thys/UTM.thy
changeset 133 ca7fb6848715
parent 131 e995ae949731
child 139 7cb94089324e
equal deleted inserted replaced
132:264ff7014657 133:ca7fb6848715
   709 
   709 
   710 lemma [simp]: "a\<up>(Suc 0) = [a]" 
   710 lemma [simp]: "a\<up>(Suc 0) = [a]" 
   711 by(simp)
   711 by(simp)
   712 
   712 
   713 lemma tape_of_nl_cons_app1: "(<a # xs @ [b]>) = (Oc\<up>(Suc a) @ Bk # (<xs@ [b]>))"
   713 lemma tape_of_nl_cons_app1: "(<a # xs @ [b]>) = (Oc\<up>(Suc a) @ Bk # (<xs@ [b]>))"
   714 apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps)
   714 apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv)
   715 apply(simp add: tape_of_nl_abv  tape_of_nat_list.simps)
   715 apply(simp add: tape_of_nl_abv  tape_of_nat_list.simps tape_of_nat_abv)
   716 done
   716 done
   717 
   717 
   718 lemma bl_bin_bk_oc[simp]:
   718 lemma bl_bin_bk_oc[simp]:
   719   "bl_bin (xs @ [Bk, Oc]) = 
   719   "bl_bin (xs @ [Bk, Oc]) = 
   720   bl_bin xs + 2*2^(length xs)"
   720   bl_bin xs + 2*2^(length xs)"
  1229       using h
  1229       using h
  1230       apply(simp add: abc_twice_def)
  1230       apply(simp add: abc_twice_def)
  1231       done
  1231       done
  1232   qed
  1232   qed
  1233   thus "?thesis"
  1233   thus "?thesis"
  1234     apply(simp add: tape_of_nl_abv tape_of_nat_list.simps)
  1234     apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv)
  1235     done
  1235     done
  1236 qed
  1236 qed
  1237 
  1237 
  1238 
  1238 
  1239 lemma adjust_fetch0: 
  1239 lemma adjust_fetch0: