(* Title: POSIX Lexing with Derivatives of Regular Expressions
Authors: Fahad Ausaf <fahad.ausaf at icloud.com>, 2016
Roy Dyckhoff <roy.dyckhoff at st-andrews.ac.uk>, 2016
Christian Urban <christian.urban at kcl.ac.uk>, 2016
Maintainer: Christian Urban <christian.urban at kcl.ac.uk>
*)
theory Simplifying
imports "Lexer"
begin
section {* Lexer including simplifications *}
fun F_RIGHT where
"F_RIGHT f v = Right (f v)"
fun F_LEFT where
"F_LEFT f v = Left (f v)"
fun F_Plus where
"F_Plus f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)"
| "F_Plus f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)"
| "F_Plus f1 f2 v = v"
fun F_Times1 where
"F_Times1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)"
fun F_Times2 where
"F_Times2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)"
fun F_Times where
"F_Times f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)"
| "F_Times f1 f2 v = v"
fun simp_Plus where
"simp_Plus (Zero, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)"
| "simp_Plus (r\<^sub>1, f\<^sub>1) (Zero, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)"
| "simp_Plus (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Plus r\<^sub>1 r\<^sub>2, F_Plus f\<^sub>1 f\<^sub>2)"
fun simp_Times where
"simp_Times (One, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_Times1 f\<^sub>1 f\<^sub>2)"
| "simp_Times (r\<^sub>1, f\<^sub>1) (One, f\<^sub>2) = (r\<^sub>1, F_Times2 f\<^sub>1 f\<^sub>2)"
| "simp_Times (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Times r\<^sub>1 r\<^sub>2, F_Times f\<^sub>1 f\<^sub>2)"
lemma simp_Times_simps[simp]:
"simp_Times p1 p2 = (if (fst p1 = One) then (fst p2, F_Times1 (snd p1) (snd p2))
else (if (fst p2 = One) then (fst p1, F_Times2 (snd p1) (snd p2))
else (Times (fst p1) (fst p2), F_Times (snd p1) (snd p2))))"
by (induct p1 p2 rule: simp_Times.induct) (auto)
lemma simp_Plus_simps[simp]:
"simp_Plus p1 p2 = (if (fst p1 = Zero) then (fst p2, F_RIGHT (snd p2))
else (if (fst p2 = Zero) then (fst p1, F_LEFT (snd p1))
else (Plus (fst p1) (fst p2), F_Plus (snd p1) (snd p2))))"
by (induct p1 p2 rule: simp_Plus.induct) (auto)
fun
simp :: "'a rexp \<Rightarrow> 'a rexp * ('a val \<Rightarrow> 'a val)"
where
"simp (Plus r1 r2) = simp_Plus (simp r1) (simp r2)"
| "simp (Times r1 r2) = simp_Times (simp r1) (simp r2)"
| "simp r = (r, id)"
fun
slexer :: "'a rexp \<Rightarrow> 'a list \<Rightarrow> ('a val) option"
where
"slexer r [] = (if nullable r then Some(mkeps r) else None)"
| "slexer r (c#s) = (let (rs, fr) = simp (deriv c r) in
(case (slexer rs s) of
None \<Rightarrow> None
| Some(v) \<Rightarrow> Some(injval r c (fr v))))"
lemma slexer_better_simp:
"slexer r (c#s) = (case (slexer (fst (simp (deriv c r))) s) of
None \<Rightarrow> None
| Some(v) \<Rightarrow> Some(injval r c ((snd (simp (deriv c r))) v)))"
by (auto split: prod.split option.split)
lemma L_fst_simp:
shows "lang r = lang (fst (simp r))"
using assms
by (induct r) (auto)
lemma Posix_simp:
assumes "s \<in> (fst (simp r)) \<rightarrow> v"
shows "s \<in> r \<rightarrow> ((snd (simp r)) v)"
using assms
proof(induct r arbitrary: s v rule: rexp.induct)
case (Plus r1 r2 s v)
have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
have as: "s \<in> fst (simp (Plus r1 r2)) \<rightarrow> v" by fact
consider (Zero_Zero) "fst (simp r1) = Zero" "fst (simp r2) = Zero"
| (Zero_NZero) "fst (simp r1) = Zero" "fst (simp r2) \<noteq> Zero"
| (NZero_Zero) "fst (simp r1) \<noteq> Zero" "fst (simp r2) = Zero"
| (NZero_NZero) "fst (simp r1) \<noteq> Zero" "fst (simp r2) \<noteq> Zero" by auto
then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
proof(cases)
case (Zero_Zero)
with as have "s \<in> Zero \<rightarrow> v" by simp
then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" by (rule Posix_elims(1))
next
case (Zero_NZero)
with as have "s \<in> fst (simp r2) \<rightarrow> v" by simp
with IH2 have "s \<in> r2 \<rightarrow> snd (simp r2) v" by simp
moreover
from Zero_NZero have "fst (simp r1) = Zero" by simp
then have "lang (fst (simp r1)) = {}" by simp
then have "lang r1 = {}" using L_fst_simp by auto
then have "s \<notin> lang r1" by simp
ultimately have "s \<in> Plus r1 r2 \<rightarrow> Right (snd (simp r2) v)" by (rule Posix_Plus2)
then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
using Zero_NZero by simp
next
case (NZero_Zero)
with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
then have "s \<in> Plus r1 r2 \<rightarrow> Left (snd (simp r1) v)" by (rule Posix_Plus1)
then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_Zero by simp
next
case (NZero_NZero)
with as have "s \<in> Plus (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
then consider (Left) v1 where "v = Left v1" "s \<in> (fst (simp r1)) \<rightarrow> v1"
| (Right) v2 where "v = Right v2" "s \<in> (fst (simp r2)) \<rightarrow> v2" "s \<notin> lang (fst (simp r1))"
by (erule_tac Posix_elims(4))
then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
proof(cases)
case (Left)
