thys/ReStar.thy
changeset 113 90fe1a1d7d0e
parent 112 698967eceaf1
child 120 d74bfa11802c
equal deleted inserted replaced
112:698967eceaf1 113:90fe1a1d7d0e
    79    (auto simp add: append_eq_Cons_conv)
    79    (auto simp add: append_eq_Cons_conv)
    80 
    80 
    81 lemma Der_star [simp]:
    81 lemma Der_star [simp]:
    82   shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
    82   shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
    83 proof -    
    83 proof -    
    84   have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
    84   have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
    85     
       
    86     by (simp only: star_cases[symmetric])
    85     by (simp only: star_cases[symmetric])
    87   also have "... = Der c (A ;; A\<star>)"
    86   also have "... = Der c (A ;; A\<star>)"
    88     by (simp only: Der_union Der_empty) (simp)
    87     by (simp only: Der_union Der_empty) (simp)
    89   also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
    88   also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
    90     by simp
    89     by simp