thys/UF_Rec.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 09 May 2013 18:16:36 +0100
changeset 250 745547bdc1c7
parent 249 6e7244ae43b8
child 256 04700724250f
permissions -rwxr-xr-x
added lemmas about a pairing function

theory UF_Rec
imports Recs Turing_Hoare
begin





section {* Universal Function in HOL *}

text {*
  @{text "Entry sr i"} returns the @{text "i"}-th entry of a list of natural 
  numbers encoded by number @{text "sr"} using Godel's coding.
  *}
fun Entry where
  "Entry sr i = Lo sr (Pi (Suc i))"

fun Listsum2 :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Listsum2 xs 0 = 0"
| "Listsum2 xs (Suc n) = Listsum2 xs n + xs ! n"

text {*
  @{text "Strt"} corresponds to the @{text "strt"} function on page 90 of the 
  B book, but this definition generalises the original one in order to deal 
  with multiple input arguments. *}

fun Strt' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Strt' xs 0 = 0"
| "Strt' xs (Suc n) = (let dbound = Listsum2 xs n + n 
                       in Strt' xs n + (2 ^ (xs ! n + dbound) - 2 ^ dbound))"

fun Strt :: "nat list \<Rightarrow> nat"
  where
  "Strt xs = (let ys = map Suc xs in Strt' ys (length ys))"

text {* The @{text "Scan"} function on page 90 of B book. *}
fun Scan :: "nat \<Rightarrow> nat"
  where
  "Scan r = r mod 2"

text {* The @{text Newleft} and @{text Newright} functions on page 91 of B book. *}

fun Newleft :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Newleft p r a = (if a = 0 \<or> a = 1 then p 
                    else if a = 2 then p div 2
                    else if a = 3 then 2 * p + r mod 2
                    else p)"

fun Newright :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Newright p r a  = (if a = 0 then r - Scan r
                      else if a = 1 then r + 1 - Scan r
                      else if a = 2 then 2 * r + p mod 2
                      else if a = 3 then r div 2
                      else r)"

text {*
  The @{text "Actn"} function given on page 92 of B book, which is used to 
  fetch Turing Machine intructions. In @{text "Actn m q r"}, @{text "m"} is 
  the Goedel coding of a Turing Machine, @{text "q"} is the current state of 
  Turing Machine, @{text "r"} is the right number of Turing Machine tape. *}

fun Actn :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Actn m q r = (if q \<noteq> 0 then Entry m (4 * (q - 1) + 2 * Scan r) else 4)"

fun Newstat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Newstat m q r = (if q \<noteq> 0 then Entry m (4 * (q - 1) + 2 * Scan r + 1) else 0)"

fun Trpl :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Trpl p q r = (Pi 0) ^ p * (Pi 1) ^ q * (Pi 2) ^ r"

fun Left where
  "Left c = Lo c (Pi 0)"

fun Right where
  "Right c = Lo c (Pi 2)"

fun Stat where
  "Stat c = Lo c (Pi 1)"

lemma mod_dvd_simp: 
  "(x mod y = (0::nat)) = (y dvd x)"
by(auto simp add: dvd_def)

lemma Trpl_Left [simp]:
  "Left (Trpl p q r) = p"
apply(simp)
apply(subst Lo_def)
apply(subst dvd_eq_mod_eq_0[symmetric])
apply(simp)
apply(auto)
thm Lo_def
thm mod_dvd_simp
apply(simp add: left.simps trpl.simps lo.simps 
              loR.simps mod_dvd_simp, auto simp: conf_decode1)
apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r",
      auto)
apply(erule_tac x = l in allE, auto)


fun Inpt :: "nat \<Rightarrow> nat list \<Rightarrow> nat"
  where
  "Inpt m xs = Trpl 0 1 (Strt xs)"

fun Newconf :: "nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Newconf m c = Trpl (Newleft (Left c) (Right c) (Actn m (Stat c) (Right c)))
                      (Newstat m (Stat c) (Right c)) 
                      (Newright (Left c) (Right c) (Actn m (Stat c) (Right c)))"

