thys/Abacus.thy
author Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
Fri, 21 Dec 2018 12:31:36 +0100
changeset 290 6e1c03614d36
parent 288 a9003e6d0463
child 291 93db7414931d
permissions -rwxr-xr-x
Gave lemmas names in Abacus.ty
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     1
(* Title: thys/Abacus.thy
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     2
   Author: Jian Xu, Xingyuan Zhang, and Christian Urban
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     3
*)
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     4
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
     5
chapter {* Abacus Machines *}
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     6
163
67063c5365e1 changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
     7
theory Abacus
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     8
imports Turing_Hoare Abacus_Mopup
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
begin
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
111
dfc629cd11de made uncomputable compatible with abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
    11
declare replicate_Suc[simp add]
dfc629cd11de made uncomputable compatible with abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
    12
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
    13
(* Abacus instructions *)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
datatype abc_inst =
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
     Inc nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
   | Dec nat nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
   | Goto nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
  
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
type_synonym abc_prog = "abc_inst list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
type_synonym abc_state = nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
  The memory of Abacus machine is defined as a list of contents, with 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
  every units addressed by index into the list.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
  *}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
type_synonym abc_lm = "nat list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
  Fetching contents out of memory. Units not represented by list elements are considered
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
  as having content @{text "0"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
fun abc_lm_v :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
  where 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
    "abc_lm_v lm n = (if (n < length lm) then (lm!n) else 0)"         
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
  Set the content of memory unit @{text "n"} to value @{text "v"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
  @{text "am"} is the Abacus memory before setting.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
  If address @{text "n"} is outside to scope of @{text "am"}, @{text "am"} 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
  is extended so that @{text "n"} becomes in scope.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
fun abc_lm_s :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_lm"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
    "abc_lm_s am n v = (if (n < length am) then (am[n:=v]) else 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
                           am@ (replicate (n - length am) 0) @ [v])"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
  The configuration of Abaucs machines consists of its current state and its
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
  current memory:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
type_synonym abc_conf = "abc_state \<times> abc_lm"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
  Fetch instruction out of Abacus program:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
fun abc_fetch :: "nat \<Rightarrow> abc_prog \<Rightarrow> abc_inst option" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
  "abc_fetch s p = (if (s < length p) then Some (p ! s)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
                    else None)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
  Single step execution of Abacus machine. If no instruction is feteched, 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
  configuration does not change.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
fun abc_step_l :: "abc_conf \<Rightarrow> abc_inst option \<Rightarrow> abc_conf"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
  "abc_step_l (s, lm) a = (case a of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
               None \<Rightarrow> (s, lm) |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
               Some (Inc n)  \<Rightarrow> (let nv = abc_lm_v lm n in
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
                       (s + 1, abc_lm_s lm n (nv + 1))) |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
               Some (Dec n e) \<Rightarrow> (let nv = abc_lm_v lm n in
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
                       if (nv = 0) then (e, abc_lm_s lm n 0) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
                       else (s + 1,  abc_lm_s lm n (nv - 1))) |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
               Some (Goto n) \<Rightarrow> (n, lm) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
               )"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
  Multi-step execution of Abacus machine.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
fun abc_steps_l :: "abc_conf \<Rightarrow> abc_prog \<Rightarrow> nat \<Rightarrow> abc_conf"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
  "abc_steps_l (s, lm) p 0 = (s, lm)" |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
  "abc_steps_l (s, lm) p (Suc n) = 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
      abc_steps_l (abc_step_l (s, lm) (abc_fetch s p)) p n"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
section {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
  Compiling Abacus machines into Truing machines
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
subsection {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
  Compiling functions
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
  @{text "findnth n"} returns the TM which locates the represention of
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   102
  memory cell @{text "n"} on the tape and changes representation of zero
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   103
  on the way.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
fun findnth :: "nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
  "findnth 0 = []" |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
  "findnth (Suc n) = (findnth n @ [(W1, 2 * n + 1), 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
           (R, 2 * n + 2), (R, 2 * n + 3), (R, 2 * n + 2)])"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
  @{text "tinc_b"} returns the TM which increments the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
  of the memory cell under rw-head by one and move the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
  of cells afterwards to the right accordingly.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
  *}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
definition tinc_b :: "instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
  "tinc_b \<equiv> [(W1, 1), (R, 2), (W1, 3), (R, 2), (W1, 3), (R, 4), 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
             (L, 7), (W0, 5), (R, 6), (W0, 5), (W1, 3), (R, 6),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
             (L, 8), (L, 7), (R, 9), (L, 7), (R, 10), (W0, 9)]" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
  @{text "tinc ss n"} returns the TM which simulates the execution of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
  Abacus instruction @{text "Inc n"}, assuming that TM is located at
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
  location @{text "ss"} in the final TM complied from the whole
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
  Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
fun tinc :: "nat \<Rightarrow> nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
  "tinc ss n = shift (findnth n @ shift tinc_b (2 * n)) (ss - 1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
  @{text "tinc_b"} returns the TM which decrements the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
  of the memory cell under rw-head by one and move the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
  of cells afterwards to the left accordingly.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
  *}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
definition tdec_b :: "instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   143
  "tdec_b \<equiv>  [(W1, 1), (R, 2), (L, 14), (R, 3), (L, 4), (R, 3),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
              (R, 5), (W0, 4), (R, 6), (W0, 5), (L, 7), (L, 8),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
              (L, 11), (W0, 7), (W1, 8), (R, 9), (L, 10), (R, 9),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
              (R, 5), (W0, 10), (L, 12), (L, 11), (R, 13), (L, 11),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
              (R, 17), (W0, 13), (L, 15), (L, 14), (R, 16), (L, 14),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
              (R, 0), (W0, 16)]"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
  @{text "tdec ss n label"} returns the TM which simulates the execution of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
  Abacus instruction @{text "Dec n label"}, assuming that TM is located at
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
  location @{text "ss"} in the final TM complied from the whole
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   155
  Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
fun tdec :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
  where
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
   160
  "tdec ss n e = shift (findnth n) (ss - 1) @ adjust (shift (shift tdec_b (2 * n)) (ss - 1)) e"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   161
 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
  @{text "tgoto f(label)"} returns the TM simulating the execution of Abacus instruction
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
  @{text "Goto label"}, where @{text "f(label)"} is the corresponding location of
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
  @{text "label"} in the final TM compiled from the overall Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   168
fun tgoto :: "nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
  "tgoto n = [(Nop, n), (Nop, n)]"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
  The layout of the final TM compiled from an Abacus program is represented
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
  as a list of natural numbers, where the list element at index @{text "n"} represents the 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   175
  starting state of the TM simulating the execution of @{text "n"}-th instruction
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
  in the Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
type_synonym layout = "nat list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   180
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
  @{text "length_of i"} is the length of the 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
  TM simulating the Abacus instruction @{text "i"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   184
