diff -r 2a07222e2a8b -r 6bb15b8e6301 AFP-Submission/Simplifying.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AFP-Submission/Simplifying.thy Tue May 24 11:36:21 2016 +0100 @@ -0,0 +1,239 @@ +(* Title: POSIX Lexing with Derivatives of Regular Expressions + Authors: Fahad Ausaf , 2016 + Roy Dyckhoff , 2016 + Christian Urban , 2016 + Maintainer: Christian Urban +*) + +theory Simplifying + imports "Lexer" +begin + +section {* Lexer including simplifications *} + + +fun F_RIGHT where + "F_RIGHT f v = Right (f v)" + +fun F_LEFT where + "F_LEFT f v = Left (f v)" + +fun F_Plus where + "F_Plus f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)" +| "F_Plus f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)" +| "F_Plus f1 f2 v = v" + + +fun F_Times1 where + "F_Times1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)" + +fun F_Times2 where + "F_Times2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)" + +fun F_Times where + "F_Times f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)" +| "F_Times f1 f2 v = v" + +fun simp_Plus where + "simp_Plus (Zero, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)" +| "simp_Plus (r\<^sub>1, f\<^sub>1) (Zero, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)" +| "simp_Plus (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Plus r\<^sub>1 r\<^sub>2, F_Plus f\<^sub>1 f\<^sub>2)" + +fun simp_Times where + "simp_Times (One, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_Times1 f\<^sub>1 f\<^sub>2)" +| "simp_Times (r\<^sub>1, f\<^sub>1) (One, f\<^sub>2) = (r\<^sub>1, F_Times2 f\<^sub>1 f\<^sub>2)" +| "simp_Times (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (Times r\<^sub>1 r\<^sub>2, F_Times f\<^sub>1 f\<^sub>2)" + +lemma simp_Times_simps[simp]: + "simp_Times p1 p2 = (if (fst p1 = One) then (fst p2, F_Times1 (snd p1) (snd p2)) + else (if (fst p2 = One) then (fst p1, F_Times2 (snd p1) (snd p2)) + else (Times (fst p1) (fst p2), F_Times (snd p1) (snd p2))))" +by (induct p1 p2 rule: simp_Times.induct) (auto) + +lemma simp_Plus_simps[simp]: + "simp_Plus p1 p2 = (if (fst p1 = Zero) then (fst p2, F_RIGHT (snd p2)) + else (if (fst p2 = Zero) then (fst p1, F_LEFT (snd p1)) + else (Plus (fst p1) (fst p2), F_Plus (snd p1) (snd p2))))" +by (induct p1 p2 rule: simp_Plus.induct) (auto) + +fun + simp :: "'a rexp \ 'a rexp * ('a val \ 'a val)" +where + "simp (Plus r1 r2) = simp_Plus (simp r1) (simp r2)" +| "simp (Times r1 r2) = simp_Times (simp r1) (simp r2)" +| "simp r = (r, id)" + +fun + slexer :: "'a rexp \ 'a list \ ('a val) option" +where + "slexer r [] = (if nullable r then Some(mkeps r) else None)" +| "slexer r (c#s) = (let (rs, fr) = simp (deriv c r) in + (case (slexer rs s) of + None \ None + | Some(v) \ Some(injval r c (fr v))))" + +lemma slexer_better_simp: + "slexer r (c#s) = (case (slexer (fst (simp (deriv c r))) s) of + None \ None + | Some(v) \ Some(injval r c ((snd (simp (deriv c r))) v)))" +by (auto split: prod.split option.split) + + +lemma L_fst_simp: + shows "lang r = lang (fst (simp r))" +using assms +by (induct r) (auto) + +lemma Posix_simp: + assumes "s \ (fst (simp r)) \ v" + shows "s \ r \ ((snd (simp r)) v)" +using assms +proof(induct r arbitrary: s v rule: rexp.induct) + case (Plus r1 r2 s v) + have IH1: "\s v. s \ fst (simp r1) \ v \ s \ r1 \ snd (simp r1) v" by fact + have