_steps:
   156   assumes "is_final (s, l, r)"
   164   assumes "is_final (s, l, r)"
   157   shows "is_final (steps (s, l, r) (p, off) n)"
   165   shows "is_final (steps (s, l, r) (p, off) n)"
   158 using assms by (induct n) (auto)
   166 using assms by (induct n) (auto)
   159 
   167 
   160 fun 
   168 
   161   holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
       
   162 where
       
   163   "P holds_for (s, l, r) = P (l, r)"  
       
   164 
       
   165 lemma is_final_holds[simp]:
       
   166   assumes "is_final c"
       
   167   shows "Q holds_for (steps c (p, off) n) = Q holds_for c"
       
   168 using assms 
       
   169 apply(induct n)
       
   170 apply(auto)
       
   171 apply(case_tac [!] c)
       
   172 apply(auto)
       
   173 done
       
   174 
       
   175 type_synonym assert = "tape \<Rightarrow> bool"
       
   176 
       
   177 definition 
       
   178   assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
       
   179 where
       
   180   "P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
       
   181 
       
   182 lemma holds_for_imp:
       
   183   assumes "P holds_for c"
       
   184   and "P \<mapsto> Q"
       
   185   shows "Q holds_for c"
       
   186 using assms unfolding assert_imp_def 
       
   187 by (case_tac c) (auto)
       
   188 
       
   189 definition
       
   190   Hoare :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
       
   191 where
       
   192   "{P} p {Q} \<equiv> 
       
   193      (\<forall>l r. P (l, r) \<longrightarrow> (\<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)))"
       
   194 
       
   195 lemma HoareI:
       
   196   assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
       
   197   shows "{P} p {Q}"
       
   198 unfolding Hoare_def using assms by auto
       
   199 
       
   200 
       
   201 lemma step_0 [simp]: 
       
   202   shows "step (0, (l, r)) p = (0, (l, r))"
       
   203 by (case_tac p, simp)
       
   204 
       
   205 lemma steps_0 [simp]: 
       
   206   shows "steps (0, (l, r)) p n = (0, (l, r))"
       
   207 by (induct n) (simp_all)
       
   208 
   169 
   209 (* if the machine is in the halting state, there must have 
   170 (* if the machine is in the halting state, there must have 
   210    been a state just before the halting state *)
   171    been a state just before the halting state *)
   211 lemma before_final: 
   172 lemma before_final: 
   212   assumes "steps0 (1, tp) A n = (0, tp')"
   173   assumes "steps0 (1, tp) A n = (0, tp')"
   478        = (0, l', r')"
   439        = (0, l', r')"
   479 using t_merge_second_same[where s = "0"]
   440 using t_merge_second_same[where s = "0"]
   480 apply(auto)
   441 apply(auto)
   481 done
   442 done
   482 
   443 
   483 
       
   484 text {*
       
   485   {P1} A {Q1}   {P2} B {Q2}  Q1 \<mapsto> P2
       
   486   -----------------------------------
       
   487   {P1} A |+| B {Q2}
       
   488 *}
       
   489 
       
   490 
       
   491 lemma Hoare_plus_halt: 
       
   492   assumes aimpb: "Q1 \<mapsto> P2"
       
   493   and A_wf : "tm_wf (A, 0)"
       
   494   and B_wf : "tm_wf (B, 0)"
       
   495   and A_halt : "{P1} A {Q1}"
       
   496   and B_halt : "{P2} B {Q2}"
       
   497   shows "{P1} A |+| B {Q2}"
       
   498 proof(rule HoareI)
       
   499   fix l r
       
   500   assume h: "P1 (l, r)"
       
   501   then obtain n1 
       
   502     where "is_final (steps0 (1, l, r) A n1)" and "Q1 holds_for (steps0 (1, l, r) A n1)"
       
   503     using A_halt unfolding Hoare_def by auto
       
   504   then obtain l' r' where "steps0 (1, l, r) A n1 = (0, l', r')" and c: "Q1 holds_for (0, l', r')"
       
   505     by(case_tac "steps0 (1, l, r) A n1") (auto)
       
   506   then obtain stpa where d: "steps0 (1, l, r) (A |+| B) stpa = (Suc (length A div 2), l', r')"
       
   507     using A_wf by(rule_tac t_merge_pre_halt_same) (auto)
       
   508   moreover
       
   509   from c aimpb have "P2 holds_for (0, l', r')"
       
   510     by (rule holds_for_imp)
       
   511   then have "P2 (l', r')" by auto
       
   512   then obtain n2 
       
   513     where "is_final (steps0 (1, l', r') B n2)" and "Q2 holds_for (steps0 (1, l', r') B n2)"
       
   514     using B_halt unfolding Hoare_def by auto
       
   515   then obtain l'' r'' where "steps0 (1, l', r') B n2 = (0, l'', r'')" and g: "Q2 holds_for (0, l'', r'')"
       
