--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/Lexer.thy Wed May 18 15:57:46 2016 +0100
@@ -0,0 +1,642 @@
+
+theory Lexer
+ imports Main
+begin
+
+
+section {* Sequential Composition of Languages *}
+
+definition
+ Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
+where
+ "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
+
+text {* Two Simple Properties about Sequential Composition *}
+
+lemma seq_empty [simp]:
+ shows "A ;; {[]} = A"
+ and "{[]} ;; A = A"
+by (simp_all add: Sequ_def)
+
+lemma seq_null [simp]:
+ shows "A ;; {} = {}"
+ and "{} ;; A = {}"
+by (simp_all add: Sequ_def)
+
+
+section {* Semantic Derivative (Left Quotient) of Languages *}
+
+definition
+ Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Der c A \<equiv> {s. c # s \<in> A}"
+
+lemma Der_null [simp]:
+ shows "Der c {} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_empty [simp]:
+ shows "Der c {[]} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_char [simp]:
+ shows "Der c {[d]} = (if c = d then {[]} else {})"
+unfolding Der_def
+by auto
+
+lemma Der_union [simp]:
+ shows "Der c (A \<union> B) = Der c A \<union> Der c B"
+unfolding Der_def
+by auto
+
+lemma Der_Sequ [simp]:
+ shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Sequ_def
+by (auto simp add: Cons_eq_append_conv)
+
+
+section {* Kleene Star for Languages *}
+
+inductive_set
+ Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+ for A :: "string set"
+where
+ start[intro]: "[] \<in> A\<star>"
+| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
+
+lemma star_cases:
+ shows "A\<star> = {[]} \<union> A ;; A\<star>"
+unfolding Sequ_def
+by (auto) (metis Star.simps)
+
+lemma star_decomp:
+ assumes a: "c # x \<in> A\<star>"
+ shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
+using a
+by (induct x\<equiv>"c # x" rule: Star.induct)
+ (auto simp add: append_eq_Cons_conv)
+
+lemma Der_star [simp]:
+ shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
+proof -
+ have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
+ by (simp only: star_cases[symmetric])
+ also have "... = Der c (A ;; A\<star>)"
+ by (simp only: Der_union Der_empty) (simp)
+ also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
+ by simp
+ also have "... = (Der c A) ;; A\<star>"
+ unfolding Sequ_def Der_def
+ by (auto dest: star_decomp)
+ finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
+qed
+
+
+section {* Regular Expressions *}
+
+datatype rexp =
+ ZERO
+| ONE
+| CHAR char
+| SEQ rexp rexp
+| ALT rexp rexp
+| STAR rexp
+
+section {* Semantics of Regular Expressions *}
+
+fun
+ L :: "rexp \<Rightarrow> string set"
+where
+ "L (ZERO) = {}"
+| "L (ONE) = {[]}"
+| "L (CHAR c) = {[c]}"
+| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
+| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
+| "L (STAR r) = (L r)\<star>"
+
+
+section {* Nullable, Derivatives *}
+
+fun
+ nullable :: "rexp \<Rightarrow> bool"
+where
+ "nullable (ZERO) = False"
+| "nullable (ONE) = True"
+| "nullable (CHAR c) = False"
+| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
+| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
+| "nullable (STAR r) = True"
+
+
+fun
+ der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "der c (ZERO) = ZERO"
+| "der c (ONE) = ZERO"
+| "der c (CHAR d) = (if c = d then ONE else ZERO)"
+| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
+| "der c (SEQ r1 r2) =
+ (if nullable r1
+ then ALT (SEQ (der c r1) r2) (der c r2)
+ else SEQ (der c r1) r2)"
+| "der c (STAR r) = SEQ (der c r) (STAR r)"
+
+fun
+ ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "ders [] r = r"
+| "ders (c # s) r = ders s (der c r)"
+
+
+lemma nullable_correctness:
+ shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
+by (induct r) (auto simp add: Sequ_def)
+
+
+lemma der_correctness:
+ shows "L (der c r) = Der c (L r)"
+by (induct r) (simp_all add: nullable_correctness)
+
+
+section {* Values *}
+
+datatype val =
+ Void
+| Char char
+| Seq val val
+| Right val
+| Left val
+| Stars "val list"
+
+
+section {* The string behind a value *}
+
+fun
+ flat :: "val \<Rightarrow> string"
+where
+ "flat (Void) = []"
+| "flat (Char c) = [c]"
+| "flat (Left v) = flat v"
+| "flat (Right v) = flat v"
+| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
+| "flat (Stars []) = []"
+| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))"
+
+lemma flat_Stars [simp]:
+ "flat (Stars vs) = concat (map flat vs)"
+by (induct vs) (auto)
+
+
