thys/LexerExt.thy
author Christian Urban <urbanc@in.tum.de>
Tue, 28 Feb 2017 00:26:34 +0000
changeset 222 4c02878e2fe0
parent 221 c21938d0b396
child 223 17c079699ea0
permissions -rw-r--r--
added two sanity lemmas
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
   
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
     2
theory LexerExt
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
     3
  imports Main
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
begin
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
     7
section {* Sequential Composition of Languages *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
definition
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
  Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
where 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
text {* Two Simple Properties about Sequential Composition *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
lemma seq_empty [simp]:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
  shows "A ;; {[]} = A"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
  and   "{[]} ;; A = A"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
by (simp_all add: Sequ_def)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
lemma seq_null [simp]:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
  shows "A ;; {} = {}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  and   "{} ;; A = {}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
by (simp_all add: Sequ_def)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    26
lemma seq_assoc: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    27
  shows "A ;; (B ;; C) = (A ;; B) ;; C"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    28
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    29
apply(metis append_assoc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    30
apply(metis)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    31
done
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    32
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
    33
section {* Semantic Derivative (Left Quotient) of Languages *}
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    34
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    35
definition
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    36
  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    37
where
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
    38
  "Der c A \<equiv> {s. c # s \<in> A}"
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    39
204
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    40
definition
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    41
  Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    42
where
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    43
  "Ders s A \<equiv> {s'. s @ s' \<in> A}"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    44
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    45
lemma Der_null [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    46
  shows "Der c {} = {}"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    47
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    48
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    49
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    50
lemma Der_empty [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    51
  shows "Der c {[]} = {}"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    52
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    53
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    54
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    55
lemma Der_char [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    56
  shows "Der c {[d]} = (if c = d then {[]} else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    57
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    58
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    59
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    60
lemma Der_union [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    61
  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    62
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    63
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    64
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    65
lemma Der_Sequ [simp]:
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    66
  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    67
unfolding Der_def Sequ_def
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    68
by (auto simp add: Cons_eq_append_conv)
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    69
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    70
lemma Der_UNION: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    71
  shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    72
by (auto simp add: Der_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    73
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    74
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    75
section {* Power operation for Sets *}
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    76
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    77
fun 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    78
  Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    79
where
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    80
   "A \<up> 0 = {[]}"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    81
|  "A \<up> (Suc n) = A ;; (A \<up> n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    82
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    83
lemma Pow_empty [simp]:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    84
  shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    85
by(induct n) (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    86
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    87
lemma Pow_plus:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    88
  "A \<up> (n + m) = A \<up> n ;; A \<up> m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    89
by (induct n) (simp_all add: seq_assoc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    90
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    92
section {* Kleene Star for Languages *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
inductive_set
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
  for A :: "string set"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
  start[intro]: "[] \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   101
lemma star_cases:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   102
  shows "A\<star> = {[]} \<union> A ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   103
unfolding Sequ_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   104
by (auto) (metis Star.simps)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   105
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
lemma star_decomp: 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
  assumes a: "c # x \<in> A\<star>" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
  shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
using a
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
by (induct x\<equiv>"c # x" rule: Star.induct) 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
   (auto simp add: append_eq_Cons_conv)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   113
lemma Der_star [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   114
  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   115
proof -    
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   116
  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   117
    by (simp only: star_cases[symmetric])
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   118
  also have "... = Der c (A ;; A\<star>)"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   119
    by (simp only: Der_union Der_empty) (simp)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   120
  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   121
    by simp
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   122
  also have "... =  (Der c A) ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   123
    unfolding Sequ_def Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   124
    by (auto dest: star_decomp)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   125
  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   126
qed
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   127
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   128
lemma Star_in_Pow:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   129
  assumes a: "s \<in> A\<star>"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   130
  shows "\<exists>n. s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   131
using a
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   132
apply(induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   133
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   134
apply(rule_tac x="Suc n" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   135
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   136
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   137
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   138
lemma Pow_in_Star:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   139
  assumes a: "s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   140
  shows "s \<in> A\<star>"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   141
using a
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   142
by (induct n arbitrary: s) (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   143
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   144
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   145
lemma Star_def2: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   146
  shows "A\<star> = (\<Union>n. A \<up> n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   147
using Star_in_Pow Pow_in_Star
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   148
by (auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   149
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   150
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
section {* Regular Expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
datatype rexp =
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   154
  ZERO
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   155
| ONE
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
| CHAR char
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
| SEQ rexp rexp
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
| ALT rexp rexp
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
