thys/LexerExt.thy
author Christian Urban <urbanc@in.tum.de>
Tue, 28 Feb 2017 13:35:12 +0000
changeset 223 17c079699ea0
parent 222 4c02878e2fe0
child 224 624b4154325b
permissions -rw-r--r--
FROMNTIMES not yet done
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
   
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
     2
theory LexerExt
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
     3
  imports Main
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
begin
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
     7
section {* Sequential Composition of Languages *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
definition
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
  Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
where 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
text {* Two Simple Properties about Sequential Composition *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
lemma seq_empty [simp]:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
  shows "A ;; {[]} = A"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
  and   "{[]} ;; A = A"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
by (simp_all add: Sequ_def)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
lemma seq_null [simp]:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
  shows "A ;; {} = {}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  and   "{} ;; A = {}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
by (simp_all add: Sequ_def)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    26
lemma seq_assoc: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    27
  shows "A ;; (B ;; C) = (A ;; B) ;; C"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    28
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    29
apply(metis append_assoc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    30
apply(metis)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    31
done
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    32
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
    33
section {* Semantic Derivative (Left Quotient) of Languages *}
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    34
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    35
definition
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    36
  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    37
where
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
    38
  "Der c A \<equiv> {s. c # s \<in> A}"
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    39
204
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    40
definition
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    41
  Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    42
where
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    43
  "Ders s A \<equiv> {s'. s @ s' \<in> A}"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    44
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    45
lemma Der_null [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    46
  shows "Der c {} = {}"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    47
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    48
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    49
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    50
lemma Der_empty [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    51
  shows "Der c {[]} = {}"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    52
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    53
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    54
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    55
lemma Der_char [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    56
  shows "Der c {[d]} = (if c = d then {[]} else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    57
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    58
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    59
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    60
lemma Der_union [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    61
  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    62
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    63
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    64
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    65
lemma Der_Sequ [simp]:
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    66
  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    67
unfolding Der_def Sequ_def
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    68
by (auto simp add: Cons_eq_append_conv)
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    69
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    70
lemma Der_UNION: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    71
  shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    72
by (auto simp add: Der_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    73
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    74
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    75
section {* Power operation for Sets *}
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    76
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    77
fun 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    78
  Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    79
where
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    80
   "A \<up> 0 = {[]}"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    81
|  "A \<up> (Suc n) = A ;; (A \<up> n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    82
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    83
lemma Pow_empty [simp]:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    84
  shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    85
by(induct n) (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    86
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    87
lemma Pow_plus:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    88
  "A \<up> (n + m) = A \<up> n ;; A \<up> m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    89
by (induct n) (simp_all add: seq_assoc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    90
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    92
section {* Kleene Star for Languages *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
inductive_set
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
  for A :: "string set"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
  start[intro]: "[] \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   101
lemma star_cases:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   102
  shows "A\<star> = {[]} \<union> A ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   103
unfolding Sequ_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   104
by (auto) (metis Star.simps)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   105
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
lemma star_decomp: 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
  assumes a: "c # x \<in> A\<star>" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
  shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
using a
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
by (induct x\<equiv>"c # x" rule: Star.induct) 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
   (auto simp add: append_eq_Cons_conv)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   113
lemma Der_star [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   114
  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   115
proof -    
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   116
  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   117
    by (simp only: star_cases[symmetric])
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   118
  also have "... = Der c (A ;; A\<star>)"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   119
    by (simp only: Der_union Der_empty) (simp)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   120
  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   121
    by simp
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   122
  also have "... =  (Der c A) ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   123
    unfolding Sequ_def Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   124
    by (auto dest: star_decomp)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   125
  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   126
qed
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   127
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   128
lemma Star_in_Pow:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   129
  assumes a: "s \<in> A\<star>"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   130
  shows "\<exists>n. s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   131
using a
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   132
apply(induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   133
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   134
apply(rule_tac x="Suc n" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   135
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   136
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   137
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   138
lemma Pow_in_Star:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   139
  assumes a: "s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   140
  shows "s \<in> A\<star>"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   141
using a
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   142
by (induct n arbitrary: s) (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   143
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   144
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   145
lemma Star_def2: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   146
  shows "A\<star> = (\<Union>n. A \<up> n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   147
using Star_in_Pow Pow_in_Star
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   148
by (auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   149
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   150
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
section {* Regular Expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
datatype rexp =
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   154
  ZERO
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   155
| ONE
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
| CHAR char
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
| SEQ rexp rexp
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
| ALT rexp rexp
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
| STAR rexp
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   160
| UPNTIMES rexp nat
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   161
| NTIMES rexp nat
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   162
| FROMNTIMES rexp nat
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
section {* Semantics of Regular Expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
fun
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
  L :: "rexp \<Rightarrow> string set"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   168
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   169
  "L (ZERO) = {}"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   170
| "L (ONE) = {[]}"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
| "L (CHAR c) = {[c]}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
| "L (STAR r) = (L r)\<star>"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   175
| "L (UPNTIMES r n) = (\<Union>i\<in> {..n} . (L r) \<up> i)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   176
| "L (NTIMES r n) = ((L r) \<up> n)"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   177
| "L (FROMNTIMES r n) = (\<Union>i\<in> {n..} . (L r) \<up> i)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   178
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   179
section {* Nullable, Derivatives *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   180
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
fun
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
