--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/AFP-Submission/Simplifying.thy Tue May 24 11:36:21 2016 +0100
@@ -0,0 +1,239 @@
+(* Title: POSIX Lexing with Derivatives of Regular Expressions
+ Authors: Fahad Ausaf <fahad.ausaf at icloud.com>, 2016
+ Roy Dyckhoff <roy.dyckhoff at st-andrews.ac.uk>, 2016
+ Christian Urban <christian.urban at kcl.ac.uk>, 2016
+ Maintainer: Christian Urban <christian.urban at kcl.ac.uk>
+*)
+
+theory Simplifying
+ imports "Lexer"
+begin
+
+section {* Lexer including simplifications *}
+
+
+fun F_RIGHT where
+ "F_RIGHT f v = Right (f v)"
+
+fun F_LEFT where
+ "F_LEFT f v = Left (f v)"
+
+fun F_Plus where
+ "F_Plus f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)"
+| "F_Plus f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)"
+| "F_Plus f1 f2 v = v"
+
+
+fun F_Times1 where
+ "F_Times1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)"
+
+fun F_Times2 where
+ "F_Times2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)"
+
+fun F_Times where
+ "F_Times f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)"
+| "F_Times f1 f2 v = v"
+
+fun simp_Plus where
+ "simp_Plus (Zero, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)"
+| "simp_Plus (r\<^sub>1, f\<^sub>1) (Zero, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)"
+| "simp_Plus (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Plus r\<^sub>1 r\<^sub>2, F_Plus f\<^sub>1 f\<^sub>2)"
+
+fun simp_Times where
+ "simp_Times (One, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_Times1 f\<^sub>1 f\<^sub>2)"
+| "simp_Times (r\<^sub>1, f\<^sub>1) (One, f\<^sub>2) = (r\<^sub>1, F_Times2 f\<^sub>1 f\<^sub>2)"
+| "simp_Times (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Times r\<^sub>1 r\<^sub>2, F_Times f\<^sub>1 f\<^sub>2)"
+
+lemma simp_Times_simps[simp]:
+ "simp_Times p1 p2 = (if (fst p1 = One) then (fst p2, F_Times1 (snd p1) (snd p2))
+ else (if (fst p2 = One) then (fst p1, F_Times2 (snd p1) (snd p2))
+ else (Times (fst p1) (fst p2), F_Times (snd p1) (snd p2))))"
+by (induct p1 p2 rule: simp_Times.induct) (auto)
+
+lemma simp_Plus_simps[simp]:
+ "simp_Plus p1 p2 = (if (fst p1 = Zero) then (fst p2, F_RIGHT (snd p2))
+ else (if (fst p2 = Zero) then (fst p1, F_LEFT (snd p1))
+ else (Plus (fst p1) (fst p2), F_Plus (snd p1) (snd p2))))"
+by (induct p1 p2 rule: simp_Plus.induct) (auto)
+
+fun
+ simp :: "'a rexp \<Rightarrow> 'a rexp * ('a val \<Rightarrow> 'a val)"
+where
+ "simp (Plus r1 r2) = simp_Plus (simp r1) (simp r2)"
+| "simp (Times r1 r2) = simp_Times (simp r1) (simp r2)"
+| "simp r = (r, id)"
+
+fun
+ slexer :: "'a rexp \<Rightarrow> 'a list \<Rightarrow> ('a val) option"
+where
+ "slexer r [] = (if nullable r then Some(mkeps r) else None)"
+| "slexer r (c#s) = (let (rs, fr) = simp (deriv c r) in
+ (case (slexer rs s) of
+ None \<Rightarrow> None
+ | Some(v) \<Rightarrow> Some(injval r c (fr v))))"
+
+lemma slexer_better_simp:
+ "slexer r (c#s) = (case (slexer (fst (simp (deriv c r))) s) of
+ None \<Rightarrow> None
+ | Some(v) \<Rightarrow> Some(injval r c ((snd (simp (deriv c r))) v)))"
+by (auto split: prod.split option.split)
+
+
+lemma L_fst_simp:
+ shows "lang r = lang (fst (simp r))"
+using assms
+by (induct r) (auto)
+
+lemma Posix_simp:
+ assumes "s \<in> (fst (simp r)) \<rightarrow> v"
+ shows "s \<in> r \<rightarrow> ((snd (simp r)) v)"
+using assms
+proof(induct r arbitrary: s v rule: rexp.induct)
+ case (Plus r1 r2 s v)
+ have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
+ have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
+ have as: "s \<in> fst (simp (Plus r1 r2)) \<rightarrow> v" by fact
