changeset 113 | 90fe1a1d7d0e |
parent 112 | 698967eceaf1 |
child 120 | d74bfa11802c |
--- a/thys/ReStar.thy Thu Mar 03 08:22:39 2016 +0000 +++ b/thys/ReStar.thy Sat Mar 05 04:01:10 2016 +0000 @@ -81,8 +81,7 @@ lemma Der_star [simp]: shows "Der c (A\<star>) = (Der c A) ;; A\<star>" proof - - have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" - + have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" by (simp only: star_cases[symmetric]) also have "... = Der c (A ;; A\<star>)" by (simp only: Der_union Der_empty) (simp)