author | Christian Urban <christian dot urban at kcl dot ac dot uk> |
Thu, 02 May 2013 11:32:37 +0100 | |
changeset 246 | e113420a2fce |
child 248 | aea02b5a58d2 |
permissions | -rwxr-xr-x |
246
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1 |
theory UF_Rec |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2 |
imports Recs |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3 |
begin |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5 |
section {* Universal Function *} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
6 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
7 |
text {* @{text "NextPrime x"} returns the first prime number after @{text "x"}. *} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
8 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
9 |
fun NextPrime ::"nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
10 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
11 |
"NextPrime x = (LEAST y. y \<le> Suc (fact x) \<and> x < y \<and> prime y)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
12 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
13 |
definition rec_nextprime :: "recf" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
14 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
15 |
"rec_nextprime = (let conj1 = CN rec_le [Id 2 0, CN S [CN rec_fact [Id 2 1]]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
16 |
let conj2 = CN rec_less [Id 2 1, Id 2 0] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
17 |
let conj3 = CN rec_prime [Id 2 0] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
18 |
let conjs = CN rec_conj [CN rec_conj [conj2, conj1], conj3] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
19 |
in MN (CN rec_not [conjs]))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
20 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
21 |
lemma nextprime_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
22 |
"rec_eval rec_nextprime [x] = NextPrime x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
23 |
by (simp add: rec_nextprime_def Let_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
24 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
25 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
26 |
fun Pi :: "nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
27 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
28 |
"Pi 0 = 2" | |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
29 |
"Pi (Suc x) = NextPrime (Pi x)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
30 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
31 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
32 |
"rec_pi = PR (constn 2) (CN rec_nextprime [Id 2 1])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
33 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
34 |
lemma pi_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
35 |
"rec_eval rec_pi [x] = Pi x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
36 |
by (induct x) (simp_all add: rec_pi_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
37 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
38 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
39 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
40 |
text{* coding of the configuration *} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
41 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
42 |
text {* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
43 |
@{text "Entry sr i"} returns the @{text "i"}-th entry of a list of natural |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
44 |
numbers encoded by number @{text "sr"} using Godel's coding. |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
45 |
*} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
46 |
fun Entry where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
47 |
"Entry sr i = Lo sr (Pi (Suc i))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
48 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
49 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
50 |
"rec_entry = CN rec_lo [Id 2 0, CN rec_pi [CN S [Id 2 1]]]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
51 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
52 |
lemma entry_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
53 |
"rec_eval rec_entry [sr, i] = Entry sr i" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
54 |
by(simp add: rec_entry_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
55 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
56 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
57 |
fun Listsum2 :: "nat list \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
58 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
59 |
"Listsum2 xs 0 = 0" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
60 |
| "Listsum2 xs (Suc n) = Listsum2 xs n + xs ! n" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
61 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
62 |
fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
63 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
64 |
"rec_listsum2 vl 0 = CN Z [Id vl 0]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
65 |
| "rec_listsum2 vl (Suc n) = CN rec_add [rec_listsum2 vl n, Id vl n]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
66 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
67 |
lemma listsum2_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
68 |
"length xs = vl \<Longrightarrow> rec_eval (rec_listsum2 vl n) xs = Listsum2 xs n" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
69 |
by (induct n) (simp_all) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
70 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
71 |
text {* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
72 |
@{text "Strt"} corresponds to the @{text "strt"} function on page 90 of the |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
73 |
B book, but this definition generalises the original one to deal with multiple |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
74 |
input arguments. |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
75 |
*} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
76 |
fun Strt' :: "nat list \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
77 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
78 |
"Strt' xs 0 = 0" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
79 |
| "Strt' xs (Suc n) = (let dbound = Listsum2 xs n + n |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
80 |
in Strt' xs n + (2 ^ (xs ! n + dbound) - 2 ^ dbound))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
81 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
82 |
fun Strt :: "nat list \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
83 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
84 |
"Strt xs = (let ys = map Suc xs in Strt' ys (length ys))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
85 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
86 |
fun rec_strt' :: "nat \<Rightarrow> nat \<Rightarrow> recf" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
87 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
88 |
"rec_strt' xs 0 = Z" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
89 |
| "rec_strt' xs (Suc n) = |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
90 |
(let dbound = CN rec_add [rec_listsum2 xs n, constn n] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
91 |
let t1 = CN rec_power [constn 2, dbound] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
92 |
let t2 = CN rec_power [constn 2, CN rec_add [Id xs n, dbound]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
93 |
CN rec_add [rec_strt' xs n, CN rec_minus [t2, t1]])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
94 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
95 |
fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
96 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
97 |
"rec_map rf vl = map (\<lambda>i. CN rf [Id vl i]) [0..<vl]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
98 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
99 |
fun rec_strt :: "nat \<Rightarrow> recf" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
100 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
101 |
"rec_strt xs = CN (rec_strt' xs xs) (rec_map S xs)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
102 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
103 |
lemma strt'_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
104 |