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
fun length_of :: "abc_inst \<Rightarrow> nat"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
  "length_of i = (case i of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   188
                    Inc n   \<Rightarrow> 2 * n + 9 |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   189
                    Dec n e \<Rightarrow> 2 * n + 16 |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   190
                    Goto n  \<Rightarrow> 1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   191
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   192
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   193
  @{text "layout_of ap"} returns the layout of Abacus program @{text "ap"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   194
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   195
fun layout_of :: "abc_prog \<Rightarrow> layout"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   196
  where "layout_of ap = map length_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   197
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   198
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   199
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   200
  @{text "start_of layout n"} looks out the starting state of @{text "n"}-th
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   201
  TM in the finall TM.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   202
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   203
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   204
fun start_of :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   205
  where
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   206
  "start_of ly x = (Suc (sum_list (take x ly))) "
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   207
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   208
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   209
  @{text "ci lo ss i"} complies Abacus instruction @{text "i"}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   210
  assuming the TM of @{text "i"} starts from state @{text "ss"} 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   211
  within the overal layout @{text "lo"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   214
fun ci :: "layout \<Rightarrow> nat \<Rightarrow> abc_inst \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   215
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   216
  "ci ly ss (Inc n) = tinc ss n"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
| "ci ly ss (Dec n e) = tdec ss n (start_of ly e)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
| "ci ly ss (Goto n) = tgoto (start_of ly n)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   219
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
  @{text "tpairs_of ap"} transfroms Abacus program @{text "ap"} pairing
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   222
  every instruction with its starting state.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   223
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   224
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   225
fun tpairs_of :: "abc_prog \<Rightarrow> (nat \<times> abc_inst) list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
  where "tpairs_of ap = (zip (map (start_of (layout_of ap)) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   227
                         [0..<(length ap)]) ap)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   228
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   229
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   230
  @{text "tms_of ap"} returns the list of TMs, where every one of them simulates
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   231
  the corresponding Abacus intruction in @{text "ap"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   232
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   233
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   234
fun tms_of :: "abc_prog \<Rightarrow> (instr list) list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
  where "tms_of ap = map (\<lambda> (n, tm). ci (layout_of ap) n tm) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   236
                         (tpairs_of ap)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   237
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   238
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   239
  @{text "tm_of ap"} returns the final TM machine compiled from Abacus program @{text "ap"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   241
fun tm_of :: "abc_prog \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   242
  where "tm_of ap = concat (tms_of ap)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   243
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   244
lemma length_findnth: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   245
  "length (findnth n) = 4 * n"
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   246
by (induct n, auto)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   247
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   248
lemma ci_length : "length (ci ns n ai) div 2 = length_of ai"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   249
apply(auto simp: ci.simps tinc_b_def tdec_b_def length_findnth
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
   250
                 split: abc_inst.splits simp del: adjust.simps)
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
   251
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   252
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   253
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   254
subsection {* Representation of Abacus memory by TM tapes *}
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   255
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   256
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   257
  @{text "crsp acf tcf"} meams the abacus configuration @{text "acf"}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   258
  is corretly represented by the TM configuration @{text "tcf"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   259
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   260
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   261
fun crsp :: "layout \<Rightarrow> abc_conf \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow> bool"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   262
  where 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   263
  "crsp ly (as, lm) (s, l, r) inres = 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   264
           (s = start_of ly as \<and> (\<exists> x. r = <lm> @ Bk\<up>x) \<and> 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   265
            l = Bk # Bk # inres)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   266
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   267
declare crsp.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   268
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   269
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   270
  The type of invarints expressing correspondence between 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   271
  Abacus configuration and TM configuration.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   272
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   273
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   274
type_synonym inc_inv_t = "abc_conf \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow> bool"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   275
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   276
declare tms_of.simps[simp del] tm_of.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   277
        layout_of.simps[simp del] abc_fetch.simps [simp del]  
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   278
        tpairs_of.simps[simp del] start_of.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   279
        ci.simps [simp del] length_of.simps[simp del] 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   280
        layout_of.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   281
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   282
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   283
  The lemmas in this section lead to the correctness of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   284
  the compilation of @{text "Inc n"} instruction.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   285
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   286
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   287
declare abc_step_l.simps[simp del] abc_steps_l.simps[simp del]
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
   288
lemma start_of_nonzero[simp]: "start_of ly as > 0" "(start_of ly as = 0) = False"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
   289
apply(auto simp: start_of.simps)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   290
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   291
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   292
lemma abc_steps_l_0: "abc_steps_l ac ap 0 = ac"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   293
by(case_tac ac, simp add: abc_steps_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   294
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   295
lemma abc_step_red: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   296
 "abc_steps_l (as, am) ap stp = (bs, bm) \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   297
  abc_steps_l (as, am) ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap) "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   298
proof(induct stp arbitrary: as am bs bm)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   299
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   300
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   301
    by(simp add: abc_steps_l.simps abc_steps_l_0)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   302
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   303
  case (Suc stp as am bs bm)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   304
  have ind: "\<And>as am bs bm. abc_steps_l (as, am) ap stp = (bs, bm) \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   305
    abc_steps_l (as, am) ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   306
    by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   307
  have h:" abc_steps_l (as, am) ap (Suc stp) = (bs, bm)" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   308
  obtain as' am' where g: "abc_step_l (as, am) (abc_fetch as ap) = (as', am')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   309
    by(case_tac "abc_step_l (as, am) (abc_fetch as ap)", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   310
  then have "abc_steps_l (as', am') ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   311
    using h
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   312
    by(rule_tac ind, simp add: abc_steps_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   313
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   314
    using g
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   315
    by(simp add: abc_steps_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   316
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   317
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   318
lemma tm_shift_fetch: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   319
  "\<lbrakk>fetch A s b = (ac, ns); ns \<noteq> 0 \<rbrakk>
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   320
  \<Longrightarrow> fetch (shift A off) s b = (ac, ns + off)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   321
apply(case_tac b)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   322