+ consider (Zero_Zero) "fst (simp r1) = Zero" "fst (simp r2) = Zero"
+ | (Zero_NZero) "fst (simp r1) = Zero" "fst (simp r2) \<noteq> Zero"
+ | (NZero_Zero) "fst (simp r1) \<noteq> Zero" "fst (simp r2) = Zero"
+ | (NZero_NZero) "fst (simp r1) \<noteq> Zero" "fst (simp r2) \<noteq> Zero" by auto
+ then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
+ proof(cases)
+ case (Zero_Zero)
+ with as have "s \<in> Zero \<rightarrow> v" by simp
+ then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" by (rule Posix_elims(1))
+ next
+ case (Zero_NZero)
+ with as have "s \<in> fst (simp r2) \<rightarrow> v" by simp
+ with IH2 have "s \<in> r2 \<rightarrow> snd (simp r2) v" by simp
+ moreover
+ from Zero_NZero have "fst (simp r1) = Zero" by simp
+ then have "lang (fst (simp r1)) = {}" by simp
+ then have "lang r1 = {}" using L_fst_simp by auto
+ then have "s \<notin> lang r1" by simp
+ ultimately have "s \<in> Plus r1 r2 \<rightarrow> Right (snd (simp r2) v)" by (rule Posix_Plus2)
+ then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
+ using Zero_NZero by simp
+ next
+ case (NZero_Zero)
+ with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
+ with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
+ then have "s \<in> Plus r1 r2 \<rightarrow> Left (snd (simp r1) v)" by (rule Posix_Plus1)
+ then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_Zero by simp
+ next
+ case (NZero_NZero)
+ with as have "s \<in> Plus (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
+ then consider (Left) v1 where "v = Left v1" "s \<in> (fst (simp r1)) \<rightarrow> v1"
+ | (Right) v2 where "v = Right v2" "s \<in> (fst (simp r2)) \<rightarrow> v2" "s \<notin> lang (fst (simp r1))"
+ by (erule_tac Posix_elims(4))
+ then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v"
+ proof(cases)
+ case (Left)
+ then have "v = Left v1" "s \<in> r1 \<rightarrow> (snd (simp r1) v1)" using IH1 by simp_all
+ then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_NZero
+ by (simp_all add: Posix_Plus1)
+ next
+ case (Right)
+ then have "v = Right v2" "s \<in> r2 \<rightarrow> (snd (simp r2) v2)" "s \<notin> lang r1" using IH2 L_fst_simp by auto
+ then show "s \<in> Plus r1 r2 \<rightarrow> snd (simp (Plus r1 r2)) v" using NZero_NZero
+ by (simp_all add: Posix_Plus2)
+ qed
+ qed
+next
+ case (Times r1 r2 s v)
+ have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
+ have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
+ have as: "s \<in> fst (simp (Times r1 r2)) \<rightarrow> v" by fact
+ consider (One_One) "fst (simp r1) = One" "fst (simp r2) = One"
+ | (One_NOne) "fst (simp r1) = One" "fst (simp r2) \<noteq> One"
+ | (NOne_One) "fst (simp r1) \<noteq> One" "fst (simp r2) = One"
+ | (NOne_NOne) "fst (simp r1) \<noteq> One" "fst (simp r2) \<noteq> One" by auto
+ then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v"
+ proof(cases)
+ case (One_One)
+ with as have b: "s \<in> One \<rightarrow> v" by simp
+ from b have "s \<in> r1 \<rightarrow> snd (simp r1) v" using IH1 One_One by simp
+ moreover
+ from b have c: "s = []" "v = Void" using Posix_elims(2) by auto
+ moreover
+ have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
+ then have "[] \<in> fst (simp r2) \<rightarrow> Void" using One_One by simp
+ then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
+ ultimately have "([] @ []) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) Void)"
+ using Posix_Times by blast
+ then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using c One_One by simp
+ next
+ case (One_NOne)
+ with as have b: "s \<in> fst (simp r2) \<rightarrow> v" by simp