 nullable :: "rexp \<Rightarrow> bool"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   184
  "nullable (ZERO) = False"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   185
| "nullable (ONE) = True"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
| "nullable (CHAR c) = False"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   188
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   189
| "nullable (STAR r) = True"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   190
| "nullable (UPNTIMES r n) = True"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   191
| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   192
| "nullable (FROMNTIMES r n) = (if n = 0 then True else nullable r)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   193
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   194
fun
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   195
 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   196
where
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   197
  "der c (ZERO) = ZERO"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   198
| "der c (ONE) = ZERO"
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   199
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   200
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   201
| "der c (SEQ r1 r2) = 
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   202
     (if nullable r1
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   203
      then ALT (SEQ (der c r1) r2) (der c r2)
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   204
      else SEQ (der c r1) r2)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   205
| "der c (STAR r) = SEQ (der c r) (STAR r)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   206
| "der c (UPNTIMES r 0) = ZERO"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   207
| "der c (UPNTIMES r (Suc n)) = SEQ (der c r) (UPNTIMES r n)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   208
| "der c (NTIMES r 0) = ZERO"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   209
| "der c (NTIMES r (Suc n)) = SEQ (der c r) (NTIMES r n)"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   210
| "der c (FROMNTIMES r 0) = SEQ (der c r) (STAR r)"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   211
| "der c (FROMNTIMES r (Suc n)) = SEQ (der c r) (FROMNTIMES r n)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   212
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   213
fun 
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   214
 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   215
where
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   216
  "ders [] r = r"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   217
| "ders (c # s) r = ders s (der c r)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   218
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   219
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
lemma nullable_correctness:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   222
apply(induct r) 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   223
apply(auto simp add: Sequ_def) 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   224
done
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   225
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   226
lemma Suc_reduce_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   227
  "(\<Union>x\<in>{Suc n..Suc m}. B x) = (\<Union>x\<in>{n..m}. B (Suc x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   228
by (metis UN_extend_simps(10) image_Suc_atLeastAtMost)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   229
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   230
lemma Suc_reduce_Union2:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   231
  "(\<Union>x\<in>{Suc n..}. B x) = (\<Union>x\<in>{n..}. B (Suc x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   232
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   233
apply(rule_tac x="xa - 1" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   234
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   235
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   236
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   237
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   238
lemma Seq_UNION: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   239
  shows "(\<Union>x\<in>A. B ;; C x) = B ;; (\<Union>x\<in>A. C x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   240
by (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   241
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   242
lemma Seq_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   243
  shows "A ;; (\<Union>x\<in>B. C x) = (\<Union>x\<in>B. A ;; C x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   244
by (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   245
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   246
lemma Der_Pow [simp]:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   247
  shows "Der c (A \<up> (Suc n)) = 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   248
     (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   249
unfolding Der_def Sequ_def 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   250
by(auto simp add: Cons_eq_append_conv Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   251
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   252
lemma Suc_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   253
  "(\<Union>x\<le>Suc m. B x) = (B (Suc m) \<union> (\<Union>x\<le>m. B x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   254
by (metis UN_insert atMost_Suc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   255
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   256
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   257
lemma Der_Pow_subseteq:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   258
  assumes "[] \<in> A"  
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   259
  shows "Der c (A \<up> n) \<subseteq> (Der c A) ;; (A \<up> n)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   260
using assms
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   261
apply(induct n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   262
apply(simp add: Sequ_def Der_def)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   263
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   264
apply(rule conjI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   265
apply (smt Sequ_def append_Nil2 mem_Collect_eq seq_assoc subsetI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   266
apply(subgoal_tac "((Der c A) ;; (A \<up> n)) \<subseteq> ((Der c A) ;; (A ;; (A \<up> n)))")
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   267
apply(auto)[1]
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   268
by (smt Sequ_def append_Nil2 mem_Collect_eq seq_assoc subsetI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   269
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   270
lemma test:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   271
  shows "(\<Union>x\<le>Suc n. Der c (L r \<up> x)) = (\<Union>x\<le>n. Der c (L r) ;; L r \<up> x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   272
apply(induct n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   273
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   274
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   275
apply(case_tac xa)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   276
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   277
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   278
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   279
apply(case_tac "[] \<in> L r")
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   280
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   281
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   282
by (smt Der_Pow Suc_Union inf_sup_aci(5) inf_sup_aci(7) sup_idem)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   283
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   284
lemma Der_Pow_in:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   285
  assumes "[] \<in> A"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   286
  shows "Der c (A \<up> n) = (\<Union>x\<le>n. Der c (A \<up> x))"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   287
using assms 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   288
apply(induct n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   289
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   290
apply(simp add: Suc_Union)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   291
done
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   292
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   293
lemma Der_Pow_notin:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   294
  assumes "[] \<notin> A"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   295
  shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   296
using assms
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   297
by(simp)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   298
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   299
lemma der_correctness:
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   300
  shows "L (der c r) = Der c (L r)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   301
apply(induct c r rule: der.induct) 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   302
apply(simp_all add: nullable_correctness)[7]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   303
apply(simp only: der.simps L.simps)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   304
apply(simp only: Der_UNION)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   305
apply(simp only: Seq_UNION[symmetric])
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   306
apply(simp add: test)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   307
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   308
(* NTIMES *)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   309
apply(simp only: L.simps der.simps)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   310
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   311
apply(rule impI)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   312
apply (simp add: Der_Pow_subseteq sup_absorb1)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   313
(* FROMNTIMES *)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   314
apply(simp only: der.simps)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   315
apply(simp only: L.simps)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   316
apply(subst Der_star[symmetric])
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   317
apply(subst Star_def2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   318
apply(auto)[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   319
apply(simp only: der.simps)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   320
apply(simp only: L.simps)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   321
apply(simp add: Der_UNION)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   322
by (smt Der_Pow Der_Pow_notin Der_Pow_subseteq SUP_cong Seq_UNION Suc_reduce_Union2 sup.absorb_iff1)
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   323
204
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   324
lemma ders_correctness:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   325
  shows "L (ders s r) = Ders s (L r)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   326
apply(induct s arbitrary: r)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   327
apply(simp_all add: Ders_def der_correctness Der_def)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   328
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   329
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   330
lemma ders_ZERO:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   331
  shows "ders s (ZERO) = ZERO"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   332
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   333
apply(simp_all)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   334
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   335
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   336
