--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/Turing.thy Sun Feb 10 19:49:07 2013 +0000
@@ -0,0 +1,428 @@
+(* Title: Turing machines
+ Author: Xu Jian <xujian817@hotmail.com>
+ Maintainer: Xu Jian
+*)
+
+theory Turing
+imports Main
+begin
+
+section {* Basic definitions of Turing machine *}
+
+datatype action = W0 | W1 | L | R | Nop
+
+datatype cell = Bk | Oc
+
+type_synonym tape = "cell list \<times> cell list"
+
+type_synonym state = nat
+
+type_synonym instr = "action \<times> state"
+
+type_synonym tprog = "instr list \<times> nat"
+
+type_synonym tprog0 = "instr list"
+
+type_synonym config = "state \<times> tape"
+
+fun nth_of where
+ "nth_of xs i = (if i \<ge> length xs then None
+ else Some (xs ! i))"
+
+lemma nth_of_map [simp]:
+ shows "nth_of (map f p) n = (case (nth_of p n) of None \<Rightarrow> None | Some x \<Rightarrow> Some (f x))"
+apply(induct p arbitrary: n)
+apply(auto)
+apply(case_tac n)
+apply(auto)
+done
+
+fun
+ fetch :: "instr list \<Rightarrow> state \<Rightarrow> cell \<Rightarrow> instr"
+where
+ "fetch p 0 b = (Nop, 0)"
+| "fetch p (Suc s) Bk =
+ (case nth_of p (2 * s) of
+ Some i \<Rightarrow> i
+ | None \<Rightarrow> (Nop, 0))"
+|"fetch p (Suc s) Oc =
+ (case nth_of p ((2 * s) + 1) of
+ Some i \<Rightarrow> i
+ | None \<Rightarrow> (Nop, 0))"
+
+lemma fetch_Nil [simp]:
+ shows "fetch [] s b = (Nop, 0)"
+apply(case_tac s)
+apply(auto)
+apply(case_tac b)
+apply(auto)
+done
+
+fun
+ update :: "action \<Rightarrow> tape \<Rightarrow> tape"
+where
+ "update W0 (l, r) = (l, Bk # (tl r))"
+| "update W1 (l, r) = (l, Oc # (tl r))"
+| "update L (l, r) = (if l = [] then ([], Bk # r) else (tl l, (hd l) # r))"
+| "update R (l, r) = (if r = [] then (Bk # l, []) else ((hd r) # l, tl r))"
+| "update Nop (l, r) = (l, r)"
+
+abbreviation
+ "read r == if (r = []) then Bk else hd r"
+
+fun step :: "config \<Rightarrow> tprog \<Rightarrow> config"
+ where
+ "step (s, l, r) (p, off) =
+ (let (a, s') = fetch p (s - off) (read r) in (s', update a (l, r)))"
+
+fun steps :: "config \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> config"
+ where
+ "steps c p 0 = c" |
+ "steps c p (Suc n) = steps (step c p) p n"
+
+
+abbreviation
+ "step0 c p \<equiv> step c (p, 0)"
+
+abbreviation
+ "steps0 c p n \<equiv> steps c (p, 0) n"
+
+lemma step_red [simp]:
+ shows "steps c p (Suc n) = step (steps c p n) p"
+by (induct n arbitrary: c) (auto)
+
+lemma steps_add [simp]:
+ shows "steps c p (m + n) = steps (steps c p m) p n"
+by (induct m arbitrary: c) (auto)
+
+lemma step_0 [simp]:
+ shows "step (0, (l, r)) p = (0, (l, r))"
+by (case_tac p, simp)
+
+lemma steps_0 [simp]:
+ shows "steps (0, (l, r)) p n = (0, (l, r))"
+by (induct n) (simp_all)
+
+
+
+fun
+ is_final :: "config \<Rightarrow> bool"
+where
+ "is_final (s, l, r) = (s = 0)"
+
+lemma is_final_eq:
+ shows "is_final (s, tp) = (s = 0)"
+by (case_tac tp) (auto)
+
+lemma after_is_final:
+ assumes "is_final c"
+ shows "is_final (steps c p n)"
+using assms
+apply(induct n)
+apply(case_tac [!] c)
+apply(auto)
+done
+
+lemma not_is_final:
+ assumes a: "\<not> is_final (steps c p n1)"
+ and b: "n2 \<le> n1"
+ shows "\<not> is_final (steps c p n2)"
+proof (rule notI)
+ obtain n3 where eq: "n1 = n2 + n3" using b by (metis le_iff_add)
+ assume "is_final (steps c p n2)"
+ then have "is_final (steps c p n1)" unfolding eq
+ by (simp add: after_is_final)
