object CW6a {
//(1) Complete the collatz function below. It should
// recursively calculate the number of steps needed
// until the collatz series reaches the number 1.
// If needed, you can use an auxiliary function that
// performs the recursion. The function should expect
// arguments in the range of 1 to 1 Million.
// def collatz(n: Long) : Long = {
// if (n == 1) 1 //else
// // if (n % 2 == 0) {
// // collatz(n/2)
// // steps + 1
// // } //else
// // if (n % 2 != 0) {
// // collatz((3 * n) + 1)
// // steps + 1
// // }
// }
// val steps: Long = 1
// val lst = List()
// def collatz(n: Long) : Long = {
// if (n == 1) { steps + 1 }
// else if (n % 2 == 0) {
// collatz(n/2);
// }
// else {
// collatz((3 * n) + 1);
// }
// steps + 1
// }
// collatz(6)
def collatz(n: Long, list: List[Long] = List()): Long = {
if (n == 1) {
n :: list
list.size.toLong
}
else if (n % 2 == 0) {
collatz(n / 2, n :: list)
}
else {
collatz((3 * n) + 1, n :: list)
}
}
val test = collatz(6)
//(2) Complete the collatz_max function below. It should
// calculate how many steps are needed for each number
// from 1 up to a bound and then calculate the maximum number of
// steps and the corresponding number that needs that many
// steps. Again, you should expect bounds in the range of 1
// up to 1 Million. The first component of the pair is
// the maximum number of steps and the second is the
// corresponding number.
//def collatz_max(bnd: Long) : (Long, Long) = ...
def collatz_max(bnd: Long) : (Long, Long) = {
val stepsTable = for (n <- (1 to bnd.toInt).toList) yield (collatz(n), n.toLong)
//println(stepsTable)
stepsTable.max
}
}