lemma ders_ONE:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   337
  shows "ders s (ONE) = (if s = [] then ONE else ZERO)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   338
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   339
apply(simp_all add: ders_ZERO)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   340
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   341
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   342
lemma ders_CHAR:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   343
  shows "ders s (CHAR c) = (if s = [c] then ONE else 
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   344
                           (if s = [] then (CHAR c) else ZERO))"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   345
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   346
apply(simp_all add: ders_ZERO ders_ONE)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   347
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   348
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   349
lemma  ders_ALT:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   350
  shows "ders s (ALT r1 r2) = ALT (ders s r1) (ders s r2)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   351
apply(induct s arbitrary: r1 r2)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   352
apply(simp_all)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   353
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   354
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
section {* Values *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
datatype val = 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
  Void
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
| Char char
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
| Seq val val
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
| Right val
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
| Left val
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   363
| Stars "val list"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   364
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   365
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
section {* The string behind a value *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   367
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
fun 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   369
  flat :: "val \<Rightarrow> string"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   370
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   371
  "flat (Void) = []"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
| "flat (Char c) = [c]"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   373
| "flat (Left v) = flat v"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   374
| "flat (Right v) = flat v"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   375
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   376
| "flat (Stars []) = []"
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   377
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   378
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   379
lemma flat_Stars [simp]:
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   380
 "flat (Stars vs) = concat (map flat vs)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   381
by (induct vs) (auto)
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   382
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   383
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   384
section {* Relation between values and regular expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   385
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   386
inductive 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   387
  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   388
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   389
 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   390
| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   391
| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   392
| "\<turnstile> Void : ONE"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   393
| "\<turnstile> Char c : CHAR c"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   394
| "\<lbrakk>\<forall>v \<in> set vs. \<turnstile> v : r\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : STAR r"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   395
| "\<lbrakk>\<forall>v \<in> set vs. \<turnstile> v : r; length vs \<le> n\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : UPNTIMES r n"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   396
| "\<lbrakk>\<forall>v \<in> set vs. \<turnstile> v : r; length vs = n\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : NTIMES r n"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   397
| "\<lbrakk>\<forall>v \<in> set vs. \<turnstile> v : r; length vs \<ge> n\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : FROMNTIMES r n"
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   398
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   399
inductive_cases Prf_elims:
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   400
  "\<turnstile> v : ZERO"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   401
  "\<turnstile> v : SEQ r1 r2"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   402
  "\<turnstile> v : ALT r1 r2"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   403
  "\<turnstile> v : ONE"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   404
  "\<turnstile> v : CHAR c"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   405
(*  "\<turnstile> vs : STAR r"*)
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   406
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   407
lemma Prf_STAR:
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   408
   assumes "\<forall>v\<in>set vs. \<turnstile> v : r \<and> flat v \<in> L r"  
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   409
   shows "concat (map flat vs) \<in> L r\<star>"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   410
using assms 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   411
apply(induct vs)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   412
apply(auto)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   413
done
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   414
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   415
lemma Prf_Pow:
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   416
  assumes "\<forall>v\<in>set vs. \<turnstile> v : r \<and> flat v \<in> L r" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   417
  shows "concat (map flat vs) \<in> L r \<up> length vs"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   418
using assms
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   419
apply(induct vs)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   420
apply(auto simp add: Sequ_def)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   421
done
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   422
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   423
lemma Prf_flat_L:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   424
  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   425
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   426
apply(induct v r rule: Prf.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   427
apply(auto simp add: Sequ_def)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   428
apply(rule Prf_STAR)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   429
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   430
apply(rule_tac x="length vs" in bexI)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   431
apply(rule Prf_Pow)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   432
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   433
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   434
apply(rule Prf_Pow)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   435
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   436
apply(rule_tac x="length vs" in bexI)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   437
apply(rule Prf_Pow)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   438
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   439
apply(simp)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   440
done
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   441
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   442
lemma Star_string:
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   443
  assumes "s \<in> A\<star>"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   444
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   445
using assms
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   446
apply(induct rule: Star.induct)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   447
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   448
apply(rule_tac x="[]" in exI)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   449
apply(simp)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   450
apply(rule_tac x="s1#ss" in exI)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   451
apply(simp)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   452
done
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   453
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   454
lemma Star_val:
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   455
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   456
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   457
using assms
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   458
apply(induct ss)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   459
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   460
apply (metis empty_iff list.set(1))
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   461
by (metis concat.simps(2) list.simps(9) set_ConsD)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   462
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   463
lemma Star_val_length:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   464
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   465
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r) \<and> (length vs) = (length ss)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   466
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   467
apply(induct ss)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   468
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   469
by (metis List.bind_def bind_simps(2) length_Suc_conv set_ConsD)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   470
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   471
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   472
lemma Star_Pow:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   473
  assumes "s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   474
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A) \<and> (length ss = n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   475
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   476
apply(induct n arbitrary: s)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   477
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   478
apply(drule_tac x="s2" in meta_spec)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   479
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   480
apply(rule_tac x="s1#ss" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   481
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   482
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   483
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   484
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   485
lemma L_flat_Prf2:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   486
  assumes "s \<in> L r" shows "\<exists>v. \<turnstile> v : r \<and> flat v = s"
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   487
using assms
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   488
apply(induct r arbitrary: s)
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   489
apply(auto simp add: Sequ_def intro: Prf.intros)
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   490
using Prf.intros(1) flat.simps(5) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   491