text {*
  @{text "Conf k m r"} computes the TM configuration after @{text "k"} steps of execution
  of TM coded as @{text "m"} starting from the initial configuration where the left 
  number equals @{text "0"}, right number equals @{text "r"}. *}

fun Conf :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Conf 0 m r  = Trpl 0 1 r"
| "Conf (Suc k) m r = Newconf m (Conf k m r)"

text {*
  @{text "Nstd c"} returns true if the configuration coded 
  by @{text "c"} is not a stardard final configuration. *}

fun Nstd :: "nat \<Rightarrow> bool"
  where
  "Nstd c = (Stat c \<noteq> 0 \<or> 
             Left c \<noteq> 0 \<or> 
             Right c \<noteq> 2 ^ (Lg (Suc (Right c)) 2) - 1 \<or> 
             Right c = 0)"


text{* 
  @{text "Nostop t m r"} means that afer @{text "t"} steps of 
  execution the TM coded by @{text "m"} is not at a stardard 
  final configuration. *}

fun Nostop :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
  where
  "Nostop t m r = Nstd (Conf t m r)"

fun Value where
  "Value x = (Lg (Suc x) 2) - 1"

text{*
  @{text "rec_halt"} is the recursive function calculating the steps a TM needs to execute before
  to reach a stardard final configuration. This recursive function is the only one
  using @{text "Mn"} combinator. So it is the only non-primitive recursive function 
  needs to be used in the construction of the universal function @{text "rec_uf"}. *}

fun Halt :: "nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Halt m r = (LEAST t. \<not> Nostop t m r)"

fun UF :: "nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "UF c m = Value (Right (Conf (Halt c m) c m))"


section {* Coding of Turing Machines *}

text {*
  The purpose of this section is to construct the coding function of Turing 
  Machine, which is going to be named @{text "code"}. *}

fun bl2nat :: "cell list \<Rightarrow> nat \<Rightarrow> nat"
  where
  "bl2nat [] n = 0"
| "bl2nat (Bk # bl) n = bl2nat bl (Suc n)"
| "bl2nat (Oc # bl) n = 2 ^ n + bl2nat bl (Suc n)"

fun bl2wc :: "cell list \<Rightarrow> nat"
  where
  "bl2wc xs = bl2nat xs 0"

lemma bl2nat_double [simp]: 
  "bl2nat xs (Suc n) = 2 * bl2nat xs n"
apply(induct xs arbitrary: n)
apply(auto)
apply(case_tac a)
apply(auto)
done

lemma bl2nat_simps1 [simp]: 
  shows "bl2nat (Bk \<up> y) n = 0"
by (induct y) (auto)

lemma bl2nat_simps2 [simp]: 
  shows "bl2nat (Oc \<up> y) 0 = 2 ^ y - 1"
apply(induct y)
apply(auto)
apply(case_tac "(2::nat)^ y")
apply(auto)
done

fun Trpl_code :: "config \<Rightarrow> nat"
  where
  "Trpl_code (st, l, r) = Trpl (bl2wc l) st (bl2wc r)"

fun action_map :: "action \<Rightarrow> nat"
  where
  "action_map W0 = 0"
| "action_map W1 = 1"
| "action_map L = 2"
| "action_map R = 3"
| "action_map Nop = 4"

fun action_map_iff :: "nat \<Rightarrow> action"
  where
  "action_map_iff (0::nat) = W0"
| "action_map_iff (Suc 0) = W1"
| "action_map_iff (Suc (Suc 0)) = L"
| "action_map_iff (Suc (Suc (Suc 0))) = R"
| "action_map_iff n = Nop"

fun block_map :: "cell \<Rightarrow> nat"
  where
  "block_map Bk = 0"
| "block_map Oc = 1"