"length xs = vl \<Longrightarrow> rec_eval (rec_strt' vl n) xs = Strt' xs n" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
105 |
by (induct n) (simp_all add: Let_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
106 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
107 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
108 |
lemma map_suc: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
109 |
"map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
110 |
proof - |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
111 |
have "Suc \<circ> (\<lambda>x. xs ! x) = (\<lambda>x. Suc (xs ! x))" by (simp add: comp_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
112 |
then have "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map (Suc \<circ> (\<lambda>x. xs ! x)) [0..<length xs]" by simp |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
113 |
also have "... = map Suc (map (\<lambda>x. xs ! x) [0..<length xs])" by simp |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
114 |
also have "... = map Suc xs" by (simp add: map_nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
115 |
finally show "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" . |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
116 |
qed |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
117 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
118 |
lemma strt_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
119 |
"length xs = vl \<Longrightarrow> rec_eval (rec_strt vl) xs = Strt xs" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
120 |
by (simp add: comp_def map_suc[symmetric]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
121 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
122 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
123 |
text {* The @{text "Scan"} function on page 90 of B book. *} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
124 |
fun Scan :: "nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
125 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
126 |
"Scan r = r mod 2" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
127 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
128 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
129 |
"rec_scan = CN rec_rem [Id 1 0, constn 2]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
130 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
131 |
lemma scan_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
132 |
"rec_eval rec_scan [r] = r mod 2" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
133 |
by(simp add: rec_scan_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
134 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
135 |
text {* The @{text Newleft} and @{text Newright} functions on page 91 of B book. *} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
136 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
137 |
fun Newleft :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
138 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
139 |
"Newleft p r a = (if a = 0 \<or> a = 1 then p |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
140 |
else if a = 2 then p div 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
141 |
else if a = 3 then 2 * p + r mod 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
142 |
else p)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
143 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
144 |
fun Newright :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
145 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
146 |
"Newright p r a = (if a = 0 then r - Scan r |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
147 |
else if a = 1 then r + 1 - Scan r |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
148 |
else if a = 2 then 2 * r + p mod 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
149 |
else if a = 3 then r div 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
150 |
else r)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
151 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
152 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
153 |
"rec_newleft = |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
154 |
(let cond1 = CN rec_disj [CN rec_eq [Id 3 2, Z], CN rec_eq [Id 3 2, constn 1]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
155 |
let cond2 = CN rec_eq [Id 3 2, constn 2] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
156 |
let cond3 = CN rec_eq [Id 3 2, constn 3] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
157 |
let case3 = CN rec_add [CN rec_mult [constn 2, Id 3 0], |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
158 |
CN rec_rem [Id 3 1, constn 2]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
159 |
CN rec_if [cond1, Id 3 0, |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
160 |
CN rec_if [cond2, CN rec_quo [Id 3 0, constn 2], |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
161 |
CN rec_if [cond3, case3, Id 3 0]]])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
162 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
163 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
164 |
"rec_newright = |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
165 |
(let condn = \<lambda>n. CN rec_eq [Id 3 2, constn n] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
166 |
let case0 = CN rec_minus [Id 3 1, CN rec_scan [Id 3 1]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
167 |
let case1 = CN rec_minus [CN rec_add [Id 3 1, constn 1], CN rec_scan [Id 3 1]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
168 |
let case2 = CN rec_add [CN rec_mult [constn 2, Id 3 1], |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
169 |
CN rec_rem [Id 3 0, constn 2]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
170 |
let case3 = CN rec_quo [Id 2 1, constn 2] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
171 |
CN rec_if [condn 0, case0, |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
172 |
CN rec_if [condn 1, case1, |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
173 |
CN rec_if [condn 2, case2, |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
174 |
CN rec_if [condn 3, case3, Id 3 1]]]])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
175 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
176 |
lemma newleft_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
177 |
"rec_eval rec_newleft [p, r, a] = Newleft p r a" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
178 |
by (simp add: rec_newleft_def Let_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
179 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
180 |
lemma newright_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
181 |
"rec_eval rec_newright [p, r, a] = Newright p r a" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
182 |
by (simp add: rec_newright_def Let_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
183 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
184 |
text {* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
185 |
The @{text "Actn"} function given on page 92 of B book, which is used to |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
186 |
fetch Turing Machine intructions. In @{text "Actn m q r"}, @{text "m"} is |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
187 |
the Goedel coding of a Turing Machine, @{text "q"} is the current state of |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
188 |
Turing Machine, @{text "r"} is the right number of Turing Machine tape. |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
189 |
*} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
190 |
fun Actn :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
191 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
192 |
"Actn m q r = (if q \<noteq> 0 then Entry m (4 * (q - 1) + 2 * Scan r) else 4)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
193 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
194 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
195 |
"rec_actn = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
196 |
let add2 = CN rec_mult [constn 2, CN rec_scan [Id 3 2]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
197 |
let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
198 |
in CN rec_if [Id 3 1, entry, constn 4])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
199 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
200 |
lemma actn_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
201 |