using Prf.intros(2) flat.simps(3) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   492
using Prf.intros(3) flat.simps(4) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   493
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   494
apply(auto)[1]
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   495
apply(rule_tac x="Stars vs" in exI)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   496
apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   497
apply(rule Prf.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   498
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   499
using Star_string Star_val apply force
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   500
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x)")
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   501
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   502
apply(rule_tac x="Stars vs" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   503
apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   504
apply(rule Prf.intros)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   505
apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   506
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   507
using Star_Pow Star_val_length apply blast
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   508
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x2)")
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   509
apply(auto)[1]
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   510
apply(rule_tac x="Stars vs" in exI)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   511
apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   512
apply(rule Prf.intros)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   513
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   514
apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   515
using Star_Pow Star_val_length apply blast
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   516
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x)")
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   517
apply(auto)[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   518
apply(rule_tac x="Stars vs" in exI)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   519
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   520
apply(rule Prf.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   521
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   522
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   523
using Star_Pow Star_val_length apply blast
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   524
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   525
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   526
lemma L_flat_Prf:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   527
  "L(r) = {flat v | v. \<turnstile> v : r}"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   528
using Prf_flat_L L_flat_Prf2 by blast
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   529
93
37e3f1174974 extended all proofs that worked before to the Star case...required a stronger notion of non-problematic values |=
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 92
diff changeset
   530
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   531
section {* Sulzmann and Lu functions *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   532
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   533
fun 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   534
  mkeps :: "rexp \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   535
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   536
  "mkeps(ONE) = Void"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   537
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   538
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   539
| "mkeps(STAR r) = Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   540
| "mkeps(UPNTIMES r n) = Stars []"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   541
| "mkeps(NTIMES r n) = Stars (replicate n (mkeps r))"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   542
| "mkeps(FROMNTIMES r n) = Stars (replicate n (mkeps r))"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   543
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   544
fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   545
where
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   546
  "injval (CHAR d) c Void = Char d"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   547
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   548
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   549
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   550
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   551
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   552
| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   553
| "injval (UPNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   554
| "injval (NTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   555
| "injval (FROMNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   556
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   557
section {* Mkeps, injval *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   558
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   559
lemma mkeps_nullable:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   560
  assumes "nullable(r)" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   561
  shows "\<turnstile> mkeps r : r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   562
using assms
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   563
apply(induct r rule: mkeps.induct) 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   564
apply(auto intro: Prf.intros)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   565
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   566
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   567
lemma mkeps_flat:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   568
  assumes "nullable(r)" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   569
  shows "flat (mkeps r) = []"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   570
using assms
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   571
by (induct rule: nullable.induct) (auto)
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   572
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   573
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   574
lemma Prf_injval:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   575
  assumes "\<turnstile> v : der c r" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   576
  shows "\<turnstile> (injval r c v) : r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   577
using assms
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   578
apply(induct r arbitrary: c v rule: rexp.induct)
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   579
apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   580
(* STAR *)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   581
apply(rotate_tac 2)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   582
apply(erule Prf.cases)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   583
apply(simp_all)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   584
apply(auto)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   585
using Prf.intros(6) apply auto[1]
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   586
(* UPNTIMES *)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   587
apply(case_tac x2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   588
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   589
using Prf_elims(1) apply auto[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   590
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   591
apply(erule Prf.cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   592
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   593
apply(clarify)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   594
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   595
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   596
apply(simp_all)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   597
apply(clarify)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   598
using Prf.intros(7) apply auto[1]
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   599
(* NTIMES *)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   600
apply(case_tac x2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   601
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   602
using Prf_elims(1) apply auto[1]
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   603
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   604
apply(erule Prf.cases)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   605
apply(simp_all)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   606
apply(clarify)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   607
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   608
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   609
apply(simp_all)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   610
apply(clarify)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   611
using Prf.intros(8) apply auto[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   612
(* FROMNTIMES *)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   613
apply(case_tac x2)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   614
apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   615
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   616
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   617
apply(clarify)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   618
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   619
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   620
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   621
apply(clarify)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   622
using Prf.intros(9) apply auto[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   623
apply(rotate_tac 1)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   624
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   625
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   626
apply(clarify)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   627
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   628
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   629
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   630
apply(clarify)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   631
using Prf.intros(9) by auto
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   632
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   633
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   634
lemma Prf_injval_flat:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   635
  assumes "\<turnstile> v : der c r" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   636
  shows "flat (injval r c v) = c # (flat v)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   637
using assms
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   638
apply(induct arbitrary: v rule: der.induct)
144
b356c7adf61a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 143
diff changeset
   639
apply(auto elim!: Prf_elims split: if_splits)
b356c7adf61a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 143
diff changeset
   640
apply(metis mkeps_flat)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   641
apply(rotate_tac 2)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   642
apply(erule Prf.cases)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   643
apply(simp_all)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   644
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   645
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   646
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   647
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   648
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   649
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   650
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   651
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   652
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   653