fun Goedel_code' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Goedel_code' [] n = 1"
| "Goedel_code' (x # xs) n = (Pi n) ^ x * Goedel_code' xs (Suc n) "

fun Goedel_code :: "nat list \<Rightarrow> nat"
  where
  "Goedel_code xs = 2 ^ (length xs) * (Goedel_code' xs 1)"

fun modify_tprog :: "instr list \<Rightarrow> nat list"
  where
  "modify_tprog [] =  []"
| "modify_tprog ((a, s) # nl) = action_map a # s # modify_tprog nl"

text {* @{text "Code tp"} gives the Goedel coding of TM program @{text "tp"}. *}
fun Code :: "instr list \<Rightarrow> nat"
  where 
  "Code tp = Goedel_code (modify_tprog tp)"


section {* Universal Function as Recursive Functions *}

definition 
  "rec_entry = CN rec_lo [Id 2 0, CN rec_pi [CN S [Id 2 1]]]"

fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf"
  where
  "rec_listsum2 vl 0 = CN Z [Id vl 0]"
| "rec_listsum2 vl (Suc n) = CN rec_add [rec_listsum2 vl n, Id vl n]"

fun rec_strt' :: "nat \<Rightarrow> nat \<Rightarrow> recf"
  where
  "rec_strt' xs 0 = Z"
| "rec_strt' xs (Suc n) = 
      (let dbound = CN rec_add [rec_listsum2 xs n, constn n] in
       let t1 = CN rec_power [constn 2, dbound] in
       let t2 = CN rec_power [constn 2, CN rec_add [Id xs n, dbound]] in
       CN rec_add [rec_strt' xs n, CN rec_minus [t2, t1]])"

fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list"
  where
  "rec_map rf vl = map (\<lambda>i. CN rf [Id vl i]) [0..<vl]"

fun rec_strt :: "nat \<Rightarrow> recf"
  where
  "rec_strt xs = CN (rec_strt' xs xs) (rec_map S xs)"

definition 
  "rec_scan = CN rec_mod [Id 1 0, constn 2]"

definition
    "rec_newleft =
       (let cond1 = CN rec_disj [CN rec_eq [Id 3 2, Z], CN rec_eq [Id 3 2, constn 1]] in
        let cond2 = CN rec_eq [Id 3 2, constn 2] in
        let cond3 = CN rec_eq [Id 3 2, constn 3] in
        let case3 = CN rec_add [CN rec_mult [constn 2, Id 3 0], 
                                CN rec_mod [Id 3 1, constn 2]] in
        CN rec_if [cond1, Id 3 0, 
          CN rec_if [cond2, CN rec_quo [Id 3 0, constn 2],
            CN rec_if [cond3, case3, Id 3 0]]])"

definition
    "rec_newright =
       (let condn = \<lambda>n. CN rec_eq [Id 3 2, constn n] in
        let case0 = CN rec_minus [Id 3 1, CN rec_scan [Id 3 1]] in
        let case1 = CN rec_minus [CN rec_add [Id 3 1, constn 1], CN rec_scan [Id 3 1]] in
        let case2 = CN rec_add [CN rec_mult [constn 2, Id 3 1],                     
                                CN rec_mod [Id 3 0, constn 2]] in
        let case3 = CN rec_quo [Id 2 1, constn 2] in
        CN rec_if [condn 0, case0, 
          CN rec_if [condn 1, case1,
            CN rec_if [condn 2, case2,
              CN rec_if [condn 3, case3, Id 3 1]]]])"

definition 
  "rec_actn = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in
               let add2 = CN rec_mult [constn 2, CN rec_scan [Id 3 2]] in
               let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]]
               in CN rec_if [Id 3 1, entry, constn 4])"

definition rec_newstat :: "recf"
  where
  "rec_newstat = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in
                  let add2 = CN S [CN rec_mult [constn 2, CN rec_scan [Id 3 2]]] in
                  let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]]
                  in CN rec_if [Id 3 1, entry, Z])"