apply(case_tac [!] s, auto simp: fetch.simps shift.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   323
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   324
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   325
lemma tm_shift_eq_step:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   326
  assumes exec: "step (s, l, r) (A, 0) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   327
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   328
  shows "step (s + off, l, r) (shift A off, off) = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   329
using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   330
apply(simp add: step.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   331
apply(case_tac "fetch A s (read r)", auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   332
apply(drule_tac [!] off = off in tm_shift_fetch, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   333
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   334
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   335
declare step.simps[simp del] steps.simps[simp del] shift.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   336
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   337
lemma tm_shift_eq_steps: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   338
  assumes exec: "steps (s, l, r) (A, 0) stp = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   339
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   340
  shows "steps (s + off, l, r) (shift A off, off) stp = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   341
  using exec notfinal
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   342
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   343
  fix stp s' l' r'
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   344
  assume ind: "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (A, 0) stp = (s', l', r'); s' \<noteq> 0\<rbrakk> 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   345
     \<Longrightarrow> steps (s + off, l, r) (shift A off, off) stp = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   346
  and h: " steps (s, l, r) (A, 0) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   347
  obtain s1 l1 r1 where g: "steps (s, l, r) (A, 0) stp = (s1, l1, r1)" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   348
    apply(case_tac "steps (s, l, r) (A, 0) stp") by blast
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   349
  moreover then have "s1 \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   350
    using h
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   351
    apply(simp add: step_red)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   352
    apply(case_tac "0 < s1", auto)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   353
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   354
  ultimately have "steps (s + off, l, r) (shift A off, off) stp =
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
                   (s1 + off, l1, r1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
    apply(rule_tac ind, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
  thus "steps (s + off, l, r) (shift A off, off) (Suc stp) = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
    using h g assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
    apply(simp add: step_red)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
    apply(rule_tac tm_shift_eq_step, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   363
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   364
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   365
lemma startof_not0[simp]: "0 < start_of ly as"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
apply(simp add: start_of.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   367
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   369
lemma startof_ge1[simp]: "Suc 0 \<le> start_of ly as"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   370
apply(simp add: start_of.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   371
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   373
lemma start_of_Suc1: "\<lbrakk>ly = layout_of ap; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   374
       abc_fetch as ap = Some (Inc n)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   375
       \<Longrightarrow> start_of ly (Suc as) = start_of ly as + 2 * n + 9"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   376
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   377
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   378
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   379
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   380
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   381
lemma start_of_Suc2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   382
  "\<lbrakk>ly = layout_of ap;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   383
  abc_fetch as ap = Some (Dec n e)\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   384
        start_of ly (Suc as) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   385
            start_of ly as + 2 * n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   386
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   387
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   388
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   389
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   390
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   391
lemma start_of_Suc3:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   392
  "\<lbrakk>ly = layout_of ap;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   393
  abc_fetch as ap = Some (Goto n)\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   394
  start_of ly (Suc as) = start_of ly as + 1"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   395
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   396
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   397
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   398
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   399
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   400
lemma length_ci_inc: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   401
  "length (ci ly ss (Inc n)) = 4*n + 18"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   402
apply(auto simp: ci.simps length_findnth tinc_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   403
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   404
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   405
lemma length_ci_dec: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   406
  "length (ci ly ss (Dec n e)) = 4*n + 32"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   407
apply(auto simp: ci.simps length_findnth tdec_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   408
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   409
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   410
lemma length_ci_goto: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   411
  "length (ci ly ss (Goto n )) = 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   412
apply(auto simp: ci.simps length_findnth tdec_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   413
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   414
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   415
lemma take_Suc_last[elim]: "Suc as \<le> length xs \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   416
            take (Suc as) xs = take as xs @ [xs ! as]"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   417
apply(induct xs arbitrary: as, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   418
apply(case_tac as, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   419
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   420
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   421
lemma concat_suc: "Suc as \<le> length xs \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   422
       concat (take (Suc as) xs) = concat (take as xs) @ xs! as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   423
apply(subgoal_tac "take (Suc as) xs = take as xs @ [xs ! as]", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   424
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   425
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   426
lemma concat_take_suc_iff: "Suc n \<le> length tps \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   427
       concat (take n tps) @ (tps ! n) = concat (take (Suc n) tps)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   428
apply(drule_tac concat_suc, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   429
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   430
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   431
lemma concat_drop_suc_iff: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   432
   "Suc n < length tps \<Longrightarrow> concat (drop (Suc n) tps) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   433
           tps ! Suc n @ concat (drop (Suc (Suc n)) tps)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   434
apply(induct tps arbitrary: n, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   435
apply(case_tac tps, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   436
apply(case_tac n, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   437
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   438
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   439
declare append_assoc[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   440
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   441
lemma  tm_append:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   442
  "\<lbrakk>n < length tps; tp = tps ! n\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   443
  \<exists> tp1 tp2. concat tps = tp1 @ tp @ tp2 \<and> tp1 = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   444
  concat (take n tps) \<and> tp2 = concat (drop (Suc n) tps)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   445
apply(rule_tac x = "concat (take n tps)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   446
apply(rule_tac x = "concat (drop (Suc n) tps)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   447
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   448
apply(induct n, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   449
apply(case_tac tps, simp, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   450
apply(subgoal_tac "concat (take n tps) @ (tps ! n) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   451
               concat (take (Suc n) tps)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   452
apply(simp only: append_assoc[THEN sym], simp only: append_assoc)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   453
apply(subgoal_tac " concat (drop (Suc n) tps) = tps ! Suc n @ 
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   454
                  concat (drop (Suc (Suc n)) tps)")
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   455
  apply (metis append_take_drop_id concat_append)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   456
   apply(rule concat_drop_suc_iff,force)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   457
  by (simp add: concat_suc)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   458
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   459
declare append_assoc[simp]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   460
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   461
lemma map_of:  "n < length xs \<Longrightarrow> (map f xs) ! n = f (xs ! n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   462
by(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   463
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
   464