apply(rotate_tac 2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   654
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   655
apply(simp_all)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   656
done
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   657
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   658
104
59bad592a009 updated theories and cleaned them up
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 103
diff changeset
   659
section {* Our Alternative Posix definition *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   660
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   661
inductive 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   662
  Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   663
where
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   664
  Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   665
| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   666
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   667
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   668
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   669
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   670
    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   671
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   672
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   673
    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   674
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   675
| Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r n \<rightarrow> Stars vs; flat v \<noteq> [];
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   676
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))\<rbrakk>
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   677
    \<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   678
| Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   679
| Posix_NTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NTIMES r n \<rightarrow> Stars vs; 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   680
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r n))\<rbrakk>
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   681
    \<Longrightarrow> (s1 @ s2) \<in> NTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   682
| Posix_NTIMES2: "[] \<in> NTIMES r 0 \<rightarrow> Stars []"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   683
| Posix_FROMNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> FROMNTIMES r n \<rightarrow> Stars vs;
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   684
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r n))\<rbrakk>
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   685
    \<Longrightarrow> (s1 @ s2) \<in> FROMNTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   686
| Posix_FROMNTIMES2: "[] \<in> FROMNTIMES r 0 \<rightarrow> Stars []"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   687
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   688
inductive_cases Posix_elims:
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   689
  "s \<in> ZERO \<rightarrow> v"
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   690
  "s \<in> ONE \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   691
  "s \<in> CHAR c \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   692
  "s \<in> ALT r1 r2 \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   693
  "s \<in> SEQ r1 r2 \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   694
  "s \<in> STAR r \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   695
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   696
lemma Posix1:
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   697
  assumes "s \<in> r \<rightarrow> v"
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   698
  shows "s \<in> L r" "flat v = s"
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   699
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   700
apply (induct s r v rule: Posix.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   701
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   702
apply(rule_tac x="Suc x" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   703
apply(auto simp add: Sequ_def)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   704
apply(rule_tac x="Suc x" in bexI)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   705
apply(auto simp add: Sequ_def)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   706
done
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   707
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   708
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   709
lemma Posix1a:
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   710
  assumes "s \<in> r \<rightarrow> v"
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   711
  shows "\<turnstile> v : r"
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   712
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   713
apply(induct s r v rule: Posix.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   714
apply(auto intro: Prf.intros)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   715
apply(rule Prf.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   716
apply(auto)[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   717
apply(rotate_tac 3)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   718
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   719
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   720
apply(rule Prf.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   721
apply(auto)[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   722
apply(rotate_tac 3)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   723
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   724
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   725
apply (smt Posix_UPNTIMES2 Posix_elims(2) Prf.simps le_0_eq le_Suc_eq length_0_conv nat_induct nullable.simps(3) nullable.simps(7) rexp.distinct(61) rexp.distinct(67) rexp.distinct(69) rexp.inject(5) val.inject(5) val.simps(29) val.simps(33) val.simps(35))
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   726
apply(rule Prf.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   727
apply(auto)[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   728
apply(rotate_tac 3)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   729
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   730
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   731
apply (smt Prf.simps rexp.distinct(63) rexp.distinct(67) rexp.distinct(71) rexp.inject(6) val.distinct(17) val.distinct(9) val.inject(5) val.simps(29) val.simps(33) val.simps(35))
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   732
apply(rule Prf.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   733
apply(auto)[1]
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   734
apply(rotate_tac 3)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   735
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   736
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   737
using Prf.simps by blast
222
4c02878e2fe0 added two sanity lemmas
Christian Urban <urbanc@in.tum.de>
parents: 221
diff changeset
   738
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   739
lemma  Posix_NTIMES_mkeps:
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   740
  assumes "[] \<in> r \<rightarrow> mkeps r"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   741
  shows "[] \<in> NTIMES r n \<rightarrow> Stars (replicate n (mkeps r))"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   742
apply(induct n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   743
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   744
apply (rule Posix_NTIMES2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   745
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   746
apply(subst append_Nil[symmetric])
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   747
apply (rule Posix_NTIMES1)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   748
apply(auto)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   749
apply(rule assms)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   750
done
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   751
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   752
lemma  Posix_FROMNTIMES_mkeps:
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   753
  assumes "[] \<in> r \<rightarrow> mkeps r"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   754
  shows "[] \<in> FROMNTIMES r n \<rightarrow> Stars (replicate n (mkeps r))"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   755
apply(induct n)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   756
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   757
apply (rule Posix_FROMNTIMES2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   758
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   759
apply(subst append_Nil[symmetric])
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   760
apply (rule Posix_FROMNTIMES1)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   761
apply(auto)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   762
apply(rule assms)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   763
done
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   764
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   765
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   766
lemma Posix_mkeps:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   767
  assumes "nullable r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   768
  shows "[] \<in> r \<rightarrow> mkeps r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   769
using assms
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   770
apply(induct r rule: nullable.induct)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   771
apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   772
apply(subst append.simps(1)[symmetric])
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   773
apply(rule Posix.intros)
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   774
apply(auto)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   775
apply(case_tac n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   776
apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   777
apply (simp add: Posix_NTIMES2)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   778
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   779
apply(subst append.simps(1)[symmetric])
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   780
apply(rule Posix.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   781
apply(auto)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   782
apply(rule Posix_NTIMES_mkeps)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   783
apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   784
apply(case_tac n)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   785
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   786
apply (simp add: Posix_FROMNTIMES2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   787
apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   788
apply(subst append.simps(1)[symmetric])
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   789
apply(rule Posix.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   790
apply(auto)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   791
apply(rule Posix_FROMNTIMES_mkeps)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   792
apply(simp)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   793
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   794
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   795
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   796
lemma Posix_determ:
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   797
  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   798
  shows "v1 = v2"
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   799
using assms
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   800
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   801
  case (Posix_ONE v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   802
  have "[] \<in> ONE \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   803