"rec_eval rec_actn [m, q, r] = Actn m q r" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
202 |
by (simp add: rec_actn_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
203 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
204 |
fun Newstat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
205 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
206 |
"Newstat m q r = (if q \<noteq> 0 then Entry m (4 * (q - 1) + 2 * Scan r + 1) else 0)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
207 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
208 |
definition rec_newstat :: "recf" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
209 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
210 |
"rec_newstat = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
211 |
let add2 = CN S [CN rec_mult [constn 2, CN rec_scan [Id 3 2]]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
212 |
let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
213 |
in CN rec_if [Id 3 1, entry, Z])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
214 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
215 |
lemma newstat_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
216 |
"rec_eval rec_newstat [m, q, r] = Newstat m q r" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
217 |
by (simp add: rec_newstat_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
218 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
219 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
220 |
fun Trpl :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
221 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
222 |
"Trpl p q r = (Pi 0) ^ p * (Pi 1) ^ q * (Pi 2) ^ r" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
223 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
224 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
225 |
"rec_trpl = CN rec_mult [CN rec_mult |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
226 |
[CN rec_power [constn (Pi 0), Id 3 0], |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
227 |
CN rec_power [constn (Pi 1), Id 3 1]], |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
228 |
CN rec_power [constn (Pi 2), Id 3 2]]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
229 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
230 |
lemma trpl_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
231 |
"rec_eval rec_trpl [p, q, r] = Trpl p q r" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
232 |
by (simp add: rec_trpl_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
233 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
234 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
235 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
236 |
fun Left where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
237 |
"Left c = Lo c (Pi 0)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
238 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
239 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
240 |
"rec_left = CN rec_lo [Id 1 0, constn (Pi 0)]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
241 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
242 |
lemma left_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
243 |
"rec_eval rec_left [c] = Left c" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
244 |
by(simp add: rec_left_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
245 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
246 |
fun Right where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
247 |
"Right c = Lo c (Pi 2)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
248 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
249 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
250 |
"rec_right = CN rec_lo [Id 1 0, constn (Pi 2)]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
251 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
252 |
lemma right_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
253 |
"rec_eval rec_right [c] = Right c" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
254 |
by(simp add: rec_right_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
255 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
256 |
fun Stat where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
257 |
"Stat c = Lo c (Pi 1)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
258 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
259 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
260 |
"rec_stat = CN rec_lo [Id 1 0, constn (Pi 1)]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
261 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
262 |
lemma stat_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
263 |
"rec_eval rec_stat [c] = Stat c" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
264 |
by(simp add: rec_stat_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
265 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
266 |
fun Inpt :: "nat \<Rightarrow> nat list \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
267 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
268 |
"Inpt m xs = Trpl 0 1 (Strt xs)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
269 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
270 |
fun Newconf :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
271 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
272 |
"Newconf m c = Trpl (Newleft (Left c) (Right c) (Actn m (Stat c) (Right c))) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
273 |
(Newstat m (Stat c) (Right c)) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
274 |
(Newright (Left c) (Right c) (Actn m (Stat c) (Right c)))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
275 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
276 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
277 |
"rec_newconf = (let act = CN rec_actn [Id 2 0, CN rec_stat [Id 2 1], CN rec_right [Id 2 1]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
278 |
let left = CN rec_left [Id 2 1] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
279 |
let right = CN rec_right [Id 2 1] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
280 |
let stat = CN rec_stat [Id 2 1] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
281 |
let one = CN rec_newleft [left, right, act] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
282 |
let two = CN rec_newstat [Id 2 0, stat, right] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
283 |
let three = CN rec_newright [left, right, act] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
284 |
in CN rec_trpl [one, two, three])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
285 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
286 |
lemma newconf_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
287 |
"rec_eval rec_newconf [m, c] = Newconf m c" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
288 |
by (simp add: rec_newconf_def Let_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
289 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
290 |
text {* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
291 |
@{text "Conf k m r"} computes the TM configuration after @{text "k"} steps of execution |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
292 |
of TM coded as @{text "m"} starting from the initial configuration where the left |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
293 |
number equals @{text "0"}, right number equals @{text "r"}. |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
294 |
*} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
295 |
fun Conf :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
296 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
297 |
"Conf 0 m r = Trpl 0 1 r" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
298 |
| "Conf (Suc k) m r = Newconf m (Conf k m r)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
299 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
300 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
301 |
"rec_conf = PR (CN rec_trpl [constn 0, constn 1, Id 2 1]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
302 |
(CN rec_newconf [Id 4 2 , Id 4 1])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
303 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
304 |
lemma conf_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
305 |
"rec_eval rec_conf [k, m, r] = Conf k m r" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
306 |
by(induct k) (simp_all add: rec_conf_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