| STAR rexp
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   160
| UPNTIMES rexp nat
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   161
| NTIMES rexp nat
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
section {* Semantics of Regular Expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
fun
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
  L :: "rexp \<Rightarrow> string set"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   168
  "L (ZERO) = {}"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   169
| "L (ONE) = {[]}"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
| "L (CHAR c) = {[c]}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
| "L (STAR r) = (L r)\<star>"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   174
| "L (UPNTIMES r n) = (\<Union>i\<in> {..n} . (L r) \<up> i)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   175
| "L (NTIMES r n) = ((L r) \<up> n)"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   177
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   178
section {* Nullable, Derivatives *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   179
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   180
fun
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
 nullable :: "rexp \<Rightarrow> bool"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   183
  "nullable (ZERO) = False"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   184
| "nullable (ONE) = True"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
| "nullable (CHAR c) = False"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   188
| "nullable (STAR r) = True"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   189
| "nullable (UPNTIMES r n) = True"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   190
| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   191
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   192
fun
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   193
 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   194
where
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   195
  "der c (ZERO) = ZERO"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   196
| "der c (ONE) = ZERO"
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   197
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   198
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   199
| "der c (SEQ r1 r2) = 
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   200
     (if nullable r1
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   201
      then ALT (SEQ (der c r1) r2) (der c r2)
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   202
      else SEQ (der c r1) r2)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   203
| "der c (STAR r) = SEQ (der c r) (STAR r)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   204
| "der c (UPNTIMES r 0) = ZERO"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   205
| "der c (UPNTIMES r (Suc n)) = SEQ (der c r) (UPNTIMES r n)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   206
| "der c (NTIMES r 0) = ZERO"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   207
| "der c (NTIMES r (Suc n)) = SEQ (der c r) (NTIMES r n)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   208
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   209
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   210
fun 
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   211
 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   212
where
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   213
  "ders [] r = r"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   214
| "ders (c # s) r = ders s (der c r)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   215
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   216
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
lemma nullable_correctness:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   219
apply(induct r) 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   220
apply(auto simp add: Sequ_def) 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   221
done
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   222
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   223
lemma Suc_reduce_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   224
  "(\<Union>x\<in>{Suc n..Suc m}. B x) = (\<Union>x\<in>{n..m}. B (Suc x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   225
by (metis UN_extend_simps(10) image_Suc_atLeastAtMost)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   226
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   227
lemma Suc_reduce_Union2:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   228
  "(\<Union>x\<in>{Suc n..}. B x) = (\<Union>x\<in>{n..}. B (Suc x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   229
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   230
apply(rule_tac x="xa - 1" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   231
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   232
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   233
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   234
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   235
lemma Seq_UNION: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   236
  shows "(\<Union>x\<in>A. B ;; C x) = B ;; (\<Union>x\<in>A. C x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   237
by (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   238
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   239
lemma Seq_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   240
  shows "A ;; (\<Union>x\<in>B. C x) = (\<Union>x\<in>B. A ;; C x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   241
by (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   242
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   243
lemma Der_Pow [simp]:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   244
  shows "Der c (A \<up> (Suc n)) = 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   245
     (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   246
unfolding Der_def Sequ_def 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   247
by(auto simp add: Cons_eq_append_conv Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   248
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   249
lemma Suc_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   250
  "(\<Union>x\<le>Suc m. B x) = (B (Suc m) \<union> (\<Union>x\<le>m. B x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   251
by (metis UN_insert atMost_Suc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   252
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   253
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   254
lemma Der_Pow_subseteq:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   255
  assumes "[] \<in> A"  
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   256
  shows "Der c (A \<up> n) \<subseteq> (Der c A) ;; (A \<up> n)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   257
using assms
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   258
apply(induct n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   259
apply(simp add: Sequ_def Der_def)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   260
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   261
apply(rule conjI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   262
apply (smt Sequ_def append_Nil2 mem_Collect_eq seq_assoc subsetI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   263
apply(subgoal_tac "((Der c A) ;; (A \<up> n)) \<subseteq> ((Der c A) ;; (A ;; (A \<up> n)))")
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   264
apply(auto)[1]
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   265
by (smt Sequ_def append_Nil2 mem_Collect_eq seq_assoc subsetI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   266
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   267
lemma test:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   268
  shows "(\<Union>x\<le>Suc n. Der c (L r \<up> x)) = (\<Union>x\<le>n. Der c (L r) ;; L r \<up> x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   269
apply(induct n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   270
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   271
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   272
apply(case_tac xa)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   273
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   274
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   275
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   276
apply(case_tac "[] \<in> L r")
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   277
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   278
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   279
by (smt Der_Pow Suc_Union inf_sup_aci(5) inf_sup_aci(7) sup_idem)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   280
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   281
lemma Der_Pow_in:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   282
  assumes "[] \<in> A"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   283
  shows "Der c (A \<up> n) = (\<Union>x\<le>n. Der c (A \<up> x))"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   284
using assms 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   285
apply(induct n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   286
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   287
apply(simp add: Suc_Union)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   288
done
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   289
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   290
lemma Der_Pow_notin:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   291
  assumes "[] \<notin> A"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   292
  shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   293
using assms
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   294
by(simp)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   295
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   296
lemma der_correctness:
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   297
  shows "L (der c r) = Der c (L r)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   298
apply(induct c r rule: der.induct) 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   299
apply(simp_all add: nullable_correctness)[7]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   300
apply(simp only: der.simps L.simps)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   301
apply(simp only: Der_UNION)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   302
apply(simp only: Seq_UNION[symmetric])
