thys/UF_Rec.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 09 May 2013 18:16:36 +0100
changeset 250 745547bdc1c7
parent 249 6e7244ae43b8
child 256 04700724250f
permissions -rwxr-xr-x
added lemmas about a pairing function
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
theory UF_Rec
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
     2
imports Recs Turing_Hoare
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
begin
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
     8
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
     9
section {* Universal Function in HOL *}
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
text {*
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
  @{text "Entry sr i"} returns the @{text "i"}-th entry of a list of natural 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
  numbers encoded by number @{text "sr"} using Godel's coding.
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
  *}
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
fun Entry where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
  "Entry sr i = Lo sr (Pi (Suc i))"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
fun Listsum2 :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
  "Listsum2 xs 0 = 0"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
| "Listsum2 xs (Suc n) = Listsum2 xs n + xs ! n"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
text {*
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
  @{text "Strt"} corresponds to the @{text "strt"} function on page 90 of the 
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    25
  B book, but this definition generalises the original one in order to deal 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    26
  with multiple input arguments. *}
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    27
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
fun Strt' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
  "Strt' xs 0 = 0"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
| "Strt' xs (Suc n) = (let dbound = Listsum2 xs n + n 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
                       in Strt' xs n + (2 ^ (xs ! n + dbound) - 2 ^ dbound))"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
fun Strt :: "nat list \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
  "Strt xs = (let ys = map Suc xs in Strt' ys (length ys))"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
text {* The @{text "Scan"} function on page 90 of B book. *}
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
fun Scan :: "nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
  "Scan r = r mod 2"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
text {* The @{text Newleft} and @{text Newright} functions on page 91 of B book. *}
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
fun Newleft :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
  "Newleft p r a = (if a = 0 \<or> a = 1 then p 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
                    else if a = 2 then p div 2
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
                    else if a = 3 then 2 * p + r mod 2
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
                    else p)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
fun Newright :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
  "Newright p r a  = (if a = 0 then r - Scan r
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
                      else if a = 1 then r + 1 - Scan r
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
                      else if a = 2 then 2 * r + p mod 2
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
                      else if a = 3 then r div 2
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
                      else r)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
text {*
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
  The @{text "Actn"} function given on page 92 of B book, which is used to 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
  fetch Turing Machine intructions. In @{text "Actn m q r"}, @{text "m"} is 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
  the Goedel coding of a Turing Machine, @{text "q"} is the current state of 
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    64
  Turing Machine, @{text "r"} is the right number of Turing Machine tape. *}
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    65
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
fun Actn :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
  "Actn m q r = (if q \<noteq> 0 then Entry m (4 * (q - 1) + 2 * Scan r) else 4)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
fun Newstat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
  "Newstat m q r = (if q \<noteq> 0 then Entry m (4 * (q - 1) + 2 * Scan r + 1) else 0)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
fun Trpl :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
  "Trpl p q r = (Pi 0) ^ p * (Pi 1) ^ q * (Pi 2) ^ r"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
fun Left where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
  "Left c = Lo c (Pi 0)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
fun Right where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
  "Right c = Lo c (Pi 2)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
fun Stat where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
  "Stat c = Lo c (Pi 1)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    87
lemma mod_dvd_simp: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    88
  "(x mod y = (0::nat)) = (y dvd x)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    89
by(auto simp add: dvd_def)
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    91
lemma Trpl_Left [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    92
  "Left (Trpl p q r) = p"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    93
apply(simp)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    94
apply(subst Lo_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    95
apply(subst dvd_eq_mod_eq_0[symmetric])
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    96
apply(simp)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    97
apply(auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    98
thm Lo_def
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
    99
thm mod_dvd_simp
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   100
apply(simp add: left.simps trpl.simps lo.simps 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   101
              loR.simps mod_dvd_simp, auto simp: conf_decode1)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   102
apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r",
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   103
      auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   104
apply(erule_tac x = l in allE, auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   105
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
fun Inpt :: "nat \<Rightarrow> nat list \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
  "Inpt m xs = Trpl 0 1 (Strt xs)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
fun Newconf :: "nat \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
  "Newconf m c = Trpl (Newleft (Left c) (Right c) (Actn m (Stat c) (Right c)))
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
                      (Newstat m (Stat c) (Right c)) 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
                      (Newright (Left c) (Right c) (Actn m (Stat c) (Right c)))"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