  then show "Void = v2" by cases auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   804
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   805
  case (Posix_CHAR c v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   806
  have "[c] \<in> CHAR c \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   807
  then show "Char c = v2" by cases auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   808
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   809
  case (Posix_ALT1 s r1 v r2 v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   810
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   811
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   812
  have "s \<in> r1 \<rightarrow> v" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   813
  then have "s \<in> L r1" by (simp add: Posix1)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   814
  ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   815
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   816
  have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   817
  ultimately have "v = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   818
  then show "Left v = v2" using eq by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   819
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   820
  case (Posix_ALT2 s r2 v r1 v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   821
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   822
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   823
  have "s \<notin> L r1" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   824
  ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   825
    by cases (auto simp add: Posix1) 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   826
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   827
  have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   828
  ultimately have "v = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   829
  then show "Right v = v2" using eq by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   830
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   831
  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   832
  have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   833
       "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   834
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   835
  then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   836
  apply(cases) apply (auto simp add: append_eq_append_conv2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   837
  using Posix1(1) by fastforce+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   838
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   839
  have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   840
            "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   841
  ultimately show "Seq v1 v2 = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   842
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   843
  case (Posix_STAR1 s1 r v s2 vs v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   844
  have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   845
       "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   846
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   847
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   848
  apply(cases) apply (auto simp add: append_eq_append_conv2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   849
  using Posix1(1) apply fastforce
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   850
  apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   851
  using Posix1(2) by blast
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   852
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   853
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   854
            "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   855
  ultimately show "Stars (v # vs) = v2" by auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   856
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   857
  case (Posix_STAR2 r v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   858
  have "[] \<in> STAR r \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   859
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   860
next
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   861
  case (Posix_UPNTIMES1 s1 r v s2 n vs v2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   862
  have "(s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> v2" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   863
       "s1 \<in> r \<rightarrow> v" "s2 \<in> (UPNTIMES r n) \<rightarrow> Stars vs" "flat v \<noteq> []"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   864
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))" by fact+
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   865
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r n) \<rightarrow> (Stars vs')"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   866
  apply(cases) apply (auto simp add: append_eq_append_conv2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   867
  using Posix1(1) apply fastforce
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   868
  apply (metis Posix1(1) Posix_UPNTIMES1.hyps(6) append_Nil append_Nil2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   869
  using Posix1(2) by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   870
  moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   871
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   872
            "\<And>v2. s2 \<in> UPNTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   873
  ultimately show "Stars (v # vs) = v2" by auto
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   874
next
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   875
  case (Posix_UPNTIMES2 r n v2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   876
  have "[] \<in> UPNTIMES r n \<rightarrow> v2" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   877
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   878
next
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   879
  case (Posix_NTIMES2 r v2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   880
  have "[] \<in> NTIMES r 0 \<rightarrow> v2" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   881
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   882
next
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   883
  case (Posix_NTIMES1 s1 r v s2 n vs v2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   884
  have "(s1 @ s2) \<in> NTIMES r (Suc n) \<rightarrow> v2" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   885
       "s1 \<in> r \<rightarrow> v" "s2 \<in> (NTIMES r n) \<rightarrow> Stars vs"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   886
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r n))" by fact+
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   887
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (NTIMES r n) \<rightarrow> (Stars vs')"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   888
  apply(cases) apply (auto simp add: append_eq_append_conv2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   889
  using Posix1(1) apply fastforce
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   890
  apply (metis Posix1(1) Posix_NTIMES1.hyps(5) append_Nil append_Nil2)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   891
  done  
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   892
  moreover
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   893
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   894
            "\<And>v2. s2 \<in> NTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   895
  ultimately show "Stars (v # vs) = v2" by auto
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   896
next
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   897
  case (Posix_FROMNTIMES2 r v2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   898
  have "[] \<in> FROMNTIMES r 0 \<rightarrow> v2" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   899
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   900
next
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   901
  case (Posix_FROMNTIMES1 s1 r v s2 n vs v2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   902
  have "(s1 @ s2) \<in> FROMNTIMES r (Suc n) \<rightarrow> v2" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   903
       "s1 \<in> r \<rightarrow> v" "s2 \<in> (FROMNTIMES r n) \<rightarrow> Stars vs"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   904
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r n))" by fact+
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   905
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (FROMNTIMES r n) \<rightarrow> (Stars vs')"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   906
  apply(cases) apply (auto simp add: append_eq_append_conv2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   907
  using Posix1(1) apply fastforce
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   908
  by (metis Posix1(1) Posix_FROMNTIMES1.hyps(5) append_Nil2 self_append_conv2)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   909
  moreover
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   910
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   911
            "\<And>v2. s2 \<in> FROMNTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   912
  ultimately show "Stars (v # vs) = v2" by auto
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   913
qed
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   914
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   915
lemma NTIMES_Stars:
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   916
 assumes "\<turnstile> v : NTIMES r n"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   917
 shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> length vs = n"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   918
using assms
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   919
apply(induct n arbitrary: v)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   920
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   921
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   922
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   923
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   924
done
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   925
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   926
lemma UPNTIMES_Stars:
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   927
 assumes "\<turnstile> v : UPNTIMES r n"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   928
 shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> length vs \<le> n"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   929
using assms
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   930
apply(induct n arbitrary: v)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   931
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   932
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   933
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   934
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   935
done
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   936
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   937
lemma FROMNTIMES_Stars:
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   938
 assumes "\<turnstile> v : FROMNTIMES r n"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   939
 shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> n \<le> length vs"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   940
using assms
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   941
apply(induct n arbitrary: v)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   942
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   943
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   944
apply(erule Prf.cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   945
apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   946
done
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   947
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   948
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
   949
lemma Posix_injval:
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   950
  assumes "s \<in> (der c r) \<rightarrow> v"
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   951
  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   952
using assms
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   953
proof(induct r arbitrary: s v rule: rexp.induct)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   954
  case ZERO
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   955
  have "s \<in> der c ZERO \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   956
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   957
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   958
  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   959
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   960
  case ONE
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   961
  have "s \<in> der c ONE \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   962
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   963
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   964
  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   965
next 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   966
  case (CHAR d)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   967
  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   968
  then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   969
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   970
    case eq
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   971
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   972
    then have "s \<in> ONE \<rightarrow> v" using eq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   973
    then have eqs: "s = [] \<and> v = Void" by cases simp
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   974
    show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   975
    by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   976
  next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   977
    case ineq
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   978
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   979
    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   980
    then have "False" by cases
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   981
    then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   982
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   983
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   984
  case (ALT r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   985
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   986
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   987
  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   988
  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   989
  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   990
              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   991
              by cases auto
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   992
  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   993
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   994
    case left
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   995
    have "s \<in> der c r1 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   996
    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   997
    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   998
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   999
  next 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1000
    case right
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1001
    have "s \<notin> L (der c r1)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1002
    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1003
    moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1004
    have "s \<in> der c r2 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1005
    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1006
    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1007
      by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1008
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1009
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1010
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1011
  case (SEQ r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1012
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1013
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1014
  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1015
  then consider 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1016
        (left_nullable) v1 v2 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1017
        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1018
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1019
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1020
      | (right_nullable) v1 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1021
        "v = Right v1" "s = s1 @ s2"  
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1022
        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1023
      | (not_nullable) v1 v2 s1 s2 where
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1024
        "v = Seq v1 v2" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1025
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1026
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1027
        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1028
  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1029
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1030
      case left_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1031
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1032
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1033
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1034
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1035
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1036
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1037
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1038
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1039
      case right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1040
      have "nullable r1" by fact
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1041
      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1042
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1043
      have "s \<in> der c r2 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1044
      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1045
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1046
      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1047
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1048
        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1049
      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1050
      by(rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1051
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1052
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1053
      case not_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1054
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1055
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1056
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1057
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1058
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1059
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1060
        by (rule_tac Posix.intros) (simp_all) 
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1061
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1062
    qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1063
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1064
  case (STAR r)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1065
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1066
  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1067
  then consider
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1068
      (cons) v1 vs s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1069
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1070
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1071
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
  1072
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
  1073
        apply(rotate_tac 3)
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
  1074
        apply(erule_tac Posix_elims(6))
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1075
        apply (simp add: Posix.intros(6))
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1076
        using Posix.intros(7) by blast
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1077
    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1078
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1079
      case cons
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1080
          have "s1 \<in> der c r \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1081
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1082
        moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1083
          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1084
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1085
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1086
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1087
          then have "flat (injval r c v1) \<noteq> []" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1088
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1089
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1090
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1091
            by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1092
        ultimately 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
  1093
        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1094
        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1095
    qed
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1096
next 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1097
  case (UPNTIMES r n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1098
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1099
  have "s \<in> der c (UPNTIMES r n) \<rightarrow> v" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1100
  then consider
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1101
      (cons) m v1 vs s1 s2 where 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1102
        "n = Suc m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1103
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1104
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (UPNTIMES r m) \<rightarrow> (Stars vs)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1105
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1106
        apply(case_tac n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1107
        apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1108
        using Posix_elims(1) apply blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1109
        apply(simp)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1110
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)        
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1111
        by (metis Posix1a UPNTIMES_Stars)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1112
    then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1113
    proof (cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1114
      case cons
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1115
        have "n = Suc m" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1116
        moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1117
          have "s1 \<in> der c r \<rightarrow> v1" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1118
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1119
        moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1120
          have "s2 \<in> UPNTIMES r m \<rightarrow> Stars vs" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1121
        moreover 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1122
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1123
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1124