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   303
apply(simp add: test)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   304
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   305
(* NTIMES *)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   306
apply(simp only: L.simps der.simps)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   307
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   308
apply(rule impI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   309
by (simp add: Der_Pow_subseteq sup_absorb1)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   310
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   311
204
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   312
lemma ders_correctness:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   313
  shows "L (ders s r) = Ders s (L r)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   314
apply(induct s arbitrary: r)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   315
apply(simp_all add: Ders_def der_correctness Der_def)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   316
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   317
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   318
lemma ders_ZERO:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   319
  shows "ders s (ZERO) = ZERO"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   320
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   321
apply(simp_all)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   322
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   323
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   324
lemma ders_ONE:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   325
  shows "ders s (ONE) = (if s = [] then ONE else ZERO)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   326
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   327
apply(simp_all add: ders_ZERO)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   328
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   329
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   330
lemma ders_CHAR:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   331
  shows "ders s (CHAR c) = (if s = [c] then ONE else 
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   332
                           (if s = [] then (CHAR c) else ZERO))"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   333
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   334
apply(simp_all add: ders_ZERO ders_ONE)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   335
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   336
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   337
lemma  ders_ALT:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   338
  shows "ders s (ALT r1 r2) = ALT (ders s r1) (ders s r2)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   339
apply(induct s arbitrary: r1 r2)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   340
apply(simp_all)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   341
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   342
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   343
section {* Values *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   344
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   345
datatype val = 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   346
  Void
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   347
| Char char
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   348
| Seq val val
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   349
| Right val
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   350
| Left val
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   351
| Stars "val list"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   352
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   353
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   354
section {* The string behind a value *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
fun 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
  flat :: "val \<Rightarrow> string"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
  "flat (Void) = []"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
| "flat (Char c) = [c]"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
| "flat (Left v) = flat v"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
| "flat (Right v) = flat v"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   363
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   364
| "flat (Stars []) = []"
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   365
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   367
lemma flat_Stars [simp]:
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   368
 "flat (Stars vs) = concat (map flat vs)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   369
by (induct vs) (auto)
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   370
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   371
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
section {* Relation between values and regular expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   373
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   374
inductive 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   375
  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   376
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   377
 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   378
| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   379
| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   380
| "\<turnstile> Void : ONE"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   381
| "\<turnstile> Char c : CHAR c"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   382
| "\<turnstile> Stars [] : STAR r"
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   383
| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   384
| "\<turnstile> Stars [] : UPNTIMES r 0"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   385
| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : UPNTIMES r (Suc n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   386
| "\<lbrakk>\<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : UPNTIMES r (Suc n)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   387
| "\<turnstile> Stars [] : NTIMES r 0"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   388
| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : NTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : NTIMES r (Suc n)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   389
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   390
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   391
inductive_cases Prf_elims:
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   392
  "\<turnstile> v : ZERO"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   393
  "\<turnstile> v : SEQ r1 r2"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   394
  "\<turnstile> v : ALT r1 r2"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   395
  "\<turnstile> v : ONE"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   396
  "\<turnstile> v : CHAR c"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   397
(*  "\<turnstile> vs : STAR r"*)
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   398
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   399
lemma Prf_flat_L:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   400
  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   401
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   402
apply(induct v r rule: Prf.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   403
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   404
apply(rotate_tac 2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   405
apply(rule_tac x="Suc x" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   406
apply(auto simp add: Sequ_def)[2]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   407
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   408
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   409
lemma Prf_Stars:
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   410
  assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   411
  shows "\<turnstile> Stars vs : STAR r"
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   412
using assms
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   413
by(induct vs) (auto intro: Prf.intros)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   414
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   415
lemma Prf_Stars_NTIMES:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   416
  assumes "\<forall>v \<in> set vs. \<turnstile> v : r" "(length vs) = n"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   417
  shows "\<turnstile> Stars vs : NTIMES r n"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   418
using assms
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   419
apply(induct vs arbitrary: n) 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   420
apply(auto intro: Prf.intros)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   421
done
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   422
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   423
lemma Prf_Stars_UPNTIMES:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   424
  assumes "\<forall>v \<in> set vs. \<turnstile> v : r" "(length vs) = n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   425
  shows "\<turnstile> Stars vs : UPNTIMES r n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   426
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   427
apply(induct vs arbitrary: n) 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   428
apply(auto intro: Prf.intros)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   429
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   430
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   431
lemma Prf_UPNTIMES_bigger:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   432
  assumes "\<turnstile> Stars vs : UPNTIMES r n" "n \<le> m" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   433
  shows "\<turnstile> Stars vs : UPNTIMES r m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   434
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   435
apply(induct m arbitrary:)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   436
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   437
using Prf.intros(10) le_Suc_eq by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   438
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   439
lemma UPNTIMES_Stars:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   440