text {*
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
  @{text "Conf k m r"} computes the TM configuration after @{text "k"} steps of execution
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
  of TM coded as @{text "m"} starting from the initial configuration where the left 
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   120
  number equals @{text "0"}, right number equals @{text "r"}. *}
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   121
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
fun Conf :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
  "Conf 0 m r  = Trpl 0 1 r"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
| "Conf (Suc k) m r = Newconf m (Conf k m r)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
text {*
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
  @{text "Nstd c"} returns true if the configuration coded 
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   129
  by @{text "c"} is not a stardard final configuration. *}
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   130
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
fun Nstd :: "nat \<Rightarrow> bool"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
  "Nstd c = (Stat c \<noteq> 0 \<or> 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
             Left c \<noteq> 0 \<or> 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
             Right c \<noteq> 2 ^ (Lg (Suc (Right c)) 2) - 1 \<or> 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
             Right c = 0)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
text{* 
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
  @{text "Nostop t m r"} means that afer @{text "t"} steps of 
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   141
  execution the TM coded by @{text "m"} is not at a stardard 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   142
  final configuration. *}
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   143
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
fun Nostop :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
  where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
  "Nostop t m r = Nstd (Conf t m r)"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
fun Value where
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
  "Value x = (Lg (Suc x) 2) - 1"
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
text{*
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
  @{text "rec_halt"} is the recursive function calculating the steps a TM needs to execute before
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
  to reach a stardard final configuration. This recursive function is the only one
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
  using @{text "Mn"} combinator. So it is the only non-primitive recursive function 
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   155
  needs to be used in the construction of the universal function @{text "rec_uf"}. *}
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   157
fun Halt :: "nat \<Rightarrow> nat \<Rightarrow> nat"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   158
  where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   159
  "Halt m r = (LEAST t. \<not> Nostop t m r)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   160
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   161
fun UF :: "nat \<Rightarrow> nat \<Rightarrow> nat"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   162
  where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   163
  "UF c m = Value (Right (Conf (Halt c m) c m))"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   166
section {* Coding of Turing Machines *}
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   168
text {*
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   169
  The purpose of this section is to construct the coding function of Turing 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   170
  Machine, which is going to be named @{text "code"}. *}
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   172
fun bl2nat :: "cell list \<Rightarrow> nat \<Rightarrow> nat"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   173
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   174
  "bl2nat [] n = 0"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   175
| "bl2nat (Bk # bl) n = bl2nat bl (Suc n)"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   176
| "bl2nat (Oc # bl) n = 2 ^ n + bl2nat bl (Suc n)"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   177
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   178
fun bl2wc :: "cell list \<Rightarrow> nat"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   179
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   180
  "bl2wc xs = bl2nat xs 0"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   182
lemma bl2nat_double [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   183
  "bl2nat xs (Suc n) = 2 * bl2nat xs n"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   184
apply(induct xs arbitrary: n)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   185
apply(auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   186
apply(case_tac a)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   187
apply(auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   188
done
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   189
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   190
lemma bl2nat_simps1 [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   191
  shows "bl2nat (Bk \<up> y) n = 0"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   192
by (induct y) (auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   193
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   194
lemma bl2nat_simps2 [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   195
  shows "bl2nat (Oc \<up> y) 0 = 2 ^ y - 1"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   196
apply(induct y)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   197
apply(auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   198
apply(case_tac "(2::nat)^ y")
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   199
apply(auto)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   200
done
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   201
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   202
fun Trpl_code :: "config \<Rightarrow> nat"
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   203
  where
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   204
  "Trpl_code (st, l, r) = Trpl (bl2wc l) st (bl2wc r)"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   205
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   206
fun action_map :: "action \<Rightarrow> nat"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   207
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   208
  "action_map W0 = 0"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   209
| "action_map W1 = 1"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   210
| "action_map L = 2"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   211
| "action_map R = 3"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   212
| "action_map Nop = 4"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   214
fun action_map_iff :: "nat \<Rightarrow> action"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   215
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   216
  "action_map_iff (0::nat) = W0"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   217
