--- a/testing1/collatz.scala Tue Nov 12 10:47:27 2019 +0000
+++ b/testing1/collatz.scala Tue Nov 19 00:40:27 2019 +0000
@@ -1,51 +1,70 @@
-// Part 1 about the 3n+1 conjecture
-//==================================
+object CW6a {
-// generate jar with
-// > scala -d collatz.jar collatz.scala
-
-object CW6a {
+//(1) Complete the collatz function below. It should
+// recursively calculate the number of steps needed
+// until the collatz series reaches the number 1.
+// If needed, you can use an auxiliary function that
+// performs the recursion. The function should expect
+// arguments in the range of 1 to 1 Million.
-/*
- * def collatz(n: Long): Long =
- if (n == 1) 0 else
- if (n % 2 == 0) 1 + collatz(n / 2) else
- 1 + collatz(3 * n + 1)
-*/
+// def collatz(n: Long) : Long = {
+// if (n == 1) 1 //else
+// // if (n % 2 == 0) {
+// // collatz(n/2)
+// // steps + 1
+// // } //else
+// // if (n % 2 != 0) {
+// // collatz((3 * n) + 1)
+// // steps + 1
+// // }
+// }
+
+// val steps: Long = 1
+// val lst = List()
+// def collatz(n: Long) : Long = {
+// if (n == 1) { steps + 1 }
+// else if (n % 2 == 0) {
+// collatz(n/2);
+// }
+// else {
+// collatz((3 * n) + 1);
+// }
+// steps + 1
+// }
+// collatz(6)
-def collatz_max(bnd: Long): (Long, Long) = {
- val all = for (i <- (1L to bnd)) yield (collatz(i), i)
- all.maxBy(_._1)
+def collatz(n: Long, list: List[Long] = List()): Long = {
+ if (n == 1) {
+ n :: list
+ list.size.toLong
+ }
+ else if (n % 2 == 0) {
+ collatz(n / 2, n :: list)
+ }
+ else {
+ collatz((3 * n) + 1, n :: list)
+ }
+}
+
+val test = collatz(6)
+
+//(2) Complete the collatz_max function below. It should
+// calculate how many steps are needed for each number
+// from 1 up to a bound and then calculate the maximum number of
+// steps and the corresponding number that needs that many
+// steps. Again, you should expect bounds in the range of 1
+// up to 1 Million. The first component of the pair is
+// the maximum number of steps and the second is the
+// corresponding number.
+
+//def collatz_max(bnd: Long) : (Long, Long) = ...
+def collatz_max(bnd: Long) : (Long, Long) = {
+ val stepsTable = for (n <- (1 to bnd.toInt).toList) yield (collatz(n), n.toLong)
+ //println(stepsTable)
+ stepsTable.max
}
-/* some test cases
-val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
-
-for (bnd <- bnds) {
- val (steps, max) = collatz_max(bnd)
- println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
}
-*/
-
-
-
-
-def collatz(n: Long) : Long = {
- if (n == 1) {
- 1L
- } else {
- if (n % 2 == 0) {
- collatz(n/2) + 1
- } else {
- collatz((n*3)+1) + 1
- }
- }
-}
-
-}
-
-
-