          then have "flat (injval r c v1) \<noteq> []" by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1125
        moreover 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1126
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1127
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1128
            by (simp add: der_correctness Der_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1129
        ultimately 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1130
        have "((c # s1) @ s2) \<in> UPNTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1131
          apply(rule_tac Posix.intros(8))
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1132
          apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1133
          done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1134
        then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" using cons by(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
  1135
    qed
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1136
next 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1137
  case (NTIMES r n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1138
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1139
  have "s \<in> der c (NTIMES r n) \<rightarrow> v" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1140
  then consider
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1141
      (cons) m v1 vs s1 s2 where 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1142
        "n = Suc m"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1143
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1144
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (NTIMES r m) \<rightarrow> (Stars vs)"
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1145
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r m))" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1146
        apply(case_tac n)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1147
        apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1148
        using Posix_elims(1) apply blast
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1149
        apply(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1150
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1151
        by (metis NTIMES_Stars Posix1a)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1152
    then show "(c # s) \<in> NTIMES r n \<rightarrow> injval (NTIMES r n) c v" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1153
    proof (cases)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1154
      case cons
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1155
        have "n = Suc m" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1156
        moreover
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1157
          have "s1 \<in> der c r \<rightarrow> v1" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1158
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1159
        moreover
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1160
          have "s2 \<in> NTIMES r m \<rightarrow> Stars vs" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1161
        moreover 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1162
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r m))" by fact
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1163
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r m))" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1164
            by (simp add: der_correctness Der_def)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1165
        ultimately 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1166
        have "((c # s1) @ s2) \<in> NTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1167
          apply(rule_tac Posix.intros(10))
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1168
          apply(simp_all)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1169
          done
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1170
        then show "(c # s) \<in> NTIMES r n \<rightarrow> injval (NTIMES r n) c v" using cons by(simp)
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
  1171
    qed
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1172
next 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1173
  case (FROMNTIMES r n)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1174
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1175
  have "s \<in> der c (FROMNTIMES r n) \<rightarrow> v" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1176
  then consider
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1177
        (null) v1 vs s1 s2 where 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1178
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1179
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (FROMNTIMES r 0) \<rightarrow> (Stars vs)"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1180
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (FROMNTIMES r 0))" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1181
      | (cons) m v1 vs s1 s2 where 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1182
        "n = Suc m"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1183
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1184
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (FROMNTIMES r m) \<rightarrow> (Stars vs)"
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1185
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (FROMNTIMES r m))" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1186
        apply(case_tac n)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1187
        apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1188
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1189
        defer
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1190
        apply (metis FROMNTIMES_Stars Posix1a)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1191
        apply(rotate_tac 5)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1192
        apply(erule_tac Posix_elims(6))
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1193
        apply(auto)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1194
        apply(drule_tac x="v1" in meta_spec)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1195
        apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1196
        apply(drule_tac x="v # vs" in meta_spec)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1197
        apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1198
        apply(drule_tac x="s1" in meta_spec)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1199
        apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1200
        apply(drule_tac x="s1a @ s2a" in meta_spec)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1201
        apply(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1202
        apply(drule meta_mp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1203
        defer
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1204
        using Pow_in_Star apply blast
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1205
        apply (meson Posix_FROMNTIMES2 append_is_Nil_conv self_append_conv)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1206
        sorry
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1207
    then show "(c # s) \<in> FROMNTIMES r n \<rightarrow> injval (FROMNTIMES r n) c v" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1208
    proof (cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1209
      case cons
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1210
        have "n = Suc m" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1211
        moreover
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1212
          have "s1 \<in> der c r \<rightarrow> v1" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1213
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1214
        moreover
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1215
          have "s2 \<in> FROMNTIMES r m \<rightarrow> Stars vs" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1216
        moreover 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1217
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (FROMNTIMES r m))" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1218
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r m))" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1219
            by (simp add: der_correctness Der_def)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1220
        ultimately 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1221
        have "((c # s1) @ s2) \<in> FROMNTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1222
          apply(rule_tac Posix.intros(12))
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1223
          apply(simp_all)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1224
          done
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1225
        then show "(c # s) \<in> FROMNTIMES r n \<rightarrow> injval (FROMNTIMES r n) c v" using cons by(simp)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
  1226
    qed
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
  1227
qed
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
  1228
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1229
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1230
section {* The Lexer by Sulzmann and Lu  *}
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1231
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1232
fun 
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1233
  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1234
where
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1235
  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1236
| "lexer r (c#s) = (case (lexer (der c r) s) of  
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1237
                    None \<Rightarrow> None
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1238
                  | Some(v) \<Rightarrow> Some(injval r c v))"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1239
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1240
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1241
lemma lexer_correct_None:
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
  1242
  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
  1243
apply(induct s arbitrary: r)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
  1244
apply(simp add: nullable_correctness)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
  1245
apply(drule_tac x="der a r" in meta_spec)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
  1246
apply(auto simp add: der_correctness Der_def)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
  1247
done
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
  1248
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1249
lemma lexer_correct_Some:
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
  1250
  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1251
apply(induct s arbitrary: r)
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1252
apply(auto simp add: Posix_mkeps nullable_correctness)[1]
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1253
apply(drule_tac x="der a r" in meta_spec)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1254
apply(simp add: der_correctness Der_def)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
  1255
apply(rule iffI)
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
  1256
apply(auto intro: Posix_injval simp add: Posix1(1))
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
  1257
done 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
  1258
186
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1259
lemma lexer_correctness:
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1260
  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1261
  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1262
using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1263
using Posix1(1) lexer_correct_None lexer_correct_Some by blast
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
  1264
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
  1265
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 94
diff changeset
  1266
end