 assumes "\<turnstile> v : UPNTIMES r n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   441
 shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> length vs \<le> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   442
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   443
apply(induct n arbitrary: v)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   444
apply(erule Prf.cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   445
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   446
apply(erule Prf.cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   447
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   448
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   449
using le_SucI by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   450
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   451
lemma NTIMES_Stars:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   452
 assumes "\<turnstile> v : NTIMES r n"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   453
 shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> length vs = n"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   454
using assms
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   455
apply(induct n arbitrary: v)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   456
apply(erule Prf.cases)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   457
apply(simp_all)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   458
apply(erule Prf.cases)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   459
apply(simp_all)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   460
apply(auto)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   461
done
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   462
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   463
lemma Star_string:
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   464
  assumes "s \<in> A\<star>"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   465
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   466
using assms
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   467
apply(induct rule: Star.induct)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   468
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   469
apply(rule_tac x="[]" in exI)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   470
apply(simp)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   471
apply(rule_tac x="s1#ss" in exI)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   472
apply(simp)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   473
done
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   474
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   475
lemma Star_val:
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   476
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   477
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   478
using assms
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   479
apply(induct ss)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   480
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   481
apply (metis empty_iff list.set(1))
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   482
by (metis concat.simps(2) list.simps(9) set_ConsD)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   483
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   484
lemma Star_val_length:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   485
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   486
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r) \<and> (length vs) = (length ss)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   487
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   488
apply(induct ss)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   489
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   490
by (metis List.bind_def bind_simps(2) length_Suc_conv set_ConsD)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   491
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   492
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   493
lemma Star_Pow:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   494
  assumes "s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   495
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A) \<and> (length ss = n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   496
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   497
apply(induct n arbitrary: s)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   498
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   499
apply(drule_tac x="s2" in meta_spec)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   500
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   501
apply(rule_tac x="s1#ss" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   502
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   503
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   504
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   505
lemma L_flat_Prf1:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   506
  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   507
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   508
apply(induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   509
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   510
apply(rule_tac x="Suc x" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   511
apply(auto simp add: Sequ_def)[2]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   512
done
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   513
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   514
lemma L_flat_Prf2:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   515
  assumes "s \<in> L r" shows "\<exists>v. \<turnstile> v : r \<and> flat v = s"
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   516
using assms
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   517
apply(induct r arbitrary: s)
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   518
apply(auto simp add: Sequ_def intro: Prf.intros)
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   519
using Prf.intros(1) flat.simps(5) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   520
using Prf.intros(2) flat.simps(3) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   521
using Prf.intros(3) flat.simps(4) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   522
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   523
apply(auto)[1]
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   524
apply(rule_tac x="Stars vs" in exI)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   525
apply(simp)
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   526
apply (simp add: Prf_Stars)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   527
apply(drule Star_string)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   528
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   529
apply(rule Star_val)
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   530
apply(auto)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   531
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x)")
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   532
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   533
apply(rule_tac x="Stars vs" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   534
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   535
apply(drule_tac n="length vs" in Prf_Stars_UPNTIMES)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   536
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   537
using Prf_UPNTIMES_bigger apply blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   538
apply(drule Star_Pow)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   539
apply(auto)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   540
using Star_val_length apply blast
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   541
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x2)")
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   542
apply(auto)[1]
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   543
apply(rule_tac x="Stars vs" in exI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   544
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   545
apply(rule Prf_Stars_NTIMES)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   546
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   547
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   548
using Star_Pow Star_val_length by blast
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   549
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   550
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   551
lemma L_flat_Prf:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   552
  "L(r) = {flat v | v. \<turnstile> v : r}"
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   553
using L_flat_Prf1 L_flat_Prf2 by blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   554
93
37e3f1174974 extended all proofs that worked before to the Star case...required a stronger notion of non-problematic values |=
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 92
diff changeset
   555
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   556
section {* Sulzmann and Lu functions *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   557
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   558
fun 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   559
  mkeps :: "rexp \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   560
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   561
  "mkeps(ONE) = Void"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   562
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   563
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   564
| "mkeps(STAR r) = Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   565
| "mkeps(UPNTIMES r n) = Stars []"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   566
| "mkeps(NTIMES r n) = Stars (replicate n (mkeps r))"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   567
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   568
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   569
fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   570
where
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   571
  "injval (CHAR d) c Void = Char d"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   572
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   573
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   574
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   575
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   576
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   577
| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   578