+section {* Relation between values and regular expressions *}
+
+inductive
+ Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
+where
+ "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
+| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
+| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
+| "\<turnstile> Void : ONE"
+| "\<turnstile> Char c : CHAR c"
+| "\<turnstile> Stars [] : STAR r"
+| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"
+
+inductive_cases Prf_elims:
+ "\<turnstile> v : ZERO"
+ "\<turnstile> v : SEQ r1 r2"
+ "\<turnstile> v : ALT r1 r2"
+ "\<turnstile> v : ONE"
+ "\<turnstile> v : CHAR c"
+(* "\<turnstile> vs : STAR r"*)
+
+lemma Prf_flat_L:
+ assumes "\<turnstile> v : r" shows "flat v \<in> L r"
+using assms
+by(induct v r rule: Prf.induct)
+ (auto simp add: Sequ_def)
+
+lemma Prf_Stars:
+ assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
+ shows "\<turnstile> Stars vs : STAR r"
+using assms
+by(induct vs) (auto intro: Prf.intros)
+
+lemma Star_string:
+ assumes "s \<in> A\<star>"
+ shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
+using assms
+apply(induct rule: Star.induct)
+apply(auto)
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(rule_tac x="s1#ss" in exI)
+apply(simp)
+done
+
+
+lemma Star_val:
+ assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
+ shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
+using assms
+apply(induct ss)
+apply(auto)
+apply (metis empty_iff list.set(1))
+by (metis concat.simps(2) list.simps(9) set_ConsD)
+
+lemma L_flat_Prf1:
+ assumes "\<turnstile> v : r" shows "flat v \<in> L r"
+using assms
+by (induct)(auto simp add: Sequ_def)
+
+lemma L_flat_Prf2:
+ assumes "s \<in> L r" shows "\<exists>v. \<turnstile> v : r \<and> flat v = s"
+using assms
+apply(induct r arbitrary: s)
+apply(auto simp add: Sequ_def intro: Prf.intros)
+using Prf.intros(1) flat.simps(5) apply blast
+using Prf.intros(2) flat.simps(3) apply blast
+using Prf.intros(3) flat.simps(4) apply blast
+apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
+apply(auto)[1]
+apply(rule_tac x="Stars vs" in exI)
+apply(simp)
+apply (simp add: Prf_Stars)
+apply(drule Star_string)
+apply(auto)
+apply(rule Star_val)
+apply(auto)
+done
+
+lemma L_flat_Prf:
+ "L(r) = {flat v | v. \<turnstile> v : r}"
+using L_flat_Prf1 L_flat_Prf2 by blast
+
+
+section {* Sulzmann and Lu functions *}
+
+fun
+ mkeps :: "rexp \<Rightarrow> val"
+where
+ "mkeps(ONE) = Void"
+| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
+| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
+| "mkeps(STAR r) = Stars []"
+
+fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
+where
+ "injval (CHAR d) c Void = Char d"
+| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
+| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
+| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
+| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
+
+
+section {* Mkeps, injval *}
+
+lemma mkeps_nullable:
+ assumes "nullable(r)"
+ shows "\<turnstile> mkeps r : r"
+using assms
+by (induct rule: nullable.induct)
+ (auto intro: Prf.intros)
+
+lemma mkeps_flat:
+ assumes "nullable(r)"
+ shows "flat (mkeps r) = []"
+using assms
+by (induct rule: nullable.induct) (auto)
+
+
+lemma Prf_injval:
+ assumes "\<turnstile> v : der c r"
+ shows "\<turnstile> (injval r c v) : r"
+using assms
+apply(induct r arbitrary: c v rule: rexp.induct)
+apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
+(* STAR *)
+apply(rotate_tac 2)
+apply(erule Prf.cases)
+apply(simp_all)[7]
+apply(auto)
+apply (metis Prf.intros(6) Prf.intros(7))
+by (metis Prf.intros(7))
+
+lemma Prf_injval_flat:
+ assumes "\<turnstile> v : der c r"
+ shows "flat (injval r c v) = c # (flat v)"
+using assms
+apply(induct arbitrary: v rule: der.induct)
+apply(auto elim!: Prf_elims split: if_splits)
+apply(metis mkeps_flat)
+apply(rotate_tac 2)
+apply(erule Prf.cases)
+apply(simp_all)[7]
+done
+
+
+
+section {* Our Alternative Posix definition *}
+
+inductive
+ Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
+where
+ Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
+| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
+| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
+| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
+| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow>
+ (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
+| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
+| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