lemma length_tms_of[simp]: "length (tms_of aprog) = length aprog"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   465
apply(auto simp: tms_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   466
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   467
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   468
lemma ci_nth: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   469
  "\<lbrakk>ly = layout_of aprog; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   470
  abc_fetch as aprog = Some ins\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   471
  \<Longrightarrow> ci ly (start_of ly as) ins = tms_of aprog ! as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   472
apply(simp add: tms_of.simps tpairs_of.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   473
      abc_fetch.simps  map_of del: map_append split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   474
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   475
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   476
lemma t_split:"\<lbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   477
        ly = layout_of aprog;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   478
        abc_fetch as aprog = Some ins\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   479
      \<Longrightarrow> \<exists> tp1 tp2. concat (tms_of aprog) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   480
            tp1 @ (ci ly (start_of ly as) ins) @ tp2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   481
            \<and> tp1 = concat (take as (tms_of aprog)) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   482
              tp2 = concat (drop (Suc as) (tms_of aprog))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   483
apply(insert tm_append[of "as" "tms_of aprog" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   484
                             "ci ly (start_of ly as) ins"], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   485
apply(subgoal_tac "ci ly (start_of ly as) ins = (tms_of aprog) ! as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   486
apply(subgoal_tac "length (tms_of aprog) = length aprog")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   487
apply(simp add: abc_fetch.simps split: if_splits, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   488
apply(rule_tac ci_nth, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   489
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   490
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   491
lemma math_sub: "\<lbrakk>x >= Suc 0; x - 1 = z\<rbrakk> \<Longrightarrow> x + y - Suc 0 = z + y"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   492
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   493
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   494
lemma start_more_one: "as \<noteq> 0 \<Longrightarrow> start_of ly as >= Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   495
apply(induct as, simp add: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   496
apply(case_tac as, auto simp: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   497
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   498
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   499
lemma div_apart: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   500
          \<Longrightarrow> (x + y) div 2 = x div 2 + y div 2"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   501
  by(auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   502
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   503
lemma div_apart_iff: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   504
           (x + y) mod 2 = 0"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   505
by(auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   506
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
   507
lemma length_layout_of[simp]: "length (layout_of aprog) = length aprog"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   508
by(auto simp: layout_of.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   509
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   510
lemma start_of_ind: "\<lbrakk>as < length aprog; ly = layout_of aprog\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   511
       start_of ly (Suc as) = start_of ly as + 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   512
                          length ((tms_of aprog) ! as) div 2"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   513
  by (auto simp: start_of.simps tms_of.simps layout_of.simps 
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   514
                 tpairs_of.simps ci_length take_Suc take_Suc_conv_app_nth)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   515
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   516
lemma concat_take_suc: "Suc n \<le> length xs \<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   517
  concat (take (Suc n) xs) = concat (take n xs) @ (xs ! n)"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   518
  using concat_suc.
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   519
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
   520
lemma ci_in_set[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   521
  "\<lbrakk>as < length aprog; (abc_fetch as aprog) = Some ins\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   522
  \<Longrightarrow> ci (layout_of aprog) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   523
  (start_of (layout_of aprog) as) (ins) \<in> set (tms_of aprog)"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   524
  by(insert ci_nth[of "layout_of aprog" aprog as], simp)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   525
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
   526
lemma length_tms_of_elem_even[intro]:  "n < length ap \<Longrightarrow> length (tms_of ap ! n) mod 2 = 0"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   527
  apply(cases "ap ! n")
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   528
  by (auto simp: tms_of.simps tpairs_of.simps ci.simps length_findnth tinc_b_def tdec_b_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   529
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   530
lemma compile_mod2: "length (concat (take n (tms_of ap))) mod 2 = 0"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   531
proof(induct n)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   532
  case 0
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   533
  then show ?case by (auto simp add: take_Suc_conv_app_nth)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   534
next
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   535
  case (Suc n)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   536
  hence "n < length (tms_of ap) \<Longrightarrow> is_even (length (concat (take (Suc n) (tms_of ap))))"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   537
    unfolding take_Suc_conv_app_nth by fastforce
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   538
  with Suc show ?case by(cases "n < length (tms_of ap)", auto)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   539
qed
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   540
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   541
lemma tpa_states:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   542
  "\<lbrakk>tp = concat (take as (tms_of ap));
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   543
  as \<le> length ap\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   544
  start_of (layout_of ap) as = Suc (length tp div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   545
proof(induct as arbitrary: tp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   546
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   547
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   548
    by(simp add: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   549
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   550
  case (Suc as tp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   551
  have ind: "\<And>tp. \<lbrakk>tp = concat (take as (tms_of ap)); as \<le> length ap\<rbrakk> \<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   552
    start_of (layout_of ap) as = Suc (length tp div 2)" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   553
  have tp: "tp = concat (take (Suc as) (tms_of ap))" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   554
  have le: "Suc as \<le> length ap" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   555
  have a: "start_of (layout_of ap) as = Suc (length (concat (take as (tms_of ap))) div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   556
    using le
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   557
    by(rule_tac ind, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   558
  from a tp le show "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   559
    apply(simp add: start_of.simps take_Suc_conv_app_nth)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   560
    apply(subgoal_tac "length (concat (take as (tms_of ap))) mod 2= 0")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   561
    apply(subgoal_tac " length (tms_of ap ! as) mod 2 = 0")
163
67063c5365e1 changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   562
    apply(simp add: Abacus.div_apart) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   563
    apply(simp add: layout_of.simps ci_length  tms_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   564
    apply(auto  intro: compile_mod2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   565
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   566
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   567
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
   568
declare fetch.simps[simp]
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   569
lemma append_append_fetch: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   570
    "\<lbrakk>length tp1 mod 2 = 0; length tp mod 2 = 0;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   571
      length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + length tp div 2\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   572
    \<Longrightarrow>fetch (tp1 @ tp @ tp2) a b = fetch tp (a - length tp1 div 2) b "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   573
apply(subgoal_tac "\<exists> x. a = length tp1 div 2 + x", erule exE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   574
apply(case_tac x, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   575
apply(subgoal_tac "length tp1 div 2 + Suc nat = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   576
             Suc (length tp1 div 2 + nat)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   577
apply(simp only: fetch.simps nth_of.simps, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   578
apply(case_tac b, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   579
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   580
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   581
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   582
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   583
apply(auto simp: nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   584
apply(rule_tac x = "a - length tp1 div 2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   585
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   586
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   587
lemma step_eq_fetch':
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   588
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   589
  and compile: "tp = tm_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   590
  and fetch: "abc_fetch as ap = Some ins"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   591
  and range1: "s \<ge> start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   592