definition 
  "rec_trpl = CN rec_mult [CN rec_mult 
       [CN rec_power [constn (Pi 0), Id 3 0], 
        CN rec_power [constn (Pi 1), Id 3 1]],
        CN rec_power [constn (Pi 2), Id 3 2]]"

definition
  "rec_left = CN rec_lo [Id 1 0, constn (Pi 0)]"

definition 
  "rec_right = CN rec_lo [Id 1 0, constn (Pi 2)]"

definition 
  "rec_stat = CN rec_lo [Id 1 0, constn (Pi 1)]"

definition 
  "rec_newconf = (let act = CN rec_actn [Id 2 0, CN rec_stat [Id 2 1], CN rec_right [Id 2 1]] in
                  let left = CN rec_left [Id 2 1] in
                  let right = CN rec_right [Id 2 1] in
                  let stat = CN rec_stat [Id 2 1] in
                  let one = CN rec_newleft [left, right, act] in
                  let two = CN rec_newstat [Id 2 0, stat, right] in
                  let three = CN rec_newright [left, right, act]
                  in CN rec_trpl [one, two, three])" 

definition 
  "rec_conf = PR (CN rec_trpl [constn 0, constn 1, Id 2 1])
                 (CN rec_newconf [Id 4 2 , Id 4 1])"

definition 
  "rec_nstd = (let disj1 = CN rec_noteq [rec_stat, constn 0] in
               let disj2 = CN rec_noteq [rec_left, constn 0] in
               let rhs = CN rec_pred [CN rec_power [constn 2, CN rec_lg [CN S [rec_right], constn 2]]] in
               let disj3 = CN rec_noteq [rec_right, rhs] in
               let disj4 = CN rec_eq [rec_right, constn 0] in
               CN rec_disj [CN rec_disj [CN rec_disj [disj1, disj2], disj3], disj4])"

definition 
  "rec_nostop = CN rec_nstd [rec_conf]"

definition 
  "rec_value = CN rec_pred [CN rec_lg [S, constn 2]]"

definition 
  "rec_halt = MN rec_nostop" 

definition 
  "rec_uf = CN rec_value [CN rec_right [CN rec_conf [rec_halt, Id 2 0, Id 2 1]]]"



section {* Correctness Proofs for Recursive Functions *}

lemma entry_lemma [simp]:
  "rec_eval rec_entry [sr, i] = Entry sr i"
by(simp add: rec_entry_def)

lemma listsum2_lemma [simp]: 
  "length xs = vl \<Longrightarrow> rec_eval (rec_listsum2 vl n) xs = Listsum2 xs n"
by (induct n) (simp_all)

lemma strt'_lemma [simp]:
  "length xs = vl \<Longrightarrow> rec_eval (rec_strt' vl n) xs = Strt' xs n"
by (induct n) (simp_all add: Let_def)

lemma map_suc:
  "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs"
proof -
  have "Suc \<circ> (\<lambda>x. xs ! x) = (\<lambda>x. Suc (xs ! x))" by (simp add: comp_def)
  then have "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map (Suc \<circ> (\<lambda>x. xs ! x)) [0..<length xs]" by simp
  also have "... = map Suc (map (\<lambda>x. xs ! x) [0..<length xs])" by simp
  also have "... = map Suc xs" by (simp add: map_nth)
  finally show "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" .
qed

lemma strt_lemma [simp]: 
  "length xs = vl \<Longrightarrow> rec_eval (rec_strt vl) xs = Strt xs"
by (simp add: comp_def map_suc[symmetric])

lemma scan_lemma [simp]: 
  "rec_eval rec_scan [r] = r mod 2"
by(simp add: rec_scan_def)

lemma newleft_lemma [simp]:
  "rec_eval rec_newleft [p, r, a] = Newleft p r a"
by (simp add: rec_newleft_def Let_def)

lemma newright_lemma [simp]:
  "rec_eval rec_newright [p, r, a] = Newright p r a"
by (simp add: rec_newright_def Let_def)

