AFP-Submission/Simplifying.thy
changeset 191 6bb15b8e6301
equal deleted inserted replaced
190:2a07222e2a8b 191:6bb15b8e6301
       
     1 (*  Title:       POSIX Lexing with Derivatives of Regular Expressions
       
     2     Authors:     Fahad Ausaf <fahad.ausaf at icloud.com>, 2016
       
     3                  Roy Dyckhoff <roy.dyckhoff at st-andrews.ac.uk>, 2016
       
     4                  Christian Urban <christian.urban at kcl.ac.uk>, 2016
       
     5     Maintainer:  Christian Urban <christian.urban at kcl.ac.uk>
       
     6 *) 
       
     7 
       
     8 theory Simplifying
       
     9   imports "Lexer" 
       
    10 begin
       
    11 
       
    12 section {* Lexer including simplifications *}
       
    13 
       
    14 
       
    15 fun F_RIGHT where
       
    16   "F_RIGHT f v = Right (f v)"
       
    17 
       
    18 fun F_LEFT where
       
    19   "F_LEFT f v = Left (f v)"
       
    20 
       
    21 fun F_Plus where
       
    22   "F_Plus f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)"
       
    23 | "F_Plus f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)"  
       
    24 | "F_Plus f1 f2 v = v"
       
    25 
       
    26 
       
    27 fun F_Times1 where
       
    28   "F_Times1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)"
       
    29 
       
    30 fun F_Times2 where 
       
    31   "F_Times2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)"
       
    32 
       
    33 fun F_Times where 
       
    34   "F_Times f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)"
       
    35 | "F_Times f1 f2 v = v"
       
    36 
       
    37 fun simp_Plus where
       
    38   "simp_Plus (Zero, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)"
       
    39 | "simp_Plus (r\<^sub>1, f\<^sub>1) (Zero, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)"
       
    40 | "simp_Plus (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Plus r\<^sub>1 r\<^sub>2, F_Plus f\<^sub>1 f\<^sub>2)"
       
    41 
       
    42 fun simp_Times where
       
    43   "simp_Times (One, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_Times1 f\<^sub>1 f\<^sub>2)"
       
    44 | "simp_Times (r\<^sub>1, f\<^sub>1) (One, f\<^sub>2) = (r\<^sub>1, F_Times2 f\<^sub>1 f\<^sub>2)"
       
    45 | "simp_Times (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Times r\<^sub>1 r\<^sub>2, F_Times f\<^sub>1 f\<^sub>2)"  
       
    46  
       
    47 lemma simp_Times_simps[simp]:
       
    48   "simp_Times p1 p2 = (if (fst p1 = One) then (fst p2, F_Times1 (snd p1) (snd p2))
       
    49                     else (if (fst p2 = One) then (fst p1, F_Times2 (snd p1) (snd p2))
       
    50                     else (Times (fst p1) (fst p2), F_Times (snd p1) (snd p2))))"
       
    51 by (induct p1 p2 rule: simp_Times.induct) (auto)
       
    52 
       
    53 lemma simp_Plus_simps[simp]:
       
    54   "simp_Plus p1 p2 = (if (fst p1 = Zero) then (fst p2, F_RIGHT (snd p2))
       
    55                     else (if (fst p2 = Zero) then (fst p1, F_LEFT (snd p1))
       
    56                     else (Plus (fst p1) (fst p2), F_Plus (snd p1) (snd p2))))"
       
    57 by (induct p1 p2 rule: simp_Plus.induct) (auto)
       
    58 
       
    59 fun 
       
    60   simp :: "'a rexp \<Rightarrow> 'a rexp * ('a val \<Rightarrow> 'a val)"
       
    61 where
       
    62   "simp (Plus r1 r2) = simp_Plus (simp r1) (simp r2)" 
       
    63 | "simp (Times r1 r2) = simp_Times (simp r1) (simp r2)" 
       
    64 | "simp r = (r, id)"
       
    65 
       
    66 fun 
       
    67   slexer :: "'a rexp \<Rightarrow> 'a list \<Rightarrow> ('a val) option"
       
    68 where
       
    69   "slexer r [] = (if nullable r then Some(mkeps r) else None)"
       
    70 | "slexer r (c#s) = (let (rs, fr) = simp (deriv c r) in
       
    71                          (case (slexer rs s) of  
       
    72                             None \<Rightarrow> None
       
    73                           | Some(v) \<Rightarrow> Some(injval r c (fr v))))"
       
    74 
       
    75 lemma slexer_better_simp:
       
    76   "slexer r (c#s) = (case (slexer (fst (simp (deriv c r))) s) of  
       
    77                             None \<Rightarrow> None
       
    78                           | Some(v) \<Rightarrow> Some(injval r c ((snd (simp (deriv c r))) v)))"
       
    79 by (auto split: prod.split option.split)
       