| "injval (UPNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   579
| "injval (NTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   580
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   581
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   582
section {* Mkeps, injval *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   583
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   584
lemma mkeps_nullable:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   585
  assumes "nullable(r)" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   586
  shows "\<turnstile> mkeps r : r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   587
using assms
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   588
apply(induct r rule: mkeps.induct) 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   589
apply(auto intro: Prf.intros)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   590
using Prf.intros(8) Prf_UPNTIMES_bigger apply blast
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   591
apply(case_tac n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   592
apply(auto)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   593
apply(rule Prf.intros)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   594
apply(rule Prf_Stars_NTIMES)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   595
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   596
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   597
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   598
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   599
lemma mkeps_flat:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   600
  assumes "nullable(r)" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   601
  shows "flat (mkeps r) = []"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   602
using assms
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   603
by (induct rule: nullable.induct) (auto)
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   604
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   605
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   606
lemma Prf_injval:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   607
  assumes "\<turnstile> v : der c r" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   608
  shows "\<turnstile> (injval r c v) : r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   609
using assms
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   610
apply(induct r arbitrary: c v rule: rexp.induct)
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   611
apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   612
(* STAR *)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   613
apply(rotate_tac 2)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   614
apply(erule Prf.cases)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   615
apply(simp_all)[7]
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   616
apply(auto)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   617
apply (metis Prf.intros(6) Prf.intros(7))
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   618
apply (metis Prf.intros(7))
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   619
(* UPNTIMES *)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   620
apply(case_tac x2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   621
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   622
using Prf_elims(1) apply auto[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   623
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   624
apply(erule Prf.cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   625
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   626
apply(clarify)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   627
apply(drule UPNTIMES_Stars)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   628
apply(clarify)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   629
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   630
apply(rule Prf.intros(9))
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   631
apply(simp)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   632
using Prf_Stars_UPNTIMES Prf_UPNTIMES_bigger apply blast
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   633
(* NTIMES *)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   634
apply(case_tac x2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   635
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   636
using Prf_elims(1) apply auto[1]
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   637
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   638
apply(erule Prf.cases)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   639
apply(simp_all)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   640
apply(clarify)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   641
apply(drule NTIMES_Stars)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   642
apply(clarify)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   643
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   644
apply(rule Prf.intros)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   645
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   646
using Prf_Stars_NTIMES by blast
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   647
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   648
lemma Prf_injval_flat:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   649
  assumes "\<turnstile> v : der c r" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   650
  shows "flat (injval r c v) = c # (flat v)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   651
using assms
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   652
apply(induct arbitrary: v rule: der.induct)
144
b356c7adf61a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 143
diff changeset
   653
apply(auto elim!: Prf_elims split: if_splits)
b356c7adf61a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 143
diff changeset
   654
apply(metis mkeps_flat)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   655
apply(rotate_tac 2)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   656
apply(erule Prf.cases)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   657
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   658
apply(drule UPNTIMES_Stars)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   659
apply(clarify)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   660
apply(simp)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   661
apply(drule NTIMES_Stars)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   662
apply(clarify)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   663
apply(simp)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   664
done
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   665
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   666
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   667
104
59bad592a009 updated theories and cleaned them up
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 103
diff changeset
   668
section {* Our Alternative Posix definition *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   669
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   670
inductive 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   671
  Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   672
where
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   673
  Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   674
| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   675
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   676
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   677
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   678
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   679
    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   680
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   681
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   682
    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   683
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   684
| Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r n \<rightarrow> Stars vs; flat v \<noteq> [];
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   685
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))\<rbrakk>
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   686
    \<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   687
| Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   688
| Posix_NTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NTIMES r n \<rightarrow> Stars vs; 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   689
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r n))\<rbrakk>
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   690
    \<Longrightarrow> (s1 @ s2) \<in> NTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   691
| Posix_NTIMES2: "[] \<in> NTIMES r 0 \<rightarrow> Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   692
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   693
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   694
inductive_cases Posix_elims:
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   695
  "s \<in> ZERO \<rightarrow> v"
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   696
  "s \<in> ONE \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   697
  "s \<in> CHAR c \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   698
  "s \<in> ALT r1 r2 \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   699
  "s \<in> SEQ r1 r2 \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   700
  "s \<in> STAR r \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   701
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   702
lemma Posix1:
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   703
  assumes "s \<in> r \<rightarrow> v"
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   704
  shows "s \<in> L r" "flat v = s"
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   705
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   706
apply (induct s r v rule: Posix.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   707
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   708
apply(rule_tac x="Suc x" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   709
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   710
done
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   711
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   712
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   713
lemma Posix1a:
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   714
  assumes "s \<in> r \<rightarrow> v"
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   715