IH2: "\s v. s \ fst (simp r2) \ v \ s \ r2 \ snd (simp r2) v" by fact + have as: "s \ fst (simp (Plus r1 r2)) \ v" by fact + consider (Zero_Zero) "fst (simp r1) = Zero" "fst (simp r2) = Zero" + | (Zero_NZero) "fst (simp r1) = Zero" "fst (simp r2) \ Zero" + | (NZero_Zero) "fst (simp r1) \ Zero" "fst (simp r2) = Zero" + | (NZero_NZero) "fst (simp r1) \ Zero" "fst (simp r2) \ Zero" by auto + then show "s \ Plus r1 r2 \ snd (simp (Plus r1 r2)) v" + proof(cases) + case (Zero_Zero) + with as have "s \ Zero \ v" by simp + then show "s \ Plus r1 r2 \ snd (simp (Plus r1 r2)) v" by (rule Posix_elims(1)) + next + case (Zero_NZero) + with as have "s \ fst (simp r2) \ v" by simp + with IH2 have "s \ r2 \ snd (simp r2) v" by simp + moreover + from Zero_NZero have "fst (simp r1) = Zero" by simp + then have "lang (fst (simp r1)) = {}" by simp + then have "lang r1 = {}" using L_fst_simp by auto + then have "s \ lang r1" by simp + ultimately have "s \ Plus r1 r2 \ Right (snd (simp r2) v)" by (rule Posix_Plus2) + then show "s \ Plus r1 r2 \ snd (simp (Plus r1 r2)) v" + using Zero_NZero by simp + next + case (NZero_Zero) + with as have "s \ fst (simp r1) \ v" by simp + with IH1 have "s \ r1 \ snd (simp r1) v" by simp + then have "s \ Plus r1 r2 \ Left (snd (simp r1) v)" by (rule Posix_Plus1) + then show "s \ Plus r1 r2 \ snd (simp (Plus r1 r2)) v" using NZero_Zero by simp + next + case (NZero_NZero) + with as have "s \ Plus (fst (simp r1)) (fst (simp r2)) \ v" by simp + then consider (Left) v1 where "v = Left v1" "s \ (fst (simp r1)) \ v1" + | (Right) v2 where "v = Right v2" "s \ (fst (simp r2)) \ v2" "s \ lang (fst (simp r1))" + by (erule_tac Posix_elims(4)) + then show "s \ Plus r1 r2 \ snd (simp (Plus r1 r2)) v" + proof(cases) + case (Left) + then have "v = Left v1" "s \ r1 \ (snd (simp r1) v1)" using IH1 by simp_all + then show "s \ Plus r1 r2 \ snd (simp (Plus r1 r2)) v" using NZero_NZero + by (simp_all add: Posix_Plus1) + next + case (Right) + then have "v = Right v2" "s \ r2 \ (snd (simp r2) v2)" "s \ lang r1" using IH2 L_fst_simp by auto + then show "s \ Plus r1 r2 \ snd (simp (Plus r1 r2)) v" using NZero_NZero + by (simp_all add: Posix_Plus2) + qed + qed +next + case (Times r1 r2 s v) + have IH1: "\s v. s \ fst (simp r1) \ v \ s \ r1 \ snd (simp r1) v" by fact + have IH2: "\s v. s \ fst (simp r2) \ v \ s \ r2 \ snd (simp r2) v" by fact + have as: "s \ fst (simp (Times r1 r2)) \ v" by fact + consider (One_One) "fst (simp r1) = One" "fst (simp r2) = One" + | (One_NOne) "fst (simp r1) = One" "fst (simp r2) \ One" + | (NOne_One) "fst (simp r1) \ One" "fst (simp r2) = One" + | (NOne_NOne) "fst (simp r1) \ One" "fst (simp r2) \ One" by auto + then show "s \ Times r1 r2 \ snd (simp (Times r1 r2)) v" + proof(cases) + case (One_One) + with as have b: "s \ One \ v" by simp + from b have "s \ r1 \ snd (simp r1) v" using IH1 One_One by simp + moreover + from b have c: "s = []" "v = Void" using Posix_elims(2) by auto + moreover + have "[] \ One \ Void" by (simp add: Posix_One) + then have "[] \ fst (simp r2) \ Void" using One_One by simp + then have "[] \ r2 \ snd (simp r2) Void" using IH2 by simp + ultimately have "([] @ []) \ Times r1 r2 \ Seq (snd (simp r1) Void) (snd (simp r2) Void)" + using Posix_Times by blast + then show "s \ Times r1 r2 \ snd (simp (Times r1 r2)) v" using c