| "action_map_iff (Suc 0) = W1"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   218
| "action_map_iff (Suc (Suc 0)) = L"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   219
| "action_map_iff (Suc (Suc (Suc 0))) = R"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   220
| "action_map_iff n = Nop"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   222
fun block_map :: "cell \<Rightarrow> nat"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   223
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   224
  "block_map Bk = 0"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   225
| "block_map Oc = 1"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   227
fun Goedel_code' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   228
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   229
  "Goedel_code' [] n = 1"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   230
| "Goedel_code' (x # xs) n = (Pi n) ^ x * Goedel_code' xs (Suc n) "
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   231
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   232
fun Goedel_code :: "nat list \<Rightarrow> nat"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   233
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   234
  "Goedel_code xs = 2 ^ (length xs) * (Goedel_code' xs 1)"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   236
fun modify_tprog :: "instr list \<Rightarrow> nat list"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   237
  where
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   238
  "modify_tprog [] =  []"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   239
| "modify_tprog ((a, s) # nl) = action_map a # s # modify_tprog nl"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   241
text {* @{text "Code tp"} gives the Goedel coding of TM program @{text "tp"}. *}
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   242
fun Code :: "instr list \<Rightarrow> nat"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   243
  where 
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   244
  "Code tp = Goedel_code (modify_tprog tp)"
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   245
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   246
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   247
section {* Universal Function as Recursive Functions *}
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   248
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   249
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   250
  "rec_entry = CN rec_lo [Id 2 0, CN rec_pi [CN S [Id 2 1]]]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   251
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   252
fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   253
  where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   254
  "rec_listsum2 vl 0 = CN Z [Id vl 0]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   255
| "rec_listsum2 vl (Suc n) = CN rec_add [rec_listsum2 vl n, Id vl n]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   256
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   257
fun rec_strt' :: "nat \<Rightarrow> nat \<Rightarrow> recf"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   258
  where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   259
  "rec_strt' xs 0 = Z"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   260
| "rec_strt' xs (Suc n) = 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   261
      (let dbound = CN rec_add [rec_listsum2 xs n, constn n] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   262
       let t1 = CN rec_power [constn 2, dbound] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   263
       let t2 = CN rec_power [constn 2, CN rec_add [Id xs n, dbound]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   264
       CN rec_add [rec_strt' xs n, CN rec_minus [t2, t1]])"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   265
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   266
fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   267
  where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   268
  "rec_map rf vl = map (\<lambda>i. CN rf [Id vl i]) [0..<vl]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   269
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   270
fun rec_strt :: "nat \<Rightarrow> recf"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   271
  where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   272
  "rec_strt xs = CN (rec_strt' xs xs) (rec_map S xs)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   273
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   274
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   275
  "rec_scan = CN rec_mod [Id 1 0, constn 2]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   276
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   277
definition
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   278
    "rec_newleft =
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   279
       (let cond1 = CN rec_disj [CN rec_eq [Id 3 2, Z], CN rec_eq [Id 3 2, constn 1]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   280
        let cond2 = CN rec_eq [Id 3 2, constn 2] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   281
        let cond3 = CN rec_eq [Id 3 2, constn 3] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   282
        let case3 = CN rec_add [CN rec_mult [constn 2, Id 3 0], 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   283
                                CN rec_mod [Id 3 1, constn 2]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   284
        CN rec_if [cond1, Id 3 0, 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   285
          CN rec_if [cond2, CN rec_quo [Id 3 0, constn 2],
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   286
            CN rec_if [cond3, case3, Id 3 0]]])"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   287
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   288
definition
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   289
    "rec_newright =
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   290
       (let condn = \<lambda>n. CN rec_eq [Id 3 2, constn n] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   291
        let case0 = CN rec_minus [Id 3 1, CN rec_scan [Id 3 1]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   292
        let case1 = CN rec_minus [CN rec_add [Id 3 1, constn 1], CN rec_scan [Id 3 1]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   293
        let case2 = CN rec_add [CN rec_mult [constn 2, Id 3 1],                     
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   294
                                CN rec_mod [Id 3 0, constn 2]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   295
        let case3 = CN rec_quo [Id 2 1, constn 2] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   296
        CN rec_if [condn 0, case0, 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   297
          CN rec_if [condn 1, case1,
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   298
            CN rec_if [condn 2, case2,
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   299
              CN rec_if [condn 3, case3, Id 3 1]]]])"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   300
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   301
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   302
  "rec_actn = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   303
               let add2 = CN rec_mult [constn 2, CN rec_scan [Id 3 2]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   304