  shows "\<turnstile> v : r"
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   716
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   717
apply(induct s r v rule: Posix.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   718
apply(auto intro: Prf.intros)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   719
using Prf.intros(8) Prf_UPNTIMES_bigger by blast
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   720
222
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   721
lemma Posix_NTIMES_length:
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   722
  assumes "s \<in> NTIMES r n \<rightarrow> Stars vs"
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   723
  shows "length vs = n"
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   724
using assms
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   725
using NTIMES_Stars Posix1a val.inject(5) by blast
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   726
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   727
lemma Posix_UPNTIMES_length:
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   728
  assumes "s \<in> UPNTIMES r n \<rightarrow> Stars vs"
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   729
  shows "length vs \<le> n"
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   730
using assms
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   731
using Posix1a UPNTIMES_Stars val.inject(5) by blast
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   732
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   733
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   734
lemma  Posix_NTIMES_mkeps:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   735
  assumes "[] \<in> r \<rightarrow> mkeps r"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   736
  shows "[] \<in> NTIMES r n \<rightarrow> Stars (replicate n (mkeps r))"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   737
apply(induct n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   738
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   739
apply (rule Posix_NTIMES2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   740
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   741
apply(subst append_Nil[symmetric])
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   742
apply (rule Posix_NTIMES1)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   743
apply(auto)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   744
apply(rule assms)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   745
done
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   746
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   747
lemma Posix_mkeps:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   748
  assumes "nullable r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   749
  shows "[] \<in> r \<rightarrow> mkeps r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   750
using assms
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   751
apply(induct r rule: nullable.induct)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   752
apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   753
apply(subst append.simps(1)[symmetric])
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   754
apply(rule Posix.intros)
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   755
apply(auto)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   756
apply(case_tac n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   757
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   758
apply (simp add: Posix_NTIMES2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   759
apply(rule Posix_NTIMES_mkeps)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   760
apply(simp)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   761
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   762
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   763
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   764
lemma Posix_determ:
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   765
  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   766
  shows "v1 = v2"
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   767
using assms
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   768
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   769
  case (Posix_ONE v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   770
  have "[] \<in> ONE \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   771
  then show "Void = v2" by cases auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   772
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   773
  case (Posix_CHAR c v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   774
  have "[c] \<in> CHAR c \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   775
  then show "Char c = v2" by cases auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   776
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   777
  case (Posix_ALT1 s r1 v r2 v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   778
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   779
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   780
  have "s \<in> r1 \<rightarrow> v" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   781
  then have "s \<in> L r1" by (simp add: Posix1)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   782
  ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   783
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   784
  have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   785
  ultimately have "v = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   786
  then show "Left v = v2" using eq by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   787
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   788
  case (Posix_ALT2 s r2 v r1 v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   789
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   790
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   791
  have "s \<notin> L r1" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   792
  ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   793
    by cases (auto simp add: Posix1) 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   794
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   795
  have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   796
  ultimately have "v = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   797
  then show "Right v = v2" using eq by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   798
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   799
  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   800
  have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   801
       "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   802
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   803
  then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   804
  apply(cases) apply (auto simp add: append_eq_append_conv2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   805
  using Posix1(1) by fastforce+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   806
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   807
  have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   808
            "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   809
  ultimately show "Seq v1 v2 = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   810
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   811
  case (Posix_STAR1 s1 r v s2 vs v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   812
  have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   813
       "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   814
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   815
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   816
  apply(cases) apply (auto simp add: append_eq_append_conv2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   817
  using Posix1(1) apply fastforce
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   818
  apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   819
  using Posix1(2) by blast
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   820
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   821
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   822
            "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   823
  ultimately show "Stars (v # vs) = v2" by auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   824
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   825
  case (Posix_STAR2 r v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   826
  have "[] \<in> STAR r \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   827
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   828
next
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   829
  case (Posix_UPNTIMES1 s1 r v s2 n vs v2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   830
  have "(s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> v2" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   831
       "s1 \<in> r \<rightarrow> v" "s2 \<in> (UPNTIMES r n) \<rightarrow> Stars vs" "flat v \<noteq> []"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   832
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))" by fact+
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   833
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r n) \<rightarrow> (Stars vs')"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   834
  apply(cases) apply (auto simp add: append_eq_append_conv2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   835
  using Posix1(1) apply fastforce
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   836
  apply (metis Posix1(1) Posix_UPNTIMES1.hyps(6) append_Nil append_Nil2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   837
  using Posix1(2) by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   838
  moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   839
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   840
            "\<And>v2. s2 \<in> UPNTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   841
  ultimately show "Stars (v # vs) = v2" by auto
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   842
next
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   843
  case (Posix_UPNTIMES2 r n v2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   844
  have "[] \<in> UPNTIMES r n \<rightarrow> v2" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   845
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   846
next
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   847
  case (Posix_NTIMES2 r v2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   848