One_One by simp + next + case (One_NOne) + with as have b: "s \ fst (simp r2) \ v" by simp + from b have "s \ r2 \ snd (simp r2) v" using IH2 One_NOne by simp + moreover + have "[] \ One \ Void" by (simp add: Posix_One) + then have "[] \ fst (simp r1) \ Void" using One_NOne by simp + then have "[] \ r1 \ snd (simp r1) Void" using IH1 by simp + moreover + from One_NOne(1) have "lang (fst (simp r1)) = {[]}" by simp + then have "lang r1 = {[]}" by (simp add: L_fst_simp[symmetric]) + ultimately have "([] @ s) \ Times r1 r2 \ Seq (snd (simp r1) Void) (snd (simp r2) v)" + by(rule_tac Posix_Times) auto + then show "s \ Times r1 r2 \ snd (simp (Times r1 r2)) v" using One_NOne by simp + next + case (NOne_One) + with as have "s \ fst (simp r1) \ v" by simp + with IH1 have "s \ r1 \ snd (simp r1) v" by simp + moreover + have "[] \ One \ Void" by (simp add: Posix_One) + then have "[] \ fst (simp r2) \ Void" using NOne_One by simp + then have "[] \ r2 \ snd (simp r2) Void" using IH2 by simp + ultimately have "(s @ []) \ Times r1 r2 \ Seq (snd (simp r1) v) (snd (simp r2) Void)" + by(rule_tac Posix_Times) auto + then show "s \ Times r1 r2 \ snd (simp (Times r1 r2)) v" using NOne_One by simp + next + case (NOne_NOne) + with as have "s \ Times (fst (simp r1)) (fst (simp r2)) \ v" by simp + then obtain s1 s2 v1 v2 where eqs: "s = s1 @ s2" "v = Seq v1 v2" + "s1 \ (fst (simp r1)) \ v1" "s2 \ (fst (simp r2)) \ v2" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" + by (erule_tac Posix_elims(5)) (auto simp add: L_fst_simp[symmetric]) + then have "s1 \ r1 \ (snd (simp r1) v1)" "s2 \ r2 \ (snd (simp r2) v2)" + using IH1 IH2 by auto + then show "s \ Times r1 r2 \ snd (simp (Times r1 r2)) v" using eqs NOne_NOne + by(auto intro: Posix_Times) + qed +qed (simp_all) + + +lemma slexer_correctness: + shows "slexer r s = lexer r s" +proof(induct s arbitrary: r) + case Nil + show "slexer r [] = lexer r []" by simp +next + case (Cons c s r) + have IH: "\r. slexer r s = lexer r s" by fact + show "slexer r (c # s) = lexer r (c # s)" + proof (cases "s \ lang (deriv c r)") + case True + assume a1: "s \ lang (deriv c r)" + then obtain v1 where a2: "lexer (deriv c r) s = Some v1" "s \ deriv c r \ v1" + using lexer_correct_Some by auto + from a1 have "s \ lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto + then obtain v2 where a3: "lexer (fst (simp (deriv c r))) s = Some v2" "s \ (fst (simp (deriv c r))) \ v2" + using lexer_correct_Some by auto + then have a4: "slexer (fst (simp (deriv c r))) s = Some v2" using IH by simp + from a3(2) have "s \ deriv c r \ (snd (simp (deriv c r))) v2" using Posix_simp by auto + with a2(2) have "v1 = (snd (simp (deriv c r))) v2" using Posix_determ by auto + with a2(1) a4 show "slexer r (c # s) = lexer r (c # s)" by (auto split: prod.split) + next + case False + assume b1: "s \ lang (deriv c r)" + then have "lexer (deriv c r) s = None" using lexer_correct_None by auto + moreover + from b1 have "s \ lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto + then have "lexer (fst (simp (deriv c r))) s = None" using lexer_correct_None by auto + then have "slexer (fst (simp (deriv c r))) s = None" using IH by simp + ultimately show "slexer r (c # s) = lexer r (c # s)" + by (simp del: slexer.simps add: slexer_better_simp) + qed +qed + +end \ No newline at end of file