+ with a show "False" by simp
+qed
+
+(* if the machine is in the halting state, there must have
+ been a state just before the halting state *)
+lemma before_final:
+ assumes "steps0 (1, tp) A n = (0, tp')"
+ shows "\<exists> n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
+using assms
+proof(induct n arbitrary: tp')
+ case (0 tp')
+ have asm: "steps0 (1, tp) A 0 = (0, tp')" by fact
+ then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
+ by simp
+next
+ case (Suc n tp')
+ have ih: "\<And>tp'. steps0 (1, tp) A n = (0, tp') \<Longrightarrow>
+ \<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" by fact
+ have asm: "steps0 (1, tp) A (Suc n) = (0, tp')" by fact
+ obtain s l r where cases: "steps0 (1, tp) A n = (s, l, r)"
+ by (auto intro: is_final.cases)
+ then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
+ proof (cases "s = 0")
+ case True (* in halting state *)
+ then have "steps0 (1, tp) A n = (0, tp')"
+ using asm cases by (simp del: steps.simps)
+ then show ?thesis using ih by simp
+ next
+ case False (* not in halting state *)
+ then have "\<not> is_final (steps0 (1, tp) A n) \<and> steps0 (1, tp) A (Suc n) = (0, tp')"
+ using asm cases by simp
+ then show ?thesis by auto
+ qed
+qed
+
+(* well-formedness of Turing machine programs *)
+abbreviation "is_even n \<equiv> (n::nat) mod 2 = 0"
+
+fun
+ tm_wf :: "tprog \<Rightarrow> bool"
+where
+ "tm_wf (p, off) = (length p \<ge> 2 \<and> is_even (length p) \<and>
+ (\<forall>(a, s) \<in> set p. s \<le> length p div 2 + off \<and> s \<ge> off))"
+
+abbreviation
+ "tm_wf0 p \<equiv> tm_wf (p, 0)"
+
+abbreviation exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_ \<up> _" [100, 99] 100)
+ where "x \<up> n == replicate n x"
+
+consts tape_of :: "'a \<Rightarrow> cell list" ("<_>" 100)
+
+defs (overloaded)
+ tape_of_nat_abv: "<(n::nat)> \<equiv> Oc \<up> (Suc n)"
+
+fun tape_of_nat_list :: "'a list \<Rightarrow> cell list"
+ where
+ "tape_of_nat_list [] = []" |
+ "tape_of_nat_list [n] = <n>" |
+ "tape_of_nat_list (n#ns) = <n> @ Bk # (tape_of_nat_list ns)"
+
+fun tape_of_nat_pair :: "'a \<times> 'b \<Rightarrow> cell list"
+ where
+ "tape_of_nat_pair (n, m) = <n> @ [Bk] @ <m>"
+
+
+defs (overloaded)
+ tape_of_nl_abv: "<(ns::'a list)> \<equiv> tape_of_nat_list ns"
+ tape_of_nat_pair: "<(np::'a\<times>'b)> \<equiv> tape_of_nat_pair np"
+
+fun
+ shift :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
+where
+ "shift p n = (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)"
+
+fun
+ adjust :: "instr list \<Rightarrow> instr list"
+where
+ "adjust p = map (\<lambda> (a, s). (a, if s = 0 then (Suc (length p div 2)) else s)) p"
+
+lemma length_shift [simp]:
+ shows "length (shift p n) = length p"
+by simp
+
+lemma length_adjust [simp]:
+ shows "length (adjust p) = length p"
+by (induct p) (auto)
+
+
+(* composition of two Turing machines *)
+fun
+ tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100)
+where
+ "tm_comp p1 p2 = ((adjust p1) @ (shift p2 (length p1 div 2)))"
+
+lemma tm_comp_length:
+ shows "length (A |+| B) = length A + length B"
+by auto
+
+lemma tm_comp_wf[intro]:
+ "\<lbrakk>tm_wf (A, 0); tm_wf (B, 0)\<rbrakk> \<Longrightarrow> tm_wf (A |+| B, 0)"
+by (auto simp: tm_wf.simps shift.simps adjust.simps tm_comp_length tm_comp.simps)
+
+
+lemma tm_comp_step:
+ assumes unfinal: "\<not> is_final (step0 c A)"