307 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
308 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
309 |
text {* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
310 |
@{text "Nstd c"} returns true if the configuration coded |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
311 |
by @{text "c"} is not a stardard final configuration. |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
312 |
*} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
313 |
fun Nstd :: "nat \<Rightarrow> bool" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
314 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
315 |
"Nstd c = (Stat c \<noteq> 0 \<or> |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
316 |
Left c \<noteq> 0 \<or> |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
317 |
Right c \<noteq> 2 ^ (Lg (Suc (Right c)) 2) - 1 \<or> |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
318 |
Right c = 0)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
319 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
320 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
321 |
"rec_nstd = (let disj1 = CN rec_noteq [rec_stat, constn 0] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
322 |
let disj2 = CN rec_noteq [rec_left, constn 0] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
323 |
let rhs = CN rec_pred [CN rec_power [constn 2, CN rec_lg [CN S [rec_right], constn 2]]] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
324 |
let disj3 = CN rec_noteq [rec_right, rhs] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
325 |
let disj4 = CN rec_eq [rec_right, constn 0] in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
326 |
CN rec_disj [CN rec_disj [CN rec_disj [disj1, disj2], disj3], disj4])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
327 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
328 |
lemma nstd_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
329 |
"rec_eval rec_nstd [c] = (if Nstd c then 1 else 0)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
330 |
by(simp add: rec_nstd_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
331 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
332 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
333 |
text{* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
334 |
@{text "Nostop t m r"} means that afer @{text "t"} steps of |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
335 |
execution, the TM coded by @{text "m"} is not at a stardard |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
336 |
final configuration. |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
337 |
*} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
338 |
fun Nostop :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
339 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
340 |
"Nostop t m r = Nstd (Conf t m r)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
341 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
342 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
343 |
"rec_nostop = CN rec_nstd [rec_conf]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
344 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
345 |
lemma nostop_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
346 |
"rec_eval rec_nostop [t, m, r] = (if Nostop t m r then 1 else 0)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
347 |
by (simp add: rec_nostop_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
348 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
349 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
350 |
fun Value where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
351 |
"Value x = (Lg (Suc x) 2) - 1" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
352 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
353 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
354 |
"rec_value = CN rec_pred [CN rec_lg [S, constn 2]]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
355 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
356 |
lemma value_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
357 |
"rec_eval rec_value [x] = Value x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
358 |
by (simp add: rec_value_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
359 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
360 |
text{* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
361 |
@{text "rec_halt"} is the recursive function calculating the steps a TM needs to execute before |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
362 |
to reach a stardard final configuration. This recursive function is the only one |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
363 |
using @{text "Mn"} combinator. So it is the only non-primitive recursive function |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
364 |
needs to be used in the construction of the universal function @{text "rec_uf"}. |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
365 |
*} |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
366 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
367 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
368 |
"rec_halt = MN rec_nostop" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
369 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
370 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
371 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
372 |
"rec_uf = CN rec_value [CN rec_right [CN rec_conf [rec_halt, Id 2 0, Id 2 1]]]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
373 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
374 |
end |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
375 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
376 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
377 |
(* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
378 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
379 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
380 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
381 |
fun mtest where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
382 |
"mtest R 0 = if R 0 then 0 else 1" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
383 |
| "mtest R (Suc n) = (if R n then mtest R n else (Suc n))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
384 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
385 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
386 |
lemma |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
387 |
"rec_eval (rec_maxr2 f) [x, y1, y2] = XXX" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
388 |
apply(simp only: rec_maxr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
389 |
apply(case_tac x) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
390 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
391 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
392 |
apply(simp only: constn_lemma) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
393 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
394 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
395 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
396 |
apply(simp only: rec_maxr2_def[symmetric]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
397 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
398 |
apply(simp only: map.simps nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
399 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
400 |
apply(simp only: map.simps nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
401 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
402 |
apply(simp only: map.simps nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
403 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
404 |
apply(simp only: map.simps nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
405 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
406 |
apply(simp only: map.simps nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
407 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
408 |
apply(simp only: map.simps nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
409 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
410 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
411 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
412 |
"rec_minr2 f = rec_sigma2 (rec_accum2 (CN rec_not [f]))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
413 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
414 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
415 |