               let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]]
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   305
               in CN rec_if [Id 3 1, entry, constn 4])"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   306
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   307
definition rec_newstat :: "recf"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   308
  where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   309
  "rec_newstat = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   310
                  let add2 = CN S [CN rec_mult [constn 2, CN rec_scan [Id 3 2]]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   311
                  let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]]
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   312
                  in CN rec_if [Id 3 1, entry, Z])"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   313
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   314
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   315
  "rec_trpl = CN rec_mult [CN rec_mult 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   316
       [CN rec_power [constn (Pi 0), Id 3 0], 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   317
        CN rec_power [constn (Pi 1), Id 3 1]],
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   318
        CN rec_power [constn (Pi 2), Id 3 2]]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   319
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   320
definition
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   321
  "rec_left = CN rec_lo [Id 1 0, constn (Pi 0)]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   322
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   323
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   324
  "rec_right = CN rec_lo [Id 1 0, constn (Pi 2)]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   325
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   326
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   327
  "rec_stat = CN rec_lo [Id 1 0, constn (Pi 1)]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   328
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   329
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   330
  "rec_newconf = (let act = CN rec_actn [Id 2 0, CN rec_stat [Id 2 1], CN rec_right [Id 2 1]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   331
                  let left = CN rec_left [Id 2 1] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   332
                  let right = CN rec_right [Id 2 1] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   333
                  let stat = CN rec_stat [Id 2 1] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   334
                  let one = CN rec_newleft [left, right, act] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   335
                  let two = CN rec_newstat [Id 2 0, stat, right] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   336
                  let three = CN rec_newright [left, right, act]
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   337
                  in CN rec_trpl [one, two, three])" 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   338
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   339
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   340
  "rec_conf = PR (CN rec_trpl [constn 0, constn 1, Id 2 1])
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   341
                 (CN rec_newconf [Id 4 2 , Id 4 1])"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   342
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   343
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   344
  "rec_nstd = (let disj1 = CN rec_noteq [rec_stat, constn 0] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   345
               let disj2 = CN rec_noteq [rec_left, constn 0] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   346
               let rhs = CN rec_pred [CN rec_power [constn 2, CN rec_lg [CN S [rec_right], constn 2]]] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   347
               let disj3 = CN rec_noteq [rec_right, rhs] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   348
               let disj4 = CN rec_eq [rec_right, constn 0] in
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   349
               CN rec_disj [CN rec_disj [CN rec_disj [disj1, disj2], disj3], disj4])"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   350
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   351
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   352
  "rec_nostop = CN rec_nstd [rec_conf]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   353
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   354
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   355
  "rec_value = CN rec_pred [CN rec_lg [S, constn 2]]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   356
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   357
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   358
  "rec_halt = MN rec_nostop" 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   359
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   360
definition 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   361
  "rec_uf = CN rec_value [CN rec_right [CN rec_conf [rec_halt, Id 2 0, Id 2 1]]]"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   362
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   363
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   364
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   365
section {* Correctness Proofs for Recursive Functions *}
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   366
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   367
lemma entry_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   368
  "rec_eval rec_entry [sr, i] = Entry sr i"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   369
by(simp add: rec_entry_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   370
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   371
lemma listsum2_lemma [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   372
  "length xs = vl \<Longrightarrow> rec_eval (rec_listsum2 vl n) xs = Listsum2 xs n"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   373
by (induct n) (simp_all)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   374
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   375
lemma strt'_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   376
  "length xs = vl \<Longrightarrow> rec_eval (rec_strt' vl n) xs = Strt' xs n"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   377
by (induct n) (simp_all add: Let_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   378
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   379
lemma map_suc:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   380
  "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   381
proof -
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   382
  have "Suc \<circ> (\<lambda>x. xs ! x) = (\<lambda>x. Suc (xs ! x))" by (simp add: comp_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   383
  then have "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map (Suc \<circ> (\<lambda>x. xs ! x)) [0..<length xs]" by simp
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   384
  also have "... = map Suc (map (\<lambda>x. xs ! x) [0..<length xs])" by simp
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   385
  also have "... = map Suc xs" by (simp add: map_nth)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   386
  finally show "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" .