+ shows "step0 c (A |+| B) = step0 c A"
+proof -
+ obtain s l r where eq: "c = (s, l, r)" by (metis is_final.cases)
+ have "\<not> is_final (step0 (s, l, r) A)" using unfinal eq by simp
+ then have "case (fetch A s (read r)) of (a, s) \<Rightarrow> s \<noteq> 0"
+ by (auto simp add: is_final_eq)
+ then have "fetch (A |+| B) s (read r) = fetch A s (read r)"
+ apply(case_tac [!] "read r")
+ apply(case_tac [!] s)
+ apply(auto simp: tm_comp_length nth_append)
+ done
+ then show "step0 c (A |+| B) = step0 c A" by (simp add: eq)
+qed
+
+lemma tm_comp_steps:
+ assumes "\<not> is_final (steps0 c A n)"
+ shows "steps0 c (A |+| B) n = steps0 c A n"
+using assms
+proof(induct n)
+ case 0
+ then show "steps0 c (A |+| B) 0 = steps0 c A 0" by auto
+next
+ case (Suc n)
+ have ih: "\<not> is_final (steps0 c A n) \<Longrightarrow> steps0 c (A |+| B) n = steps0 c A n" by fact
+ have fin: "\<not> is_final (steps0 c A (Suc n))" by fact
+ then have fin1: "\<not> is_final (step0 (steps0 c A n) A)"
+ by (auto simp only: step_red)
+ then have fin2: "\<not> is_final (steps0 c A n)"
+ by (metis is_final_eq step_0 surj_pair)
+
+ have "steps0 c (A |+| B) (Suc n) = step0 (steps0 c (A |+| B) n) (A |+| B)"
+ by (simp only: step_red)
+ also have "... = step0 (steps0 c A n) (A |+| B)" by (simp only: ih[OF fin2])
+ also have "... = step0 (steps0 c A n) A" by (simp only: tm_comp_step[OF fin1])
+ finally show "steps0 c (A |+| B) (Suc n) = steps0 c A (Suc n)"
+ by (simp only: step_red)
+qed
+
+lemma tm_comp_fetch_in_A:
+ assumes h1: "fetch A s x = (a, 0)"
+ and h2: "s \<le> length A div 2"
+ and h3: "s \<noteq> 0"
+ shows "fetch (A |+| B) s x = (a, Suc (length A div 2))"
+using h1 h2 h3
+apply(case_tac s)
+apply(case_tac [!] x)
+apply(auto simp: tm_comp_length nth_append)
+done
+
+lemma tm_comp_exec_after_first:
+ assumes h1: "\<not> is_final c"
+ and h2: "step0 c A = (0, tp)"
+ and h3: "fst c \<le> length A div 2"
+ shows "step0 c (A |+| B) = (Suc (length A div 2), tp)"
+using h1 h2 h3
+apply(case_tac c)
+apply(auto simp del: tm_comp.simps)
+apply(case_tac "fetch A a Bk")
+apply(simp del: tm_comp.simps)
+apply(subst tm_comp_fetch_in_A)
+apply(auto)[4]
+apply(case_tac "fetch A a (hd c)")
+apply(simp del: tm_comp.simps)
+apply(subst tm_comp_fetch_in_A)
+apply(auto)[4]
+done
+
+lemma step_in_range:
+ assumes h1: "\<not> is_final (step0 c A)"
+ and h2: "tm_wf (A, 0)"
+ shows "fst (step0 c A) \<le> length A div 2"
+using h1 h2
+apply(case_tac c)
+apply(case_tac a)
+apply(auto simp add: prod_case_unfold Let_def)
+apply(case_tac "hd c")
+apply(auto simp add: prod_case_unfold)
+done
+
+lemma steps_in_range:
+ assumes h1: "\<not> is_final (steps0 (1, tp) A stp)"
+ and h2: "tm_wf (A, 0)"
+ shows "fst (steps0 (1, tp) A stp) \<le> length A div 2"
+using h1
+proof(induct stp)
+ case 0
+ then show "fst (steps0 (1, tp) A 0) \<le> length A div 2" using h2
+ by (auto simp add: steps.simps tm_wf.simps)
+next
+ case (Suc stp)
+ have ih: "\<not> is_final (steps0 (1, tp) A stp) \<Longrightarrow> fst (steps0 (1, tp) A stp) \<le> length A div 2" by fact
+ have h: "\<not> is_final (steps0 (1, tp) A (Suc stp))" by fact
+ from ih h h2 show "fst (steps0 (1, tp) A (Suc stp)) \<le> length A div 2"
+ by (metis step_in_range step_red)
+qed
+
+lemma tm_comp_pre_halt_same:
+ assumes a_ht: "steps0 (1, tp) A n = (0, tp')"
+ and a_wf: "tm_wf (A, 0)"