  and range2: "s < start_of ly (Suc as)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   593
  shows "fetch tp s b = fetch (ci ly (start_of ly as) ins)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   594
       (Suc s - start_of ly as) b "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   595
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   596
  have "\<exists>tp1 tp2. concat (tms_of ap) = tp1 @ ci ly (start_of ly as) ins @ tp2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   597
    tp1 = concat (take as (tms_of ap)) \<and> tp2 = concat (drop (Suc as) (tms_of ap))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   598
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   599
    by(rule_tac t_split, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   600
  then obtain tp1 tp2 where a: "concat (tms_of ap) = tp1 @ ci ly (start_of ly as) ins @ tp2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   601
    tp1 = concat (take as (tms_of ap)) \<and> tp2 = concat (drop (Suc as) (tms_of ap))" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   602
  then have b: "start_of (layout_of ap) as = Suc (length tp1 div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   603
    using fetch
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   604
    by(rule_tac tpa_states, simp, simp add: abc_fetch.simps split: if_splits)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   605
  have "fetch (tp1 @ (ci ly (start_of ly as) ins) @ tp2)  s b = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   606
        fetch (ci ly (start_of ly as) ins) (s - length tp1 div 2) b"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   607
  proof(rule_tac append_append_fetch)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   608
    show "length tp1 mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   609
      using a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   610
      by(auto, rule_tac compile_mod2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   611
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   612
    show "length (ci ly (start_of ly as) ins) mod 2 = 0"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   613
      by(case_tac ins, auto simp: ci.simps length_findnth tinc_b_def tdec_b_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   614
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   615
    show "length tp1 div 2 < s \<and> s \<le> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   616
      length tp1 div 2 + length (ci ly (start_of ly as) ins) div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   617
    proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   618
      have "length (ci ly (start_of ly as) ins) div 2 = length_of ins"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   619
        using ci_length by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   620
      moreover have "start_of ly (Suc as) = start_of ly as + length_of ins"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   621
        using fetch layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   622
        apply(simp add: start_of.simps abc_fetch.simps List.take_Suc_conv_app_nth 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   623
          split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   624
        apply(simp add: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   625
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   626
      ultimately show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   627
        using b layout range1 range2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   628
        apply(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   629
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   630
    qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   631
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   632
  thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   633
    using b layout a compile  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   634
    apply(simp add: tm_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   635
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   636
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   637
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   638
lemma step_eq_fetch: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   639
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   640
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   641
  and abc_fetch: "abc_fetch as ap = Some ins" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   642
  and fetch: "fetch (ci ly (start_of ly as) ins)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   643
       (Suc s - start_of ly as) b = (ac, ns)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   644
  and notfinal: "ns \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   645
  shows "fetch tp s b = (ac, ns)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   646
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   647
  have "s \<ge> start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   648
  proof(cases "s \<ge> start_of ly as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   649
    case True thus "?thesis" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   650
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   651
    case False 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   652
    have "\<not> start_of ly as \<le> s" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   653
    then have "Suc s - start_of ly as = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   654
      by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   655
    then have "fetch (ci ly (start_of ly as) ins)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   656
       (Suc s - start_of ly as) b = (Nop, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   657
      by(simp add: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   658
    with notfinal fetch show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   659
      by(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   660
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   661
  moreover have "s < start_of ly (Suc as)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   662
  proof(cases "s < start_of ly (Suc as)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   663
    case True thus "?thesis" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   664
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   665
    case False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   666
    have h: "\<not> s < start_of ly (Suc as)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   667
      by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   668
    then have "s > start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   669
      using abc_fetch layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   670
      apply(simp add: start_of.simps abc_fetch.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   671
      apply(simp add: List.take_Suc_conv_app_nth, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   672
      apply(subgoal_tac "layout_of ap ! as > 0") 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   673
      apply arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   674
      apply(simp add: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   675
      apply(case_tac "ap!as", auto simp: length_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   676
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   677
    from this and h have "fetch (ci ly (start_of ly as) ins) (Suc s - start_of ly as) b = (Nop, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   678
      using abc_fetch layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   679
      apply(case_tac b, simp_all add: Suc_diff_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   680
      apply(case_tac [!] ins, simp_all add: start_of_Suc2 start_of_Suc1 start_of_Suc3)
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   681
      by (simp_all only: length_ci_inc length_ci_dec length_ci_goto, auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   682
    from fetch and notfinal this show "?thesis"by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   683
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   684
  ultimately show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   685
    using assms
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
   686
    by(drule_tac b= b and ins = ins in step_eq_fetch', auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   687
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   688
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   689
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   690
lemma step_eq_in:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   691
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   692
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   693
  and fetch: "abc_fetch as ap = Some ins"    
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   694
  and exec: "step (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   695
  = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   696
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   697
  shows "step (s, l, r) (tp, 0) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   698
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   699
  apply(simp add: step.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   700
  apply(case_tac "fetch (ci (layout_of ap) (start_of (layout_of ap) as) ins)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   701
    (Suc s - start_of (layout_of ap) as) (read r)", simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   702
  using layout
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   703
  apply(drule_tac s = s and b = "read r" and ac = a in step_eq_fetch, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   704
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   705
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   706
lemma steps_eq_in:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   707
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   708
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   709
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   710
  and fetch: "abc_fetch as ap = Some ins"    
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   711
  and exec: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   712
  = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   713
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   714
  shows "steps (s, l, r) (tp, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   715
  using exec notfinal
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   716
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   717
  fix stp s' l' r'
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   718
  assume ind: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   719
    "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp = (s', l', r'); s' \<noteq> 0\<rbrakk>
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   720
              \<Longrightarrow> steps (s, l, r) (tp, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   721
  and h: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   722
  obtain s1 l1 r1 where g: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp = 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   723
                        (s1, l1, r1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   724
    apply(case_tac "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp") by blast
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   725