+
+inductive_cases Posix_elims:
+ "s \<in> ZERO \<rightarrow> v"
+ "s \<in> ONE \<rightarrow> v"
+ "s \<in> CHAR c \<rightarrow> v"
+ "s \<in> ALT r1 r2 \<rightarrow> v"
+ "s \<in> SEQ r1 r2 \<rightarrow> v"
+ "s \<in> STAR r \<rightarrow> v"
+
+lemma Posix1:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "s \<in> L r" "flat v = s"
+using assms
+by (induct s r v rule: Posix.induct)
+ (auto simp add: Sequ_def)
+
+
+lemma Posix1a:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "\<turnstile> v : r"
+using assms
+by (induct s r v rule: Posix.induct)(auto intro: Prf.intros)
+
+
+lemma Posix_mkeps:
+ assumes "nullable r"
+ shows "[] \<in> r \<rightarrow> mkeps r"
+using assms
+apply(induct r rule: nullable.induct)
+apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
+apply(subst append.simps(1)[symmetric])
+apply(rule Posix.intros)
+apply(auto)
+done
+
+
+lemma Posix_determ:
+ assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
+ shows "v1 = v2"
+using assms
+proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
+ case (Posix_ONE v2)
+ have "[] \<in> ONE \<rightarrow> v2" by fact
+ then show "Void = v2" by cases auto
+next
+ case (Posix_CHAR c v2)
+ have "[c] \<in> CHAR c \<rightarrow> v2" by fact
+ then show "Char c = v2" by cases auto
+next
+ case (Posix_ALT1 s r1 v r2 v2)
+ have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+ moreover
+ have "s \<in> r1 \<rightarrow> v" by fact
+ then have "s \<in> L r1" by (simp add: Posix1)
+ ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto
+ moreover
+ have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+ ultimately have "v = v'" by simp
+ then show "Left v = v2" using eq by simp
+next
+ case (Posix_ALT2 s r2 v r1 v2)
+ have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+ moreover
+ have "s \<notin> L r1" by fact
+ ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'"
+ by cases (auto simp add: Posix1)
+ moreover
+ have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+ ultimately have "v = v'" by simp
+ then show "Right v = v2" using eq by simp
+next
+ case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
+ have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'"
+ "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
+ then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) by fastforce+
+ moreover
+ have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
+ "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
+ ultimately show "Seq v1 v2 = v'" by simp
+next
+ case (Posix_STAR1 s1 r v s2 vs v2)
+ have "(s1 @ s2) \<in> STAR r \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) apply fastforce
+ apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
+ using Posix1(2) by blast
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_STAR2 r v2)
+ have "[] \<in> STAR r \<rightarrow> v2" by fact
+ then show "Stars [] = v2" by cases (auto simp add: Posix1)
+qed
+
+
+lemma Posix_injval:
+ assumes "s \<in> (der c r) \<rightarrow> v"
+ shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
+using assms
+proof(induct r arbitrary: s v rule: rexp.induct)
+ case ZERO
+ have "s \<in> der c ZERO \<rightarrow> v" by fact
+ then have "s \<in> ZERO \<rightarrow> v" by simp
+ then have "False" by cases
+ then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
+next
+ case ONE
+ have "s \<in> der c ONE \<rightarrow> v" by fact
+ then have "s \<in> ZERO \<rightarrow> v" by simp
+ then have "False" by cases
+ then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
+next
+ case (CHAR d)
+ consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
+ then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
+ proof (cases)
+ case eq
+ have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+ then have "s \<in> ONE \<rightarrow> v" using eq by simp
+ then have eqs: "s = [] \<and> v = Void" by cases simp
+ show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs
+ by (auto intro: Posix.intros)
+ next
+ case ineq
+ have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+ then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
+ then have "False" by cases
+ then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
+ qed
+next
+ case (ALT r1 r2)
+ have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+ have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+ have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
+ then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