  have "[] \<in> NTIMES r 0 \<rightarrow> v2" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   849
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   850
next
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   851
  case (Posix_NTIMES1 s1 r v s2 n vs v2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   852
  have "(s1 @ s2) \<in> NTIMES r (Suc n) \<rightarrow> v2" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   853
       "s1 \<in> r \<rightarrow> v" "s2 \<in> (NTIMES r n) \<rightarrow> Stars vs"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   854
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r n))" by fact+
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   855
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (NTIMES r n) \<rightarrow> (Stars vs')"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   856
  apply(cases) apply (auto simp add: append_eq_append_conv2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   857
  using Posix1(1) apply fastforce
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   858
  apply (metis Posix1(1) Posix_NTIMES1.hyps(5) append_Nil append_Nil2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   859
  done  
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   860
  moreover
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   861
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   862
            "\<And>v2. s2 \<in> NTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   863
  ultimately show "Stars (v # vs) = v2" by auto
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   864
qed
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   865
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   866
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
   867
lemma Posix_injval:
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   868
  assumes "s \<in> (der c r) \<rightarrow> v"
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   869
  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   870
using assms
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   871
proof(induct r arbitrary: s v rule: rexp.induct)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   872
  case ZERO
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   873
  have "s \<in> der c ZERO \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   874
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   875
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   876
  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   877
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   878
  case ONE
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   879
  have "s \<in> der c ONE \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   880
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   881
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   882
  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   883
next 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   884
  case (CHAR d)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   885
  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   886
  then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   887
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   888
    case eq
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   889
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   890
    then have "s \<in> ONE \<rightarrow> v" using eq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   891
    then have eqs: "s = [] \<and> v = Void" by cases simp
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   892
    show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   893
    by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   894
  next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   895
    case ineq
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   896
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   897
    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   898
    then have "False" by cases
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   899
    then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   900
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   901
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   902
  case (ALT r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   903
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   904
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   905
  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   906
  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   907
  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   908
              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   909
              by cases auto
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   910
  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   911
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   912
    case left
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   913
    have "s \<in> der c r1 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   914
    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   915
    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   916
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   917
  next 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   918
    case right
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   919
    have "s \<notin> L (der c r1)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   920
    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   921
    moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   922
    have "s \<in> der c r2 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   923
    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   924
    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   925
      by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   926
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   927
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   928
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   929
  case (SEQ r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   930
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   931
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   932
  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   933
  then consider 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   934
        (left_nullable) v1 v2 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   935
        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   936
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   937
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   938
      | (right_nullable) v1 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   939
        "v = Right v1" "s = s1 @ s2"  
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   940
        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   941
      | (not_nullable) v1 v2 s1 s2 where
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   942
        "v = Seq v1 v2" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   943
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   944
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   945
        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   946
  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   947
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   948
      case left_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   949
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   950
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   951
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   952
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   953
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   954
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   955
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   956
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   957
      case right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   958
      have "nullable r1" by fact
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   959
      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   960
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   961
      have "s \<in> der c r2 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   962
      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   963
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   964
      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   965
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   966
        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   967
      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   968
      by(rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   969
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   970
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   971
      case not_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   972
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   973
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   974
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   975
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   976
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   977
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   978
        by (rule_tac Posix.intros) (simp_all) 
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   979
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   980
    qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   981
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   982
  case (STAR r)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   983
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   984
  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   985
  then consider
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   986
      (cons) v1 vs s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   987
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   988
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   989
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   990
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   991
        apply(rotate_tac 3)
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   992
        apply(erule_tac Posix_elims(6))
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   993
        apply (simp add: Posix.intros(6))
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   994
        using Posix.intros(7) by blast
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   995