  moreover hence "s1 \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   726
    using h
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   727
    apply(simp add: step_red)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   728
    apply(case_tac "0 < s1", simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   729
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   730
  ultimately have "steps (s, l, r) (tp, 0) stp = (s1, l1, r1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   731
    apply(rule_tac ind, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   732
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   733
  thus "steps (s, l, r) (tp, 0) (Suc stp) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   734
    using h g assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   735
    apply(simp add: step_red)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   736
    apply(rule_tac step_eq_in, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   737
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   738
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   739
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   740
lemma tm_append_fetch_first: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   741
  "\<lbrakk>fetch A s b = (ac, ns); ns \<noteq> 0\<rbrakk> \<Longrightarrow> 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   742
    fetch (A @ B) s b = (ac, ns)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   743
apply(case_tac b)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   744
apply(case_tac [!] s, auto simp: fetch.simps nth_append split: if_splits)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   745
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   746
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   747
lemma tm_append_first_step_eq: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   748
  assumes "step (s, l, r) (A, off) = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   749
  and "s' \<noteq> 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   750
  shows "step (s, l, r) (A @ B, off) = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   751
using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   752
apply(simp add: step.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   753
apply(case_tac "fetch A (s - off) (read r)")
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   754
apply(frule_tac  B = B and b = "read r" in tm_append_fetch_first, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   755
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   756
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   757
lemma tm_append_first_steps_eq: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   758
  assumes "steps (s, l, r) (A, off) stp = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   759
  and "s' \<noteq> 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   760
  shows "steps (s, l, r) (A @ B, off) stp = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   761
using assms
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   762
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   763
  fix stp s' l' r'
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   764
  assume ind: "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (A, off) stp = (s', l', r'); s' \<noteq> 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   765
    \<Longrightarrow> steps (s, l, r) (A @ B, off) stp = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   766
    and h: "steps (s, l, r) (A, off) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   767
  obtain sa la ra where a: "steps (s, l, r) (A, off) stp = (sa, la, ra)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   768
    apply(case_tac "steps (s, l, r) (A, off) stp") by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   769
  hence "steps (s, l, r) (A @ B, off) stp = (sa, la, ra) \<and> sa \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   770
    using h ind[of sa la ra]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   771
    apply(case_tac sa, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   772
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   773
  thus "steps (s, l, r) (A @ B, off) (Suc stp) = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   774
    using h a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   775
    apply(simp add: step_red)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   776
    apply(rule_tac tm_append_first_step_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   777
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   778
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   779
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   780
lemma tm_append_second_fetch_eq:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   781
  assumes
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   782
  even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   783
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   784
  and fetch: "fetch B s b = (ac, ns)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   785
  and notfinal: "ns \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   786
  shows "fetch (A @ shift B off) (s + off) b = (ac, ns + off)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   787
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   788
apply(case_tac b)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   789
apply(case_tac [!] s, auto simp: fetch.simps nth_append shift.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   790
  split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   791
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   792
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   793
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   794
lemma tm_append_second_step_eq: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   795
  assumes 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   796
  exec: "step0 (s, l, r) B = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   797
  and notfinal: "s' \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   798
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   799
  and even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   800
  shows "step0 (s + off, l, r) (A @ shift B off) = (s' + off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   801
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   802
apply(simp add: step.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   803
apply(case_tac "fetch B s (read r)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   804
apply(frule_tac tm_append_second_fetch_eq, simp_all, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   805
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   806
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   807
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   808
lemma tm_append_second_steps_eq: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   809
  assumes 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   810
  exec: "steps (s, l, r) (B, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   811
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   812
  and off: "off = length A div 2"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   813
  and even: "length A mod 2 = 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   814
  shows "steps (s + off, l, r) (A @ shift B off, 0) stp = (s' + off, l', r')"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   815
using exec notfinal
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   816
proof(induct stp arbitrary: s' l' r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   817
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   818
  thus "steps0 (s + off, l, r) (A @ shift B off) 0 = (s' + off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   819
    by(simp add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   820
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   821
  case (Suc stp s' l' r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   822
  have ind: "\<And>s' l' r'. \<lbrakk>steps0 (s, l, r) B stp = (s', l', r'); s' \<noteq> 0\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   823
    steps0 (s + off, l, r) (A @ shift B off) stp = (s' + off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   824
    by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   825
  have h: "steps0 (s, l, r) B (Suc stp) = (s', l', r')" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   826
  have k: "s' \<noteq> 0" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   827
  obtain s'' l'' r'' where a: "steps0 (s, l, r) B stp = (s'', l'', r'')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   828
    by (metis prod_cases3)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   829
  then have b: "s'' \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   830
    using h k
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   831
    by(rule_tac notI, auto simp: step_red)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   832
  from a b have c: "steps0 (s + off, l, r) (A @ shift B off) stp = (s'' + off, l'', r'')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   833
    by(erule_tac ind, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   834
  from c b h a k assms show "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   835
    apply(simp add: step_red) by(rule tm_append_second_step_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   836
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   837
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   838
lemma tm_append_second_fetch0_eq:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   839
  assumes
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   840
  even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   841
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   842
  and fetch: "fetch B s b = (ac, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   843
  and notfinal: "s \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   844
  shows "fetch (A @ shift B off) (s + off) b = (ac, 0)"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   845
using assms
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   846
apply(case_tac b)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   847
apply(case_tac [!] s, auto simp: fetch.simps nth_append shift.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   848
  split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   849
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   850
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   851
lemma tm_append_second_halt_eq:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   852
  assumes 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   853
  exec: "steps (Suc 0, l, r) (B, 0) stp = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   854
  and wf_B: "tm_wf (B, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   855
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   856
  and even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   857
  shows "steps (Suc off, l, r) (A @ shift B off, 0) stp = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   858
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   859
  have "\<exists>n. \<not> is_final (steps0 (1, l, r) B n) \<and> steps0 (1, l, r) B (Suc n) = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   860
    using exec by(rule_tac before_final, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   861
 then obtain n where a: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   862
   "\<not> is_final (steps0 (1, l, r) B n) \<and> steps0 (1, l, r) B (Suc n) = (0, l', r')" ..