"rec_maxr2 f = rec_sigma2 (CN rec_sign [CN (rec_sigma2 f) [S]])" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
416 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
417 |
definition Minr :: "(nat \<Rightarrow> nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
418 |
where "Minr R x ys = Min ({z | z. z \<le> x \<and> R z ys} \<union> {Suc x})" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
419 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
420 |
definition Maxr :: "(nat \<Rightarrow> nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
421 |
where "Maxr R x ys = Max ({z | z. z \<le> x \<and> R z ys} \<union> {0})" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
422 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
423 |
lemma rec_minr2_le_Suc: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
424 |
"rec_eval (rec_minr2 f) [x, y1, y2] \<le> Suc x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
425 |
apply(simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
426 |
apply(auto intro!: setsum_one_le setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
427 |
done |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
428 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
429 |
lemma rec_minr2_eq_Suc: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
430 |
assumes "\<forall>z \<le> x. rec_eval f [z, y1, y2] = 0" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
431 |
shows "rec_eval (rec_minr2 f) [x, y1, y2] = Suc x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
432 |
using assms by (simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
433 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
434 |
lemma rec_minr2_le: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
435 |
assumes h1: "y \<le> x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
436 |
and h2: "0 < rec_eval f [y, y1, y2]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
437 |
shows "rec_eval (rec_minr2 f) [x, y1, y2] \<le> y" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
438 |
apply(simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
439 |
apply(subst setsum_cut_off_le[OF h1]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
440 |
using h2 apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
441 |
apply(auto intro!: setsum_one_less setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
442 |
done |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
443 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
444 |
(* ??? *) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
445 |
lemma setsum_eq_one_le2: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
446 |
fixes n::nat |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
447 |
assumes "\<forall>i \<le> n. f i \<le> 1" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
448 |
shows "((\<Sum>i \<le> n. f i) \<ge> Suc n) \<Longrightarrow> (\<forall>i \<le> n. f i = 1)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
449 |
using assms |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
450 |
apply(induct n) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
451 |
apply(simp add: One_nat_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
452 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
453 |
apply(auto simp add: One_nat_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
454 |
apply(drule_tac x="Suc n" in spec) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
455 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
456 |
by (metis le_Suc_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
457 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
458 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
459 |
lemma rec_min2_not: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
460 |
assumes "rec_eval (rec_minr2 f) [x, y1, y2] = Suc x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
461 |
shows "\<forall>z \<le> x. rec_eval f [z, y1, y2] = 0" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
462 |
using assms |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
463 |
apply(simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
464 |
apply(subgoal_tac "\<forall>i \<le> x. (\<Prod>z\<le>i. if rec_eval f [z, y1, y2] = 0 then 1 else 0) = (1::nat)") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
465 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
466 |
apply (metis atMost_iff le_refl zero_neq_one) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
467 |
apply(rule setsum_eq_one_le2) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
468 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
469 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
470 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
471 |
done |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
472 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
473 |
lemma disjCI2: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
474 |
assumes "~P ==> Q" shows "P|Q" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
475 |
apply (rule classical) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
476 |
apply (iprover intro: assms disjI1 disjI2 notI elim: notE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
477 |
done |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
478 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
479 |
lemma minr_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
480 |
shows "rec_eval (rec_minr2 f) [x, y1, y2] = (LEAST z. (z \<le> x \<and> 0 < rec_eval f [z, y1, y2]) \<or> z = Suc x)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
481 |
apply(induct x) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
482 |
apply(rule Least_equality[symmetric]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
483 |
apply(simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
484 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
485 |
apply(rule rec_minr2_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
486 |
apply(auto)[2] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
487 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
488 |
apply(rule rec_minr2_le_Suc) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
489 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
490 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
491 |
apply(rule rec_minr2_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
492 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
493 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
494 |
apply(rule rec_minr2_le_Suc) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
495 |
apply(rule disjCI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
496 |
apply(simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
497 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
498 |
apply(ru le setsum_one_less) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
499 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
500 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
501 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
502 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
503 |
apply(rule setsum_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
504 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
505 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
506 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
507 |
thm disj_CE |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
508 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
509 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
510 |
lemma minr_lemma: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
511 |
shows "rec_eval (rec_minr2 f) [x, y1, y2] = Minr (\<lambda>x xs. (0 < rec_eval f (x #xs))) x [y1, y2]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
512 |
apply(simp only: Minr_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
513 |
apply(rule sym) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
514 |
apply(rule Min_eqI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
515 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
516 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
517 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
518 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
519 |
apply(rule rec_minr2_le_Suc) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
520 |
apply(rule rec_minr2_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
521 |
apply(auto)[2] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
522 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
523 |
apply(induct x) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
524 |
apply(simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
525 |
apply( |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
526 |
apply(rule disjCI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
527 |
apply(rule rec_minr2_eq_Suc) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
528 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
529 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
530 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
531 |
apply(rule setsum_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
532 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
533 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
534 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
535 |
apply(subst setsum_cut_off_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
536 |
apply(auto)[2] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
537 |
apply(rule setsum_one_less) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
538 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
539 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
540 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
541 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
542 |
thm setsum_eq_one_le |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
543 |
apply(subgoal_tac "(\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)) \<or> |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
544 |
(\<not> (\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)))") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
545 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
546 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
547 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
548 |
apply(rule disjI1) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
549 |
apply(rule setsum_eq_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
550 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
551 |
apply(rule disjI2) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
552 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
553 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
554 |
apply(subgoal_tac "\<exists>l. l = (LEAST z. 0 < rec_eval f [z, y1, y2])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
555 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
556 |
apply metis |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
557 |
apply(erule exE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
558 |
apply(subgoal_tac "l \<le> x") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
559 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
560 |
apply (metis not_leE not_less_Least order_trans) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
561 |
apply(subst setsum_least_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
562 |
apply(rotate_tac 4) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
563 |
apply(assumption) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
564 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
565 |
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
566 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
567 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
568 |
apply(rotate_tac 5) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
569 |
apply(drule not_less_Least) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
570 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
571 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
572 |
apply(rule_tac x="(LEAST z. 0 < rec_eval f [z, y1, y2])" in exI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
573 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
574 |
apply (metis LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
575 |
apply(subst setsum_least_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
576 |
apply(rotate_tac 3) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
577 |
apply(assumption) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
578 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
579 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
580 |
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
581 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
582 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
583 |
apply (metis neq0_conv not_less_Least) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
584 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
585 |
apply (metis (mono_tags) LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
586 |
by (metis LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
587 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
588 |
lemma minr_lemma: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
589 |
shows "rec_eval (rec_minr2 f) [x, y1, y2] = Minr (\<lambda>x xs. (0 < rec_eval f (x #xs))) x [y1, y2]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
590 |
apply(simp only: Minr_def rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
591 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
592 |
apply(rule sym) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
593 |
apply(rule Min_eqI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
594 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
595 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
596 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
597 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
598 |
apply(rule setsum_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
599 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
600 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
601 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
602 |
apply(subst setsum_cut_off_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
603 |
apply(auto)[2] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
604 |
apply(rule setsum_one_less) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
605 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
606 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
607 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
608 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
609 |
thm setsum_eq_one_le |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
610 |
apply(subgoal_tac "(\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)) \<or> |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
611 |
(\<not> (\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)))") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
612 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
613 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
614 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
615 |
apply(rule disjI1) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
616 |
apply(rule setsum_eq_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
617 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
618 |
apply(rule disjI2) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
619 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
620 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
621 |
apply(subgoal_tac "\<exists>l. l = (LEAST z. 0 < rec_eval f [z, y1, y2])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
622 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
623 |
apply metis |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
624 |
apply(erule exE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
625 |
apply(subgoal_tac "l \<le> x") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
626 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
627 |
apply (metis not_leE not_less_Least order_trans) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
628 |
apply(subst setsum_least_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
629 |
apply(rotate_tac 4) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
630 |
apply(assumption) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
631 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
632 |
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
633 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
634 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
635 |
apply(rotate_tac 5) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
636 |
apply(drule not_less_Least) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
637 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
638 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
639 |