+ obtains n' where "steps0 (1, tp) (A |+| B) n' = (Suc (length A div 2), tp')"
+proof -
+ assume a: "\<And>n. steps (1, tp) (A |+| B, 0) n = (Suc (length A div 2), tp') \<Longrightarrow> thesis"
+ obtain stp' where fin: "\<not> is_final (steps0 (1, tp) A stp')" and h: "steps0 (1, tp) A (Suc stp') = (0, tp')"
+ using before_final[OF a_ht] by blast
+ from fin have h1:"steps0 (1, tp) (A |+| B) stp' = steps0 (1, tp) A stp'"
+ by (rule tm_comp_steps)
+ from h have h2: "step0 (steps0 (1, tp) A stp') A = (0, tp')"
+ by (simp only: step_red)
+
+ have "steps0 (1, tp) (A |+| B) (Suc stp') = step0 (steps0 (1, tp) (A |+| B) stp') (A |+| B)"
+ by (simp only: step_red)
+ also have "... = step0 (steps0 (1, tp) A stp') (A |+| B)" using h1 by simp
+ also have "... = (Suc (length A div 2), tp')"
+ by (rule tm_comp_exec_after_first[OF fin h2 steps_in_range[OF fin a_wf]])
+ finally show thesis using a by blast
+qed
+
+lemma tm_comp_fetch_second_zero:
+ assumes h1: "fetch B s x = (a, 0)"
+ and hs: "tm_wf (A, 0)" "s \<noteq> 0"
+ shows "fetch (A |+| B) (s + (length A div 2)) x = (a, 0)"
+using h1 hs
+apply(case_tac x)
+apply(case_tac [!] s)
+apply(auto simp: tm_comp_length nth_append)
+done
+
+lemma tm_comp_fetch_second_inst:
+ assumes h1: "fetch B sa x = (a, s)"
+ and hs: "tm_wf (A, 0)" "sa \<noteq> 0" "s \<noteq> 0"
+ shows "fetch (A |+| B) (sa + length A div 2) x = (a, s + length A div 2)"
+using h1 hs
+apply(case_tac x)
+apply(case_tac [!] sa)
+apply(auto simp: tm_comp_length nth_append)
+done
+
+
+lemma tm_comp_second_same:
+ assumes a_wf: "tm_wf (A, 0)"
+ and steps: "steps0 (1, l, r) B stp = (s', l', r')"
+ shows "steps0 (Suc (length A div 2), l, r) (A |+| B) stp
+ = (if s' = 0 then 0 else s' + length A div 2, l', r')"
+using steps
+proof(induct stp arbitrary: s' l' r')
+ case 0
+ then show ?case by (simp add: steps.simps)
+next
+ case (Suc stp s' l' r')
+ obtain s'' l'' r'' where a: "steps0 (1, l, r) B stp = (s'', l'', r'')"
+ by (metis is_final.cases)
+ then have ih1: "s'' = 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (0, l'', r'')"
+ and ih2: "s'' \<noteq> 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (s'' + length A div 2, l'', r'')"
+ using Suc by (auto)
+ have h: "steps0 (1, l, r) B (Suc stp) = (s', l', r')" by fact
+
+ { assume "s'' = 0"
+ then have ?case using a h ih1 by (simp del: steps.simps)
+ } moreover
+ { assume as: "s'' \<noteq> 0" "s' = 0"
+ from as a h
+ have "step0 (s'', l'', r'') B = (0, l', r')" by (simp del: steps.simps)
+ with as have ?case
+ apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
+ apply(case_tac "fetch B s'' (read r'')")
+ apply(auto simp add: tm_comp_fetch_second_zero[OF _ a_wf] simp del: tm_comp.simps)
+ done
+ } moreover
+ { assume as: "s'' \<noteq> 0" "s' \<noteq> 0"
+ from as a h
+ have "step0 (s'', l'', r'') B = (s', l', r')" by (simp del: steps.simps)
+ with as have ?case
+ apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
+ apply(case_tac "fetch B s'' (read r'')")
+ apply(auto simp add: tm_comp_fetch_second_inst[OF _ a_wf as] simp del: tm_comp.simps)
+ done
+ }
+ ultimately show ?case by blast
+qed
+
+lemma tm_comp_second_halt_same:
+ assumes "tm_wf (A, 0)"
+ and "steps0 (1, l, r) B stp = (0, l', r')"
+ shows "steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (0, l', r')"
+using tm_comp_second_same[OF assms] by (simp)
+
+end
+