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   863
 obtain s'' l'' r'' where b: "steps0 (1, l, r) B n = (s'', l'', r'') \<and> s'' >0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   864
   using a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   865
   by(case_tac "steps0 (1, l, r) B n", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   866
 have c: "steps (Suc 0 + off, l, r) (A @ shift B off, 0) n = (s'' + off, l'', r'')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   867
   using a b assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   868
   by(rule_tac tm_append_second_steps_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   869
 obtain ac where d: "fetch B s'' (read r'') = (ac, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   870
   using  b a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   871
   by(case_tac "fetch B s'' (read r'')", auto simp: step_red step.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   872
 then have "fetch (A @ shift B off) (s'' + off) (read r'') = (ac, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   873
   using assms b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   874
   by(rule_tac tm_append_second_fetch0_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   875
 then have e: "steps (Suc 0 + off, l, r) (A @ shift B off, 0) (Suc n) = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   876
   using a b assms c d
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   877
   by(simp add: step_red step.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   878
 from a have "n < stp"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   879
   using exec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   880
 proof(cases "n < stp")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   881
   case  True thus "?thesis" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   882
 next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   883
   case False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   884
   have "\<not> n < stp" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   885
   then obtain d where  "n = stp + d"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   886
     by (metis add.comm_neutral less_imp_add_positive nat_neq_iff)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   887
   thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   888
     using a e exec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   889
     by(simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   890
 qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   891
 then obtain d where "stp = Suc n + d"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   892
   by(metis add_Suc less_iff_Suc_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   893
 thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   894
   using e
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   895
   by(simp only: steps_add, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   896
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   897
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   898
lemma tm_append_steps: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   899
  assumes 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   900
  aexec: "steps (s, l, r) (A, 0) stpa = (Suc (length A div 2), la, ra)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   901
  and bexec: "steps (Suc 0, la, ra) (B, 0) stpb =  (sb, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   902
  and notfinal: "sb \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   903
  and off: "off = length A div 2"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   904
  and even: "length A mod 2 = 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   905
  shows "steps (s, l, r) (A @ shift B off, 0) (stpa + stpb) = (sb + off, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   906
proof -
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   907
  have "steps (s, l, r) (A@shift B off, 0) stpa = (Suc (length A div 2), la, ra)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   908
    apply(rule_tac tm_append_first_steps_eq)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   909
    apply(auto simp: assms)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   910
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   911
  moreover have "steps (1 + off, la, ra) (A @ shift B off, 0) stpb = (sb + off, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   912
    apply(rule_tac tm_append_second_steps_eq)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   913
    apply(auto simp: assms bexec)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   914
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   915
  ultimately show "steps (s, l, r) (A @ shift B off, 0) (stpa + stpb) = (sb + off, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   916
    apply(simp add: steps_add off)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   917
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   918
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   919
       
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   920
subsection {* Crsp of Inc*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   921
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   922
fun at_begin_fst_bwtn :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   923
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   924
  "at_begin_fst_bwtn (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   925
      (\<exists> lm1 tn rn. lm1 = (lm @ 0\<up>tn) \<and> length lm1 = s \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   926
          (if lm1 = [] then l = Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   927
           else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = Bk\<up>rn)" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   928
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   929
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   930
fun at_begin_fst_awtn :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   931
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   932
  "at_begin_fst_awtn (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   933
      (\<exists> lm1 tn rn. lm1 = (lm @ 0\<up>tn) \<and> length lm1 = s \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   934
         (if lm1 = []  then l = Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   935
          else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = [Oc]@Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   936
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   937
fun at_begin_norm :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   938
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   939
  "at_begin_norm (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   940
      (\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and> length lm1 = s \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   941
        (if lm1 = [] then l = Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   942
         else l = Bk # <rev lm1> @ Bk # Bk # ires ) \<and> r = <lm2>@Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   943
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   944
fun in_middle :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   945
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   946
  "in_middle (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   947
      (\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<up>tn = lm1 @ [m] @ lm2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   948
       \<and> length lm1 = s \<and> m + 1 = ml + mr \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   949
         ml \<noteq> 0 \<and> tn = s + 1 - length lm \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   950
       (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   951
        else l = Oc\<up>ml@[Bk]@<rev lm1>@
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   952
                 Bk # Bk # ires) \<and> (r = Oc\<up>mr @ [Bk] @ <lm2>@ Bk\<up>rn \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   953
      (lm2 = [] \<and> r = Oc\<up>mr))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   954
      )"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   955
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   956
fun inv_locate_a :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   957
  where "inv_locate_a (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   958
     (at_begin_norm (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   959
      at_begin_fst_bwtn (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   960
      at_begin_fst_awtn (as, lm) (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   961
      )"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   962
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   963
fun inv_locate_b :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   964
  where "inv_locate_b (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   965
        (in_middle (as, lm) (s, l, r)) ires "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   966
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   967
fun inv_after_write :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   968
  where "inv_after_write (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   969
           (\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   970
             (if lm1 = [] then l = Oc\<up>m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   971
              else Oc # l = Oc\<up>Suc m@ Bk # <rev lm1> @ 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   972
                      Bk # Bk # ires) \<and> r = [Oc] @ <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   973
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   974
fun inv_after_move :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   975
  where "inv_after_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   976
      (\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   977
        (if lm1 = [] then l = Oc\<up>Suc m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   978
         else l = Oc\<up>Suc m@ Bk # <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   979
        r = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   980
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   981
fun inv_after_clear :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   982
  where "inv_after_clear (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   983
       (\<exists> rn m lm1 lm2 r'. lm = lm1 @ m # lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   984
        (if lm1 = [] then l = Oc\<up>Suc m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   985
         else l = Oc\<up>Suc m @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   986
          r = Bk # r' \<and> Oc # r' = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   987
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   988
fun inv_on_right_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   989
  where "inv_on_right_moving (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   990
       (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   991
            ml + mr = m \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   992
          (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   993
          else l = Oc\<up>ml  @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   994
         ((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   995
          (r = Oc\<up>mr \<and> lm2 = [])))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   996
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   997
fun inv_on_left_moving_norm :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   998
  where "inv_on_left_moving_norm (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   999
      (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1000
             ml + mr = Suc m \<and> mr > 0 \<and> (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1001
                                         else l =  Oc\<up>ml @ Bk # <rev lm1> @ Bk # Bk # ires)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1002
        \<and> (r = Oc\<up>mr @ Bk # <lm2> @ Bk\<up>rn \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1003
           (lm2 = [] \<and> r = Oc\<up>mr)))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1004
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1005
fun inv_on_left_moving_in_middle_B:: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1006
  where "inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1007
                (\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1008
                     (if lm1 = [] then l = Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1009
                      else l = <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1010
                      r = Bk # <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1011
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1012
fun inv_on_left_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1013
  where "inv_on_left_moving (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1014
       (inv_on_left_moving_norm  (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1015
        inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1016
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1017
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1018
fun inv_check_left_moving_on_leftmost :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1019
  where "inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1020