apply(rule_tac x="(LEAST z. 0 < rec_eval f [z, y1, y2])" in exI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
640 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
641 |
apply (metis LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
642 |
apply(subst setsum_least_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
643 |
apply(rotate_tac 3) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
644 |
apply(assumption) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
645 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
646 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
647 |
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
648 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
649 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
650 |
apply (metis neq0_conv not_less_Least) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
651 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
652 |
apply (metis (mono_tags) LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
653 |
by (metis LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
654 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
655 |
lemma disjCI2: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
656 |
assumes "~P ==> Q" shows "P|Q" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
657 |
apply (rule classical) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
658 |
apply (iprover intro: assms disjI1 disjI2 notI elim: notE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
659 |
done |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
660 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
661 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
662 |
lemma minr_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
663 |
shows "rec_eval (rec_minr2 f) [x, y1, y2] = (LEAST z. (z \<le> x \<and> 0 < rec_eval f [z, y1, y2]) \<or> z = Suc x)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
664 |
(*apply(simp add: rec_minr2_def)*) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
665 |
apply(rule Least_equality[symmetric]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
666 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
667 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
668 |
apply(rule rec_minr2_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
669 |
apply(auto)[2] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
670 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
671 |
apply(rule rec_minr2_le_Suc) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
672 |
apply(rule disjCI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
673 |
apply(simp add: rec_minr2_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
674 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
675 |
apply(ru le setsum_one_less) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
676 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
677 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
678 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
679 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
680 |
apply(rule setsum_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
681 |
apply(clarify) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
682 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
683 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
684 |
thm disj_CE |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
685 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
686 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
687 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
688 |
apply(rule le_tran |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
689 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
690 |
apply(rule le_trans) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
691 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
692 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
693 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
694 |
apply(subst setsum_cut_off_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
695 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
696 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
697 |
lemma |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
698 |
"Minr R x ys = (LEAST z. (R z ys \<or> z = Suc x))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
699 |
apply(simp add: Minr_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
700 |
apply(rule Min_eqI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
701 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
702 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
703 |
apply(rule Least_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
704 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
705 |
apply(rule LeastI2_wellorder) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
706 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
707 |
done |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
708 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
709 |
definition (in ord) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
710 |
Great :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "GREAT " 10) where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
711 |
"Great P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> y \<le> x))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
712 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
713 |
(* |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
714 |
lemma Great_equality: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
715 |
assumes "P x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
716 |
and "\<And>y. P y \<Longrightarrow> y \<le> x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
717 |
shows "Great P = x" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
718 |
unfolding Great_def |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
719 |
apply(rule the_equality) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
720 |
apply(blast intro: assms) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
721 |
*) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
722 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
723 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
724 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
725 |
lemma |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
726 |
"Maxr R x ys = (GREAT z. (R z ys \<or> z = 0))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
727 |
apply(simp add: Maxr_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
728 |
apply(rule Max_eqI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
729 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
730 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
731 |
thm Least_le Greatest_le |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
732 |
oops |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
733 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
734 |
lemma |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
735 |
"Maxr R x ys = x - Minr (\<lambda>z. R (x - z)) x ys" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
736 |
apply(simp add: Maxr_def Minr_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
737 |
apply(rule Max_eqI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
738 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
739 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
740 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
741 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
742 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
743 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
744 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
745 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
746 |
thm Min_insert |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
747 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
748 |
oops |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
749 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
750 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
751 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
752 |
definition quo :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
753 |
where |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
754 |
"quo x y = (if y = 0 then 0 else x div y)" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
755 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
756 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
757 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
