--- a/Paper/Paper.thy Wed Feb 06 04:32:18 2013 +0000
+++ b/Paper/Paper.thy Wed Feb 06 04:39:08 2013 +0000
@@ -1307,7 +1307,7 @@
the arity, say @{term l}, we can define an inductive evaluation relation that
relates a recursive function @{text r} and a list @{term ns} of natural numbers of length @{text l},
to what the result of the recursive function is, say @{text n}---we omit the straightforward
- definition of @{term "rec_cal_rel r ns n"}. Because of space reasons, we also omit the
+ definition of @{term "rec_calc_rel r ns n"}. Because of space reasons, we also omit the
definition of translating
recursive functions into abacus programs. We can prove the following
theorem about the translation: Assuming
Binary file paper.pdf has changed
--- a/thys/UTM.thy Wed Feb 06 04:32:18 2013 +0000
+++ b/thys/UTM.thy Wed Feb 06 04:39:08 2013 +0000
@@ -711,8 +711,8 @@
by(simp)
lemma tape_of_nl_cons_app1: "(<a # xs @ [b]>) = (Oc\<up>(Suc a) @ Bk # (<xs@ [b]>))"
-apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps)
-apply(simp add: tape_of_nl_abv tape_of_nat_list.simps)
+apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv)
+apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv)
done
lemma bl_bin_bk_oc[simp]:
@@ -1231,7 +1231,7 @@
done
qed
thus "?thesis"
- apply(simp add: tape_of_nl_abv tape_of_nat_list.simps)
+ apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv)
done
qed