+ then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'"
+ | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'"
+ by cases auto
+ then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
+ proof (cases)
+ case left
+ have "s \<in> der c r1 \<rightarrow> v'" by fact
+ then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
+ then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
+ then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
+ next
+ case right
+ have "s \<notin> L (der c r1)" by fact
+ then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
+ moreover
+ have "s \<in> der c r2 \<rightarrow> v'" by fact
+ then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
+ ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')"
+ by (auto intro: Posix.intros)
+ then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
+ qed
+next
+ case (SEQ r1 r2)
+ have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+ have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+ have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
+ then consider
+ (left_nullable) v1 v2 s1 s2 where
+ "v = Left (Seq v1 v2)" "s = s1 @ s2"
+ "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+ | (right_nullable) v1 s1 s2 where
+ "v = Right v1" "s = s1 @ s2"
+ "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
+ | (not_nullable) v1 v2 s1 s2 where
+ "v = Seq v1 v2" "s = s1 @ s2"
+ "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+ by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v"
+ proof (cases)
+ case left_nullable
+ have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+ ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
+ next
+ case right_nullable
+ have "nullable r1" by fact
+ then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
+ moreover
+ have "s \<in> der c r2 \<rightarrow> v1" by fact
+ then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
+ moreover
+ have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
+ by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
+ ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
+ by(rule Posix.intros)
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
+ next
+ case not_nullable
+ have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+ ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable
+ by (rule_tac Posix.intros) (simp_all)
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
+ qed
+next
+ case (STAR r)
+ have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+ have "s \<in> der c (STAR r) \<rightarrow> v" by fact
+ then consider
+ (cons) v1 vs s1 s2 where
+ "v = Seq v1 (Stars vs)" "s = s1 @ s2"
+ "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"
+ apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
+ apply(rotate_tac 3)
+ apply(erule_tac Posix_elims(6))
+ apply (simp add: Posix.intros(6))
+ using Posix.intros(7) by blast
+ then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v"
+ proof (cases)
+ case cons
+ have "s1 \<in> der c r \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+ moreover
+ have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
+ moreover
+ have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact
+ then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+ then have "flat (injval r c v1) \<noteq> []" by simp
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))"
+ by (simp add: der_correctness Der_def)
+ ultimately
+ have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
+ then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
+ qed
+qed
+
+
+section {* The Lexer by Sulzmann and Lu *}
+
+fun
+ lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
+where
+ "lexer r [] = (if nullable r then Some(mkeps r) else None)"
+| "lexer r (c#s) = (case (lexer (der c r) s) of
+ None \<Rightarrow> None
+ | Some(v) \<Rightarrow> Some(injval r c v))"
+
+
+lemma lexer_correct_None:
+ shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
+using assms
+apply(induct s arbitrary: r)
+apply(simp add: nullable_correctness)
+apply(drule_tac x="der a r" in meta_spec)
+apply(auto simp add: der_correctness Der_def)
+done
+
+lemma lexer_correct_Some:
+ shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
+using assms
+apply(induct s arbitrary: r)
+apply(auto simp add: Posix_mkeps nullable_correctness)[1]
+apply(drule_tac x="der a r" in meta_spec)
+apply(simp add: der_correctness Der_def)
+apply(rule iffI)
+apply(auto intro: Posix_injval simp add: Posix1(1))
+done
+
+
+end
\ No newline at end of file