+ from b have "s \<in> r2 \<rightarrow> snd (simp r2) v" using IH2 One_NOne by simp
+ moreover
+ have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
+ then have "[] \<in> fst (simp r1) \<rightarrow> Void" using One_NOne by simp
+ then have "[] \<in> r1 \<rightarrow> snd (simp r1) Void" using IH1 by simp
+ moreover
+ from One_NOne(1) have "lang (fst (simp r1)) = {[]}" by simp
+ then have "lang r1 = {[]}" by (simp add: L_fst_simp[symmetric])
+ ultimately have "([] @ s) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) v)"
+ by(rule_tac Posix_Times) auto
+ then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using One_NOne by simp
+ next
+ case (NOne_One)
+ with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
+ with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
+ moreover
+ have "[] \<in> One \<rightarrow> Void" by (simp add: Posix_One)
+ then have "[] \<in> fst (simp r2) \<rightarrow> Void" using NOne_One by simp
+ then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
+ ultimately have "(s @ []) \<in> Times r1 r2 \<rightarrow> Seq (snd (simp r1) v) (snd (simp r2) Void)"
+ by(rule_tac Posix_Times) auto
+ then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using NOne_One by simp
+ next
+ case (NOne_NOne)
+ with as have "s \<in> Times (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
+ then obtain s1 s2 v1 v2 where eqs: "s = s1 @ s2" "v = Seq v1 v2"
+ "s1 \<in> (fst (simp r1)) \<rightarrow> v1" "s2 \<in> (fst (simp r2)) \<rightarrow> v2"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> lang r1 \<and> s\<^sub>4 \<in> lang r2)"
+ by (erule_tac Posix_elims(5)) (auto simp add: L_fst_simp[symmetric])
+ then have "s1 \<in> r1 \<rightarrow> (snd (simp r1) v1)" "s2 \<in> r2 \<rightarrow> (snd (simp r2) v2)"
+ using IH1 IH2 by auto
+ then show "s \<in> Times r1 r2 \<rightarrow> snd (simp (Times r1 r2)) v" using eqs NOne_NOne
+ by(auto intro: Posix_Times)
+ qed
+qed (simp_all)
+
+
+lemma slexer_correctness:
+ shows "slexer r s = lexer r s"
+proof(induct s arbitrary: r)
+ case Nil
+ show "slexer r [] = lexer r []" by simp
+next
+ case (Cons c s r)
+ have IH: "\<And>r. slexer r s = lexer r s" by fact
+ show "slexer r (c # s) = lexer r (c # s)"
+ proof (cases "s \<in> lang (deriv c r)")
+ case True
+ assume a1: "s \<in> lang (deriv c r)"
+ then obtain v1 where a2: "lexer (deriv c r) s = Some v1" "s \<in> deriv c r \<rightarrow> v1"
+ using lexer_correct_Some by auto
+ from a1 have "s \<in> lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
+ then obtain v2 where a3: "lexer (fst (simp (deriv c r))) s = Some v2" "s \<in> (fst (simp (deriv c r))) \<rightarrow> v2"
+ using lexer_correct_Some by auto
+ then have a4: "slexer (fst (simp (deriv c r))) s = Some v2" using IH by simp
+ from a3(2) have "s \<in> deriv c r \<rightarrow> (snd (simp (deriv c r))) v2" using Posix_simp by auto
+ with a2(2) have "v1 = (snd (simp (deriv c r))) v2" using Posix_determ by auto
+ with a2(1) a4 show "slexer r (c # s) = lexer r (c # s)" by (auto split: prod.split)
+ next
+ case False
+ assume b1: "s \<notin> lang (deriv c r)"
+ then have "lexer (deriv c r) s = None" using lexer_correct_None by auto
+ moreover
+ from b1 have "s \<notin> lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
+ then have "lexer (fst (simp (deriv c r))) s = None" using lexer_correct_None by auto
+ then have "slexer (fst (simp (deriv c r))) s = None" using IH by simp
+ ultimately show "slexer r (c # s) = lexer r (c # s)"
+ by (simp del: slexer.simps add: slexer_better_simp)
+ qed
+qed
+
+end
\ No newline at end of file