   516     by (case_tac "steps0 (1, l', r') B n2", auto)
       
   517   then have "steps0 (Suc (length A div 2), l', r')  (A |+| B) n2 = (0, l'', r'')"
       
   518     by (rule_tac t_merge_second_halt_same) (auto simp: A_wf B_wf)
       
   519   ultimately show 
       
   520     "\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> Q2 holds_for (steps0 (1, l, r) (A |+| B) n)"
       
   521     using g
       
   522     apply(rule_tac x = "stpa + n2" in exI)
       
   523     apply(simp add: steps_add)
       
   524     done
       
   525 qed
       
   526 
       
   527 definition
       
   528   Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_))" 50)
       
   529 where
       
   530   "{P} p \<equiv> 
       
   531      (\<forall>l r. P (l, r) \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, (l, r)) p n))))"
       
   532 
       
   533 lemma Hoare_unhalt_I:
       
   534   assumes "\<And>l r. P (l, r) \<Longrightarrow> \<forall> n. \<not> is_final (steps0 (1, (l, r)) p n)"
       
   535   shows "{P} p"
       
   536 unfolding Hoare_unhalt_def using assms by auto
       
   537 
       
   538 lemma Hoare_plus_unhalt:
       
   539   fixes A B :: tprog0 
       
   540   assumes aimpb: "Q1 \<mapsto> P2"
       
   541   and A_wf : "tm_wf (A, 0)"
       
   542   and B_wf : "tm_wf (B, 0)"
       
   543   and A_halt : "{P1} A {Q1}"
       
   544   and B_uhalt : "{P2} B"
       
   545   shows "{P1} (A |+| B)"
       
   546 proof(rule_tac Hoare_unhalt_I)
       
   547   fix l r
       
   548   assume h: "P1 (l, r)"
       
   549   then obtain n1 where a: "is_final (steps0 (1, l, r) A n1)" and b: "Q1 holds_for (steps0 (1, l, r) A n1)"
       
   550     using A_halt unfolding Hoare_def by auto
       
   551   then obtain l' r' where "steps0 (1, l, r) A n1 = (0, l', r')" and c: "Q1 holds_for (0, l', r')"
       
   552     by(case_tac "steps0 (1, l, r) A n1", auto)
       
   553   then obtain stpa where d: "steps0 (1, l, r) (A |+| B) stpa = (Suc (length A div 2), l', r')"
       
   554     using A_wf
       
   555     by(rule_tac t_merge_pre_halt_same, auto)
       
   556   from c aimpb have "P2 holds_for (0, l', r')"
       
   557     by(rule holds_for_imp)
       
   558   from this have "P2 (l', r')" by auto
       
   559   from this have e: "\<forall> n. \<not> is_final (steps0 (Suc 0, l', r') B n)  "
       
   560     using B_uhalt unfolding Hoare_unhalt_def
       
   561     by auto
       
   562   from e show "\<forall>n. \<not> is_final (steps0 (1, l, r) (A |+| B) n)"
       
   563   proof(rule_tac allI, case_tac "n > stpa")
       
   564     fix n
       
   565     assume h2: "stpa < n"
       
   566     hence "\<not> is_final (steps0 (Suc 0, l', r') B (n - stpa))"
       
   567       using e
       
   568       apply(erule_tac x = "n - stpa" in allE) by simp
       
   569     then obtain s'' l'' r'' where f: "steps0 (Suc 0, l', r') B (n - stpa) = (s'', l'', r'')" and g: "s'' \<noteq> 0"
       
   570       apply(case_tac "steps0 (Suc 0, l', r') B (n - stpa)", auto)
       
   571       done
       
   572     have k: "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - stpa) = (s''+ length A div 2, l'', r'') "
       
   573       using A_wf B_wf f g
       
   574       apply(drule_tac t_merge_second_same, auto)
       
   575       done
       
   576     show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
       
   577     proof -
       
   578       have "\<not> is_final (steps0 (1, l, r) (A |+| B) (stpa + (n  - stpa)))"
       
   579         using d k A_wf
       
   580         apply(simp only: steps_add d, simp add: tm_wf.simps)
       
   581         done
       
   582       thus "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
       
   583         using h2 by simp
       
   584     qed
       
   585   next
       
   586     fix n
       
   587     assume h2: "\<not> stpa < n"
       
   588     with d show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
       
   589       apply(auto)
       
   590       apply(subgoal_tac "\<exists> d. stpa = n + d", auto)
       
   591       apply(case_tac "(steps0 (Suc 0, l, r) (A |+| B) n)", simp)
       
   592       apply(rule_tac x = "stpa - n" in exI, simp)
       
   593       done
       
   594   qed
       
   595 qed
       
   596         
   444         
   597 end
   445 end
   598 
   446