then have "v = Left v1" "s \<in> r1 \<rightarrow> (snd (simp r1) v1)" using IH1 by simp_all
then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_NZero
by (simp_all add: Posix_Plus1)
next
case (Right)
then have "v = Right v2" "s \<in> r2 \<rightarrow> (snd (simp r2) v2)" "s \<notin> lang r1" using IH2 L_fst_simp by auto
then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_NZero
by (simp_all add: Posix_Plus2)
qed
qed
next
case (Times r1 r2 s v)
have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
have as: "s \<in> fst (simp (Times r1 r2)) \<rightarrow> v" by fact
consider (One_One) "fst (simp r1) = One" "fst (simp r2) = One"
| (One_NOne) "fst (simp r1) = One" "fst (simp r2) \<noteq> One"
| (NOne_One) "fst (simp r1) \<noteq> One" "fst (simp r2) = One"
| (NOne_NOne) "fst (simp r1) \<noteq> One" "fst (simp r2) \<noteq> One" by auto
then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v"
proof(cases)
case (One_One)
with as have b: "s \<in> One \<rightarrow> v" by simp
from b have "s \<in> r1 \<rightarrow> snd (simp r1) v" using IH1 One_One by simp
moreover
from b have c: "s = []" "v = Void" using Posix_elims(2) by auto
moreover
have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
then have "[] \<in> fst (simp r2) \<rightarrow> Void" using One_One by simp
then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
ultimately have "([] @ []) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) Void)"
using Posix_Times by blast
then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using c One_One by simp
next
case (One_NOne)
with as have b: "s \<in> fst (simp r2) \<rightarrow> v" by simp
from b have "s \<in> r2 \<rightarrow> snd (simp r2) v" using IH2 One_NOne by simp
moreover
have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
then have "[] \<in> fst (simp r1) \<rightarrow> Void" using One_NOne by simp
then have "[] \<in> r1 \<rightarrow> snd (simp r1) Void" using IH1 by simp
moreover
from One_NOne(1) have "lang (fst (simp r1)) = {[]}" by simp
then have "lang r1 = {[]}" by (simp add: L_fst_simp[symmetric])
ultimately have "([] @ s) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) v)"
by(rule_tac Posix_Times) auto
then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using One_NOne by simp
next
case (NOne_One)
with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
moreover
have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
then have "[] \<in> fst (simp r2) \<rightarrow> Void" using NOne_One by simp
then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
ultimately have "(s @ []) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) v) (snd (simp r2) Void)"
by(rule_tac Posix_Times) auto
then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using NOne_One by simp
next
case (NOne_NOne)
with as have "s \<in> Times (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
then obtain s1 s2 v1 v2 where eqs: "s = s1 @ s2" "v = Seq v1 v2"
"s1 \<in> (fst (simp r1)) \<rightarrow> v1" "s2 \<in> (fst (simp r2)) \<rightarrow> v2"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> lang r1 \<and> s\<^sub>4 \<in> lang r2)"
by (erule_tac Posix_elims(5)) (auto simp add: L_fst_simp[symmetric])
then have "s1 \<in> r1 \<rightarrow> (snd (simp r1) v1)" "s2 \<in> r2 \<rightarrow> (snd (simp r2) v2)"
using IH1 IH2 by auto
then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using eqs NOne_NOne
by(auto intro: Posix_Times)
qed
qed (simp_all)
lemma slexer_correctness:
shows "slexer r s = lexer r s"
proof(induct s arbitrary: r)
case Nil
show "slexer r [] = lexer r []" by simp
next
case (Cons c s r)
have IH: "\<And>r. slexer r s = lexer r s" by fact
show "slexer r (c # s) = lexer r (c # s)"
proof (cases "s \<in> lang (deriv c r)")
case True
assume a1: "s \<in> lang (deriv c r)"
then obtain v1 where a2: "lexer (deriv c r) s = Some v1" "s \<in> deriv c r \<rightarrow> v1"
using lexer_correct_Some by auto
from a1 have "s \<in> lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
then obtain v2 where a3: "lexer (fst (simp (deriv c r))) s = Some v2" "s \<in> (fst (simp (deriv c r))) \<rightarrow> v2"
using lexer_correct_Some by auto
then have a4: "slexer (fst (simp (deriv c r))) s = Some v2" using IH by simp
from a3(2) have "s \<in> deriv c r \<rightarrow> (snd (simp (deriv c r))) v2" using Posix_simp by auto
with a2(2) have "v1 = (snd (simp (deriv c r))) v2" using Posix_determ by auto
with a2(1) a4 show "slexer r (c # s) = lexer r (c # s)" by (auto split: prod.split)
next
case False
assume b1: "s \<notin> lang (deriv c r)"
then have "lexer (deriv c r) s = None" using lexer_correct_None by auto
moreover
from b1 have "s \<notin> lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
then have "lexer (fst (simp (deriv c r))) s = None" using lexer_correct_None by auto
then have "slexer (fst (simp (deriv c r))) s = None" using IH by simp
ultimately show "slexer r (c # s) = lexer r (c # s)"
by (simp del: slexer.simps add: slexer_better_simp)
qed
qed
end