# HG changeset patch # User Christian Urban # Date 1360125548 0 # Node ID ca7fb6848715e487bbd97a5fb81597a26aa5ec6d # Parent 264ff70146578309d94dc6f98cc2ddd27061d50c updated diff -r 264ff7014657 -r ca7fb6848715 Paper/Paper.thy --- a/Paper/Paper.thy Wed Feb 06 04:32:18 2013 +0000 +++ b/Paper/Paper.thy Wed Feb 06 04:39:08 2013 +0000 @@ -1307,7 +1307,7 @@ the arity, say @{term l}, we can define an inductive evaluation relation that relates a recursive function @{text r} and a list @{term ns} of natural numbers of length @{text l}, to what the result of the recursive function is, say @{text n}---we omit the straightforward - definition of @{term "rec_cal_rel r ns n"}. Because of space reasons, we also omit the + definition of @{term "rec_calc_rel r ns n"}. Because of space reasons, we also omit the definition of translating recursive functions into abacus programs. We can prove the following theorem about the translation: Assuming diff -r 264ff7014657 -r ca7fb6848715 paper.pdf Binary file paper.pdf has changed diff -r 264ff7014657 -r ca7fb6848715 thys/UTM.thy --- a/thys/UTM.thy Wed Feb 06 04:32:18 2013 +0000 +++ b/thys/UTM.thy Wed Feb 06 04:39:08 2013 +0000 @@ -711,8 +711,8 @@ by(simp) lemma tape_of_nl_cons_app1: "() = (Oc\(Suc a) @ Bk # ())" -apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps) -apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) +apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv) +apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv) done lemma bl_bin_bk_oc[simp]: @@ -1231,7 +1231,7 @@ done qed thus "?thesis" - apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) + apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv) done qed