758 |
"rec_quo = CN rec_mult [CN rec_sign [Id 2 1], |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
759 |
CN (rec_minr2 (CN rec_less [Id 3 1, CN rec_mult [CN S [Id 3 0], Id 3 2]])) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
760 |
[Id 2 0, Id 2 0, Id 2 1]]" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
761 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
762 |
lemma div_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
763 |
"rec_eval rec_quo [x, y] = quo x y" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
764 |
apply(simp add: rec_quo_def quo_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
765 |
apply(rule impI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
766 |
apply(rule Min_eqI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
767 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
768 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
769 |
apply(erule disjE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
770 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
771 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
772 |
apply (metis div_le_dividend le_SucI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
773 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
774 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
775 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
776 |
apply (metis mult_Suc_right nat_mult_commute split_div_lemma) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
777 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
778 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
779 |
apply (smt div_le_dividend fst_divmod_nat) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
780 |
apply(simp add: quo_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
781 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
782 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
783 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
784 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
785 |
fun Minr :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
786 |
where "Minr R x y = (let setx = {z | z. z \<le> x \<and> R [z, y]} in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
787 |
if (setx = {}) then (Suc x) else (Min setx))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
788 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
789 |
definition |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
790 |
"rec_minr f = rec_sigma1 (rec_accum1 (CN rec_not [f]))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
791 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
792 |
lemma minr_lemma [simp]: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
793 |
shows "rec_eval (rec_minr f) [x, y] = Minr (\<lambda>xs. (0 < rec_eval f xs)) x y" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
794 |
apply(simp only: rec_minr_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
795 |
apply(simp only: sigma1_lemma) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
796 |
apply(simp only: accum1_lemma) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
797 |
apply(subst rec_eval.simps) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
798 |
apply(simp only: map.simps nth) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
799 |
apply(simp only: Minr.simps Let_def) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
800 |
apply(auto simp del: not_lemma) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
801 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
802 |
apply(simp only: not_lemma sign_lemma) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
803 |
apply(rule sym) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
804 |
apply(rule Min_eqI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
805 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
806 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
807 |
apply(subst setsum_cut_off_le[where m="ya"]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
808 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
809 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
810 |
apply(metis Icc_subset_Ici_iff atLeast_def in_mono le_refl mem_Collect_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
811 |
apply(rule setsum_one_less) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
812 |
apply(default) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
813 |
apply(rule impI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
814 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
815 |
apply(auto split: if_splits)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
816 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
817 |
apply(rule conjI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
818 |
apply(subst setsum_cut_off_le[where m="xa"]) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
819 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
820 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
821 |
apply (metis Icc_subset_Ici_iff atLeast_def in_mono le_refl mem_Collect_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
822 |
apply(rule le_trans) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
823 |
apply(rule setsum_one_less) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
824 |
apply(default) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
825 |
apply(rule impI) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
826 |
apply(rule setprod_one_le) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
827 |
apply(auto split: if_splits)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
828 |
apply(simp) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
829 |
apply(subgoal_tac "\<exists>l. l = (LEAST z. 0 < rec_eval f [z, y])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
830 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
831 |
apply metis |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
832 |
apply(erule exE) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
833 |
apply(subgoal_tac "l \<le> x") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
834 |
defer |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
835 |
apply (metis not_leE not_less_Least order_trans) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
836 |
apply(subst setsum_least_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
837 |
apply(rotate_tac 3) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
838 |
apply(assumption) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
839 |
prefer 3 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
840 |
apply (metis LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
841 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
842 |
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y])") |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
843 |
prefer 2 |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
844 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
845 |
apply(rotate_tac 5) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
846 |
apply(drule not_less_Least) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
847 |
apply(auto)[1] |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
848 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
849 |
by (metis (mono_tags) LeastI_ex) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
850 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
851 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
852 |
fun Minr2 :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
853 |
where "Minr2 R x y = (let setx = {z | z. z \<le> x \<and> R [z, y]} in |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
854 |
Min (setx \<union> {Suc x}))" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
855 |
|
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
856 |
lemma Minr2_Minr: |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
857 |
"Minr2 R x y = Minr R x y" |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
858 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
859 |
apply (metis (lifting, no_types) Min_singleton empty_Collect_eq) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
860 |
apply(rule min_absorb2) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
861 |
apply(subst Min_le_iff) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
862 |
apply(auto) |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
863 |
done |
e113420a2fce
separated recursive functions and UF
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
864 |
*) |