    80 
       
    81 
       
    82 lemma L_fst_simp:
       
    83   shows "lang r = lang (fst (simp r))"
       
    84 using assms
       
    85 by (induct r) (auto)
       
    86 
       
    87 lemma Posix_simp:
       
    88   assumes "s \<in> (fst (simp r)) \<rightarrow> v" 
       
    89   shows "s \<in> r \<rightarrow> ((snd (simp r)) v)"
       
    90 using assms
       
    91 proof(induct r arbitrary: s v rule: rexp.induct)
       
    92   case (Plus r1 r2 s v)
       
    93   have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
       
    94   have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
       
    95   have as: "s \<in> fst (simp (Plus r1 r2)) \<rightarrow> v" by fact
       
    96   consider (Zero_Zero) "fst (simp r1) = Zero" "fst (simp r2) = Zero"
       
    97          | (Zero_NZero) "fst (simp r1) = Zero" "fst (simp r2) \<noteq> Zero"
       
    98          | (NZero_Zero) "fst (simp r1) \<noteq> Zero" "fst (simp r2) = Zero"
       
    99          | (NZero_NZero) "fst (simp r1) \<noteq> Zero" "fst (simp r2) \<noteq> Zero" by auto
       
   100   then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" 
       
   101     proof(cases)
       
   102       case (Zero_Zero)
       
   103       with as have "s \<in> Zero \<rightarrow> v" by simp 
       
   104       then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" by (rule Posix_elims(1))
       
   105     next
       
   106       case (Zero_NZero)
       
   107       with as have "s \<in> fst (simp r2) \<rightarrow> v" by simp
       
   108       with IH2 have "s \<in> r2 \<rightarrow> snd (simp r2) v" by simp
       
   109       moreover
       
   110       from Zero_NZero have "fst (simp r1) = Zero" by simp
       
   111       then have "lang (fst (simp r1)) = {}" by simp
       
   112       then have "lang r1 = {}" using L_fst_simp by auto
       
   113       then have "s \<notin> lang r1" by simp 
       
   114       ultimately have "s \<in> Plus r1 r2 \<rightarrow> Right (snd (simp r2) v)" by (rule Posix_Plus2)
       
   115       then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
       
   116       using Zero_NZero by simp
       
   117     next
       
   118       case (NZero_Zero)
       
   119       with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
       
   120       with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
       
   121       then have "s \<in> Plus r1 r2 \<rightarrow> Left (snd (simp r1) v)" by (rule Posix_Plus1) 
       
   122       then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_Zero by simp
       
   123     next
       
   124       case (NZero_NZero)
       
   125       with as have "s \<in> Plus (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
       
   126       then consider (Left) v1 where "v = Left v1" "s \<in> (fst (simp r1)) \<rightarrow> v1"
       
   127                   | (Right) v2 where "v = Right v2" "s \<in> (fst (simp r2)) \<rightarrow> v2" "s \<notin> lang (fst (simp r1))"
       
   128                   by (erule_tac Posix_elims(4)) 
       
   129       then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
       
   130       proof(cases)
       
   131         case (Left)
       
   132         then have "v = Left v1" "s \<in> r1 \<rightarrow> (snd (simp r1) v1)" using IH1 by simp_all
       
   133         then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_NZero
       
   134           by (simp_all add: Posix_Plus1)
       
   135       next 
       
   136         case (Right)
       
   137         then have "v = Right v2" "s \<in> r2 \<rightarrow> (snd (simp r2) v2)" "s \<notin> lang r1" using IH2 L_fst_simp by auto
       
   138         then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_NZero
       
   139           by (simp_all add: Posix_Plus2)
       
   140       qed
       
   141     qed
       
   142 next
       
   143   case (Times r1 r2 s v)
       
   144   have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
       
   145   have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
       
   146   have as: "s \<in> fst (simp (Times r1 r2)) \<rightarrow> v" by fact
       
   147   consider (One_One) "fst (simp r1) = One" "fst (simp r2) = One"
       
   148          | (One_NOne) "fst (simp r1) = One" "fst (simp r2) \<noteq> One"
       
   149          | (NOne_One) "fst (simp r1) \<noteq> One" "fst (simp r2) = One"
       
   150          | (NOne_NOne) "fst (simp r1) \<noteq> One" "fst (simp r2) \<noteq> One" by auto
       
   151   then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" 
       
   152   proof(cases)
       
   153       case (One_One)
       
   154       with as have b: "s \<in> One \<rightarrow> v" by simp 
       
   155       from b have "s \<in> r1 \<rightarrow> snd (simp r1) v" using IH1 One_One by simp
       
   156       moreover
       
   157       from b have c: "s = []" "v = Void" using Posix_elims(2) by auto
       
   158       moreover
       
   159       have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
       
   160       then have "[] \<in> fst (simp r2) \<rightarrow> Void" using One_One by simp
       