    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   996
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   997
      case cons
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   998
          have "s1 \<in> der c r \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   999
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1000
        moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1001
          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1002
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1003
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1004
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1005
          then have "flat (injval r c v1) \<noteq> []" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1006
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1007
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1008
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1009
            by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1010
        ultimately 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1011
        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1012
        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1013
    qed
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1014
next 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1015
  case (UPNTIMES r n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1016
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1017
  have "s \<in> der c (UPNTIMES r n) \<rightarrow> v" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1018
  then consider
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1019
      (cons) m v1 vs s1 s2 where 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1020
        "n = Suc m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1021
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1022
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (UPNTIMES r m) \<rightarrow> (Stars vs)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1023
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1024
        apply(case_tac n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1025
        apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1026
        using Posix_elims(1) apply blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1027
        apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1028
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1029
        by (metis Posix1a UPNTIMES_Stars)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1030
    then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1031
    proof (cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1032
      case cons
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1033
        have "n = Suc m" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1034
        moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1035
          have "s1 \<in> der c r \<rightarrow> v1" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1036
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1037
        moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1038
          have "s2 \<in> UPNTIMES r m \<rightarrow> Stars vs" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1039
        moreover 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1040
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1041
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1042
          then have "flat (injval r c v1) \<noteq> []" by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1043
        moreover 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1044
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1045
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1046
            by (simp add: der_correctness Der_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1047
        ultimately 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1048
        have "((c # s1) @ s2) \<in> UPNTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1049
          apply(rule_tac Posix.intros(8))
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1050
          apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1051
          done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1052
        then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" using cons by(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1053
    qed
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1054
next 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1055
  case (NTIMES r n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1056
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1057
  have "s \<in> der c (NTIMES r n) \<rightarrow> v" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1058
  then consider
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1059
      (cons) m v1 vs s1 s2 where 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1060
        "n = Suc m"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1061
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1062
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (NTIMES r m) \<rightarrow> (Stars vs)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1063
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r m))" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1064
        apply(case_tac n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1065
        apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1066
        using Posix_elims(1) apply blast
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1067
        apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1068
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1069
        by (metis NTIMES_Stars Posix1a)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1070
    then show "(c # s) \<in> NTIMES r n \<rightarrow> injval (NTIMES r n) c v" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1071
    proof (cases)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1072
      case cons
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1073
        have "n = Suc m" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1074
        moreover
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1075
          have "s1 \<in> der c r \<rightarrow> v1" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1076
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1077
        moreover
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1078
          have "s2 \<in> NTIMES r m \<rightarrow> Stars vs" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1079
        moreover 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1080
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r m))" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1081
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r m))" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1082
            by (simp add: der_correctness Der_def)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1083
        ultimately 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1084
        have "((c # s1) @ s2) \<in> NTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1085
          apply(rule_tac Posix.intros(10))
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1086
          apply(simp_all)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1087
          done
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1088
        then show "(c # s) \<in> NTIMES r n \<rightarrow> injval (NTIMES r n) c v" using cons by(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1089
    qed
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1090
qed
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
  1091
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1092
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1093
section {* The Lexer by Sulzmann and Lu  *}
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1094
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1095
fun 
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1096
  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1097
where
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1098
  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1099
| "lexer r (c#s) = (case (lexer (der c r) s) of  
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1100
                    None \<Rightarrow> None
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1101
                  | Some(v) \<Rightarrow> Some(injval r c v))"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1102
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1103
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1104
lemma lexer_correct_None:
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1105
  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
  1106
apply(induct s arbitrary: r)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
  1107
apply(simp add: nullable_correctness)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
  1108
apply(drule_tac x="der a r" in meta_spec)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
  1109
apply(auto simp add: der_correctness Der_def)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
  1110
done
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
  1111
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1112
lemma lexer_correct_Some:
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
  1113
  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1114
apply(induct s arbitrary: r)
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1115
apply(auto simp add: Posix_mkeps nullable_correctness)[1]
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1116
apply(drule_tac x="der a r" in meta_spec)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1117
apply(simp add: der_correctness Der_def)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1118
apply(rule iffI)
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
  1119
apply(auto intro: Posix_injval simp add: Posix1(1))
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1120
done 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
  1121
186
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1122
lemma lexer_correctness:
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1123
  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1124
  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1125
using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1126
using Posix1(1) lexer_correct_None lexer_correct_Some by blast
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1127
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
  1128
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 94
diff changeset
  1129
end