testing1/collatz.scala
changeset 323 1f8005b4cdf6
parent 320 cdfb2ce30a3d
equal deleted inserted replaced
322:755d165633ec 323:1f8005b4cdf6
     4 //    recursively calculate the number of steps needed 
     4 //    recursively calculate the number of steps needed 
     5 //    until the collatz series reaches the number 1.
     5 //    until the collatz series reaches the number 1.
     6 //    If needed, you can use an auxiliary function that
     6 //    If needed, you can use an auxiliary function that
     7 //    performs the recursion. The function should expect
     7 //    performs the recursion. The function should expect
     8 //    arguments in the range of 1 to 1 Million.
     8 //    arguments in the range of 1 to 1 Million.
       
     9 def stepsCounter(n: Long, s: Long) : Long = n match{
       
    10     case 1 => s
       
    11     case n if(n%2==0) => stepsCounter(n/2,s+1)
       
    12     case _ => stepsCounter(3*n+1, s+1)
       
    13 }
       
    14 
       
    15 def collatz(n: Long) : Long = n match {
       
    16     case n if(n>0) => stepsCounter(n,0)
       
    17     case n if(n<=0) => stepsCounter(1,0)
       
    18 }
     9 
    19 
    10 
    20 
    11 // def collatz(n: Long) : Long = {
       
    12 //     if (n == 1) 1 //else
       
    13 //     // if (n % 2 == 0) {
       
    14 //     //     collatz(n/2)
       
    15 //     //     steps + 1
       
    16 //     // } //else
       
    17 //     // if (n % 2 != 0) {
       
    18 //     //     collatz((3 * n) + 1)
       
    19 //     //     steps + 1
       
    20 //     // }
       
    21 // }
       
    22 
       
    23 // val steps: Long = 1
       
    24 // val lst = List()
       
    25 // def collatz(n: Long) : Long = {
       
    26 //     if  (n == 1) { steps + 1 }
       
    27 //     else if (n % 2 == 0) { 
       
    28 //         collatz(n/2);
       
    29 //     }
       
    30 //     else { 
       
    31 //         collatz((3 * n) + 1);
       
    32 //     }
       
    33 //     steps + 1
       
    34 // } 
       
    35 // collatz(6)
       
    36 
       
    37 def collatz(n: Long, list: List[Long] = List()): Long = {
       
    38     if (n == 1) {
       
    39             n :: list
       
    40             list.size.toLong
       
    41     }
       
    42     else if (n % 2 == 0) {
       
    43         collatz(n / 2, n :: list)
       
    44     }
       
    45     else {
       
    46         collatz((3 * n) + 1, n :: list)
       
    47     }
       
    48 }   
       
    49 
       
    50 val test = collatz(6)
       
    51 
    21 
    52 //(2) Complete the collatz_max function below. It should
    22 //(2) Complete the collatz_max function below. It should
    53 //    calculate how many steps are needed for each number 
    23 //    calculate how many steps are needed for each number 
    54 //    from 1 up to a bound and then calculate the maximum number of
    24 //    from 1 up to a bound and then calculate the maximum number of
    55 //    steps and the corresponding number that needs that many 
    25 //    steps and the corresponding number that needs that many 
    56 //    steps. Again, you should expect bounds in the range of 1
    26 //    steps. Again, you should expect bounds in the range of 1
    57 //    up to 1 Million. The first component of the pair is
    27 //    up to 1 Million. The first component of the pair is
    58 //    the maximum number of steps and the second is the 
    28 //    the maximum number of steps and the second is the 
    59 //    corresponding number.
    29 //    corresponding number.
    60 
    30 
    61 //def collatz_max(bnd: Long) : (Long, Long) = ...
    31 def collatz_max(bnd: Long) : (Long, Long) =  {
    62 def collatz_max(bnd: Long) : (Long, Long) = {
    32     val allCollatz = for(i<-1L until bnd) yield collatz(i)
    63     val stepsTable = for (n <- (1 to bnd.toInt).toList) yield (collatz(n), n.toLong)
    33     val pair = (allCollatz.max, (allCollatz.indexOf(allCollatz.max) +1).toLong)
    64     //println(stepsTable)
    34     pair
    65     stepsTable.max
       
    66 }
    35 }
    67 
    36 
    68 
       
    69 }
    37 }
    70