   161       then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
       
   162       ultimately have "([] @ []) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) Void)"
       
   163         using Posix_Times by blast 
       
   164       then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using c One_One by simp
       
   165     next
       
   166       case (One_NOne)
       
   167       with as have b: "s \<in> fst (simp r2) \<rightarrow> v" by simp 
       
   168       from b have "s \<in> r2 \<rightarrow> snd (simp r2) v" using IH2 One_NOne by simp
       
   169       moreover
       
   170       have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
       
   171       then have "[] \<in> fst (simp r1) \<rightarrow> Void" using One_NOne by simp
       
   172       then have "[] \<in> r1 \<rightarrow> snd (simp r1) Void" using IH1 by simp
       
   173       moreover
       
   174       from One_NOne(1) have "lang (fst (simp r1)) = {[]}" by simp
       
   175       then have "lang r1 = {[]}" by (simp add: L_fst_simp[symmetric])
       
   176       ultimately have "([] @ s) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) v)"
       
   177         by(rule_tac Posix_Times) auto
       
   178       then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using One_NOne by simp
       
   179     next
       
   180       case (NOne_One)
       
   181         with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
       
   182         with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
       
   183       moreover
       
   184         have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
       
   185         then have "[] \<in> fst (simp r2) \<rightarrow> Void" using NOne_One by simp
       
   186         then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
       
   187       ultimately have "(s @ []) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) v) (snd (simp r2) Void)"
       
   188         by(rule_tac Posix_Times) auto
       
   189       then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using NOne_One by simp
       
   190     next
       
   191       case (NOne_NOne)
       
   192       with as have "s \<in> Times (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
       
   193       then obtain s1 s2 v1 v2 where eqs: "s = s1 @ s2" "v = Seq v1 v2"
       
   194                      "s1 \<in> (fst (simp r1)) \<rightarrow> v1" "s2 \<in> (fst (simp r2)) \<rightarrow> v2"
       
   195                      "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> lang r1 \<and> s\<^sub>4 \<in> lang r2)"
       
   196                      by (erule_tac Posix_elims(5)) (auto simp add: L_fst_simp[symmetric]) 
       
   197       then have "s1 \<in> r1 \<rightarrow> (snd (simp r1) v1)" "s2 \<in> r2 \<rightarrow> (snd (simp r2) v2)"
       
   198         using IH1 IH2 by auto             
       
   199       then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using eqs NOne_NOne
       
   200         by(auto intro: Posix_Times)
       
   201     qed
       
   202 qed (simp_all)
       
   203 
       
   204 
       
   205 lemma slexer_correctness:
       
   206   shows "slexer r s = lexer r s"
       
   207 proof(induct s arbitrary: r)
       
   208   case Nil
       
   209   show "slexer r [] = lexer r []" by simp
       
   210 next 
       
   211   case (Cons c s r)
       
   212   have IH: "\<And>r. slexer r s = lexer r s" by fact
       
   213   show "slexer r (c # s) = lexer r (c # s)" 
       
   214    proof (cases "s \<in> lang (deriv c r)")
       
   215      case True
       
   216        assume a1: "s \<in> lang (deriv c r)"
       
   217        then obtain v1 where a2: "lexer (deriv c r) s = Some v1" "s \<in> deriv c r \<rightarrow> v1"
       
   218          using lexer_correct_Some by auto
       
   219        from a1 have "s \<in> lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
       
   220        then obtain v2 where a3: "lexer (fst (simp (deriv c r))) s = Some v2" "s \<in> (fst (simp (deriv c r))) \<rightarrow> v2"
       
   221           using lexer_correct_Some by auto
       
   222        then have a4: "slexer (fst (simp (deriv c r))) s = Some v2" using IH by simp
       
   223        from a3(2) have "s \<in> deriv c r \<rightarrow> (snd (simp (deriv c r))) v2" using Posix_simp by auto
       
   224        with a2(2) have "v1 = (snd (simp (deriv c r))) v2" using Posix_determ by auto
       
   225        with a2(1) a4 show "slexer r (c # s) = lexer r (c # s)" by (auto split: prod.split)
       
   226      next 
       
   227      case False
       
   228        assume b1: "s \<notin> lang (deriv c r)"
       
   229        then have "lexer (deriv c r) s = None" using lexer_correct_None by auto
       
   230        moreover
       
   231        from b1 have "s \<notin> lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
       
   232        then have "lexer (fst (simp (deriv c r))) s = None" using lexer_correct_None by auto
       
   233        then have "slexer (fst (simp (deriv c r))) s = None" using IH by simp
       
   234        ultimately show "slexer r (c # s) = lexer r (c # s)" 
       
   235          by (simp del: slexer.simps add: slexer_better_simp)
       
   236    qed
       
   237 qed  
       
   238 
       
   239 end