lemma actn_lemma [simp]:
  "rec_eval rec_actn [m, q, r] = Actn m q r"
by (simp add: rec_actn_def)

lemma newstat_lemma [simp]: 
  "rec_eval rec_newstat [m, q, r] = Newstat m q r"
by (simp add: rec_newstat_def)

lemma trpl_lemma [simp]: 
  "rec_eval rec_trpl [p, q, r] = Trpl p q r"
by (simp add: rec_trpl_def)

lemma left_lemma [simp]:
  "rec_eval rec_left [c] = Left c" 
by(simp add: rec_left_def)

lemma right_lemma [simp]:
  "rec_eval rec_right [c] = Right c" 
by(simp add: rec_right_def)

lemma stat_lemma [simp]:
  "rec_eval rec_stat [c] = Stat c" 
by(simp add: rec_stat_def)

lemma newconf_lemma [simp]: 
  "rec_eval rec_newconf [m, c] = Newconf m c"
by (simp add: rec_newconf_def Let_def)

lemma conf_lemma [simp]: 
  "rec_eval rec_conf [k, m, r] = Conf k m r"
by(induct k) (simp_all add: rec_conf_def)

lemma nstd_lemma [simp]:
  "rec_eval rec_nstd [c] = (if Nstd c then 1 else 0)"
by(simp add: rec_nstd_def)

lemma nostop_lemma [simp]:
  "rec_eval rec_nostop [t, m, r] = (if Nostop t m r then 1 else 0)" 
by (simp add: rec_nostop_def)

lemma value_lemma [simp]:
  "rec_eval rec_value [x] = Value x"
by (simp add: rec_value_def)

lemma halt_lemma [simp]:
  "rec_eval rec_halt [m, r] = Halt m r"
by (simp add: rec_halt_def)

lemma uf_lemma [simp]:
  "rec_eval rec_uf [m, r] = UF m r"
by (simp add: rec_uf_def)


subsection {* Relating interperter functions to the execution of TMs *}

lemma rec_step: 
  assumes "(\<lambda> (s, l, r). s \<le> length tp div 2) c"
  shows "Trpl_code (step0 c tp) = Newconf (Code tp) (Trpl_code c)"
apply(cases c)
apply(simp only: Trpl_code.simps)
apply(simp only: Let_def step.simps)
apply(case_tac "fetch tp (a - 0) (read ca)")
apply(simp only: prod.cases)
apply(case_tac "update aa (b, ca)")
apply(simp only: prod.cases)
apply(simp only: Trpl_code.simps)
apply(simp only: Newconf.simps)
apply(simp only: Left.simps)
oops

lemma rec_steps:
  assumes "tm_wf0 tp"
  shows "Trpl_code (steps0 (1, Bk \<up> l, <lm>) tp stp) = Conf stp (Code tp) (bl2wc (<lm>))"
apply(induct stp)
apply(simp)
apply(simp)
oops


lemma F_correct: 
  assumes tm: "steps0 (1, Bk \<up> l, <lm>) tp stp = (0, Bk \<up> m, Oc \<up> rs @ Bk \<up> n)"
  and     wf:  "tm_wf0 tp" "0 < rs"
  shows "rec_eval rec_uf [Code tp, bl2wc (<lm>)] = (rs - Suc 0)"
proof -
  from least_steps[OF tm] 
  obtain stp_least where
    before: "\<forall>stp' < stp_least. \<not> is_final (steps0 (1, Bk \<up> l, <lm>) tp stp')" and
    after:  "\<forall>stp' \<ge> stp_least. is_final (steps0 (1, Bk \<up> l, <lm>) tp stp')" by blast
  have "Halt (Code tp) (bl2wc (<lm>)) = stp_least" sorry
  show ?thesis
    apply(simp only: uf_lemma)
    apply(simp only: UF.simps)
    apply(simp only: Halt.simps)
    oops


end