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   387
qed
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   388
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   389
lemma strt_lemma [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   390
  "length xs = vl \<Longrightarrow> rec_eval (rec_strt vl) xs = Strt xs"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   391
by (simp add: comp_def map_suc[symmetric])
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   392
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   393
lemma scan_lemma [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   394
  "rec_eval rec_scan [r] = r mod 2"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   395
by(simp add: rec_scan_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   396
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   397
lemma newleft_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   398
  "rec_eval rec_newleft [p, r, a] = Newleft p r a"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   399
by (simp add: rec_newleft_def Let_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   400
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   401
lemma newright_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   402
  "rec_eval rec_newright [p, r, a] = Newright p r a"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   403
by (simp add: rec_newright_def Let_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   404
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   405
lemma actn_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   406
  "rec_eval rec_actn [m, q, r] = Actn m q r"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   407
by (simp add: rec_actn_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   408
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   409
lemma newstat_lemma [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   410
  "rec_eval rec_newstat [m, q, r] = Newstat m q r"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   411
by (simp add: rec_newstat_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   412
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   413
lemma trpl_lemma [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   414
  "rec_eval rec_trpl [p, q, r] = Trpl p q r"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   415
by (simp add: rec_trpl_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   416
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   417
lemma left_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   418
  "rec_eval rec_left [c] = Left c" 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   419
by(simp add: rec_left_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   420
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   421
lemma right_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   422
  "rec_eval rec_right [c] = Right c" 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   423
by(simp add: rec_right_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   424
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   425
lemma stat_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   426
  "rec_eval rec_stat [c] = Stat c" 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   427
by(simp add: rec_stat_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   428
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   429
lemma newconf_lemma [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   430
  "rec_eval rec_newconf [m, c] = Newconf m c"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   431
by (simp add: rec_newconf_def Let_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   432
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   433
lemma conf_lemma [simp]: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   434
  "rec_eval rec_conf [k, m, r] = Conf k m r"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   435
by(induct k) (simp_all add: rec_conf_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   436
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   437
lemma nstd_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   438
  "rec_eval rec_nstd [c] = (if Nstd c then 1 else 0)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   439
by(simp add: rec_nstd_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   440
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   441
lemma nostop_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   442
  "rec_eval rec_nostop [t, m, r] = (if Nostop t m r then 1 else 0)" 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   443
by (simp add: rec_nostop_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   444
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   445
lemma value_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   446
  "rec_eval rec_value [x] = Value x"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   447
by (simp add: rec_value_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   448
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   449
lemma halt_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   450
  "rec_eval rec_halt [m, r] = Halt m r"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   451
by (simp add: rec_halt_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   452
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   453
lemma uf_lemma [simp]:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   454
  "rec_eval rec_uf [m, r] = UF m r"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   455
by (simp add: rec_uf_def)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   456
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   457
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   458
subsection {* Relating interperter functions to the execution of TMs *}
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   459
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   460
lemma rec_step: 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   461
  assumes "(\<lambda> (s, l, r). s \<le> length tp div 2) c"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   462
  shows "Trpl_code (step0 c tp) = Newconf (Code tp) (Trpl_code c)"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   463
apply(cases c)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   464
apply(simp only: Trpl_code.simps)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   465
apply(simp only: Let_def step.simps)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   466
apply(case_tac "fetch tp (a - 0) (read ca)")
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   467
apply(simp only: prod.cases)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   468
apply(case_tac "update aa (b, ca)")
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   469
apply(simp only: prod.cases)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   470
apply(simp only: Trpl_code.simps)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   471
apply(simp only: Newconf.simps)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   472
apply(simp only: Left.simps)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   473
oops
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   474
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   475
lemma rec_steps:
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   476
  assumes "tm_wf0 tp"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   477
  shows "Trpl_code (steps0 (1, Bk \<up> l, <lm>) tp stp) = Conf stp (Code tp) (bl2wc (<lm>))"
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   478
apply(induct stp)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   479
apply(simp)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   480
apply(simp)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   481
oops
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   482
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   483
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   484
lemma F_correct: 
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   485
  assumes tm: "steps0 (1, Bk \<up> l, <lm>) tp stp = (0, Bk \<up> m, Oc \<up> rs @ Bk \<up> n)"
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   486
  and     wf:  "tm_wf0 tp" "0 < rs"
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   487
  shows "rec_eval rec_uf [Code tp, bl2wc (<lm>)] = (rs - Suc 0)"
250
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   488
proof -
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   489
  from least_steps[OF tm] 
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   490
  obtain stp_least where
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   491
    before: "\<forall>stp' < stp_least. \<not> is_final (steps0 (1, Bk \<up> l, <lm>) tp stp')" and
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   492
    after:  "\<forall>stp' \<ge> stp_least. is_final (steps0 (1, Bk \<up> l, <lm>) tp stp')" by blast
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   493
  have "Halt (Code tp) (bl2wc (<lm>)) = stp_least" sorry
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   494
  show ?thesis
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   495
    apply(simp only: uf_lemma)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   496
    apply(simp only: UF.simps)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   497
    apply(simp only: Halt.simps)
745547bdc1c7 added lemmas about a pairing function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 249
diff changeset
   498
    oops
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   499
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   500
248
aea02b5a58d2 repaired old files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 246
diff changeset
   501
end
246
e113420a2fce separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   502