testing1/collatz.scala
changeset 320 cdfb2ce30a3d
parent 314 21b52310bd8b
child 323 1f8005b4cdf6
equal deleted inserted replaced
319:b84ea52bfd8f 320:cdfb2ce30a3d
     1 // Part 1 about the 3n+1 conjecture
     1 object CW6a {
     2 //==================================
       
     3 
     2 
     4 // generate jar with
     3 //(1) Complete the collatz function below. It should
     5 //   > scala -d collatz.jar  collatz.scala
     4 //    recursively calculate the number of steps needed 
     6 
     5 //    until the collatz series reaches the number 1.
     7 object CW6a { 
     6 //    If needed, you can use an auxiliary function that
       
     7 //    performs the recursion. The function should expect
       
     8 //    arguments in the range of 1 to 1 Million.
     8 
     9 
     9 
    10 
    10 /*
    11 // def collatz(n: Long) : Long = {
    11  * def collatz(n: Long): Long =
    12 //     if (n == 1) 1 //else
    12   if (n == 1) 0 else
    13 //     // if (n % 2 == 0) {
    13     if (n % 2 == 0) 1 + collatz(n / 2) else 
    14 //     //     collatz(n/2)
    14       1 + collatz(3 * n + 1)
    15 //     //     steps + 1
    15 */
    16 //     // } //else
       
    17 //     // if (n % 2 != 0) {
       
    18 //     //     collatz((3 * n) + 1)
       
    19 //     //     steps + 1
       
    20 //     // }
       
    21 // }
    16 
    22 
    17 def collatz_max(bnd: Long): (Long, Long) = {
    23 // val steps: Long = 1
    18   val all = for (i <- (1L to bnd)) yield (collatz(i), i)
    24 // val lst = List()
    19   all.maxBy(_._1)
    25 // def collatz(n: Long) : Long = {
       
    26 //     if  (n == 1) { steps + 1 }
       
    27 //     else if (n % 2 == 0) { 
       
    28 //         collatz(n/2);
       
    29 //     }
       
    30 //     else { 
       
    31 //         collatz((3 * n) + 1);
       
    32 //     }
       
    33 //     steps + 1
       
    34 // } 
       
    35 // collatz(6)
       
    36 
       
    37 def collatz(n: Long, list: List[Long] = List()): Long = {
       
    38     if (n == 1) {
       
    39             n :: list
       
    40             list.size.toLong
       
    41     }
       
    42     else if (n % 2 == 0) {
       
    43         collatz(n / 2, n :: list)
       
    44     }
       
    45     else {
       
    46         collatz((3 * n) + 1, n :: list)
       
    47     }
       
    48 }   
       
    49 
       
    50 val test = collatz(6)
       
    51 
       
    52 //(2) Complete the collatz_max function below. It should
       
    53 //    calculate how many steps are needed for each number 
       
    54 //    from 1 up to a bound and then calculate the maximum number of
       
    55 //    steps and the corresponding number that needs that many 
       
    56 //    steps. Again, you should expect bounds in the range of 1
       
    57 //    up to 1 Million. The first component of the pair is
       
    58 //    the maximum number of steps and the second is the 
       
    59 //    corresponding number.
       
    60 
       
    61 //def collatz_max(bnd: Long) : (Long, Long) = ...
       
    62 def collatz_max(bnd: Long) : (Long, Long) = {
       
    63     val stepsTable = for (n <- (1 to bnd.toInt).toList) yield (collatz(n), n.toLong)
       
    64     //println(stepsTable)
       
    65     stepsTable.max
    20 }
    66 }
    21 
    67 
    22 
    68 
    23 /* some test cases
       
    24 val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
       
    25 
       
    26 for (bnd <- bnds) {
       
    27   val (steps, max) = collatz_max(bnd)
       
    28   println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
       
    29 }
    69 }
    30 
    70 
    31 */
       
    32 
       
    33 
       
    34 
       
    35 
       
    36 def collatz(n: Long) : Long = {
       
    37     if (n == 1) {
       
    38         1L
       
    39     } else {
       
    40         if (n % 2 == 0) {
       
    41             collatz(n/2) + 1
       
    42         } else {
       
    43             collatz((n*3)+1) + 1
       
    44         }
       
    45     }
       
    46 }
       
    47 
       
    48 }
       
    49 
       
    50 
       
    51