                (\<exists> rn. l = ires \<and> r = [Bk, Bk] @ <lm> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1021
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1022
fun inv_check_left_moving_in_middle :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1023
  where "inv_check_left_moving_in_middle (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1024
              (\<exists> lm1 lm2 r' rn. lm = lm1 @ lm2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1025
                 (Oc # l = <rev lm1> @ Bk # Bk # ires) \<and> r = Oc # Bk # r' \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1026
                           r' = <lm2> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1027
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1028
fun inv_check_left_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1029
  where "inv_check_left_moving (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1030
             (inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1031
             inv_check_left_moving_in_middle (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1032
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1033
fun inv_after_left_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1034
  where "inv_after_left_moving (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1035
              (\<exists> rn. l = Bk # ires \<and> r = Bk # <lm> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1036
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1037
fun inv_stop :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1038
  where "inv_stop (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1039
              (\<exists> rn. l = Bk # Bk # ires \<and> r = <lm> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1040
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1041
lemma halt_lemma2': 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1042
  "\<lbrakk>wf LE;  \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1043
    (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE)); Q (f 0)\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1044
      \<Longrightarrow> \<exists> n. P (f n)"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  1045
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1046
apply(intro exCI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1047
apply(subgoal_tac "\<forall> n. Q (f n)", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1048
apply(drule_tac f = f in wf_inv_image)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1049
apply(simp add: inv_image_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1050
apply(erule wf_induct, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1051
apply(erule_tac x = x in allE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1052
apply(erule_tac x = n in allE, erule_tac x = n in allE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1053
apply(erule_tac x = "Suc x" in allE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1054
apply(rule_tac allI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1055
apply(induct_tac n, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1056
apply(erule_tac x = na in allE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1057
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1058
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1059
lemma halt_lemma2'': 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1060
  "\<lbrakk>P (f n); \<not> P (f (0::nat))\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1061
         \<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1062
apply(induct n rule: nat_less_induct, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1063
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1064
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1065
lemma halt_lemma2''':
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1066
 "\<lbrakk>\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> LE;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1067
                 Q (f 0);  \<forall>i<na. \<not> P (f i)\<rbrakk> \<Longrightarrow> Q (f na)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1068
apply(induct na, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1069
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1070
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1071
lemma halt_lemma2: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1072
  "\<lbrakk>wf LE;  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1073
    Q (f 0); \<not> P (f 0);
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1074
    \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE))\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1075
  \<Longrightarrow> \<exists> n. P (f n) \<and> Q (f n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1076
apply(insert halt_lemma2' [of LE P f Q], simp, erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1077
apply(subgoal_tac "\<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1078
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1079
apply(rule_tac x = na in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1080
apply(rule halt_lemma2''', simp, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1081
apply(erule_tac halt_lemma2'', simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1082
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1083
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1084
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1085
fun findnth_inv :: "layout \<Rightarrow> nat \<Rightarrow> inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1086
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1087
  "findnth_inv ly n (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1088
              (if s = 0 then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1089
               else if s \<le> Suc (2*n) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1090
                  if s mod 2 = 1 then inv_locate_a (as, lm) ((s - 1) div 2, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1091
                  else inv_locate_b (as, lm) ((s - 1) div 2, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1092
               else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1093
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1094
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1095
fun findnth_state :: "config \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1096
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1097
  "findnth_state (s, l, r) n = (Suc (2*n) - s)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1098
  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1099
fun findnth_step :: "config \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1100
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1101
  "findnth_step (s, l, r) n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1102
           (if s mod 2 = 1 then
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1103
                   (if (r \<noteq> [] \<and> hd r = Oc) then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1104
                    else 1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1105
            else length r)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1106
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1107
fun findnth_measure :: "config \<times> nat \<Rightarrow> nat \<times> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1108
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1109
  "findnth_measure (c, n) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1110
     (findnth_state c n, findnth_step c n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1111
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1112
definition lex_pair :: "((nat \<times> nat) \<times> nat \<times> nat) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1113
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1114
  "lex_pair \<equiv> less_than <*lex*> less_than"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1115
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1116
definition findnth_LE :: "((config \<times> nat) \<times> (config \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1117
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1118
   "findnth_LE \<equiv> (inv_image lex_pair findnth_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1119
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1120
lemma wf_findnth_LE: "wf findnth_LE"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  1121
by(auto simp: findnth_LE_def lex_pair_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1122
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1123
declare findnth_inv.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1124
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1125
lemma x_is_2n_arith[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1126
  "\<lbrakk>x < Suc (Suc (2 * n)); Suc x mod 2 = Suc 0; \<not> x < 2 * n\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1127
 \<Longrightarrow> x = 2*n"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1128
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1129
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1130
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1131
lemma between_sucs:"x < Suc n \<Longrightarrow> \<not> x < n \<Longrightarrow> x = n" by auto
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1132
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1133
lemma fetch_findnth[simp]: 
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1134
  "\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 = Suc 0\<rbrakk> \<Longrightarrow> fetch (findnth n) a Oc = (R, Suc a)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1135
  "\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow> fetch (findnth n) a Oc = (R, a)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1136
  "\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow> fetch (findnth n) a Bk = (R, Suc a)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1137
  "\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 = Suc 0\<rbrakk> \<Longrightarrow> fetch (findnth n) a Bk = (W1, a)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1138
by(cases a;induct n;force simp: length_findnth nth_append dest!:between_sucs)+
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1139
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1140
declare at_begin_norm.simps[simp del] at_begin_fst_bwtn.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1141
   at_begin_fst_awtn.simps[simp del] in_middle.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1142
   abc_lm_s.simps[simp del] abc_lm_v.simps[simp del]  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1143
   ci.simps[simp del] inv_after_move.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1144
   inv_on_left_moving_norm.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1145
   inv_on_left_moving_in_middle_B.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1146
   inv_after_clear.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1147
   inv_after_write.simps[simp del] inv_on_left_moving.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1148
   inv_on_right_moving.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1149
   inv_check_left_moving.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1150
   inv_check_left_moving_in_middle.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1151
   inv_check_left_moving_on_leftmost.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1152
   inv_after_left_moving.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1153
   inv_stop.simps[simp del] inv_locate_a.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1154
   inv_locate_b.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1155
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1156
lemma replicate_once[intro]: "\<exists>rn. [Bk] = Bk \<up> rn"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1157
by (metis replicate.simps)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1158
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1159
lemma at_begin_norm_Bk[intro]:  "at_begin_norm (as, am) (q, aaa, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1160
             \<Longrightarrow> at_begin_norm (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1161
apply(simp add: at_begin_norm.simps, erule_tac exE, erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1162
apply(rule_tac x = lm1 in exI, simp, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1163
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1164
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1165
lemma at_begin_fst_bwtn_Bk[intro]: "at_begin_fst_bwtn (as, am) (q, aaa, []) ires 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1166
            \<Longrightarrow> at_begin_fst_bwtn (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1167
apply(simp only: at_begin_fst_bwtn.simps, erule_tac exE, erule_tac exE, erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1168
apply(rule_tac x = "am @ 0\<up>tn" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1169
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1170
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1171
lemma at_begin_fst_awtn_Bk[intro]: "at_begin_fst_awtn (as, am) (q, aaa, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1172
           \<Longrightarrow> at_begin_fst_awtn (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1173
apply(auto simp: at_begin_fst_awtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1174
done 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1175
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1176
lemma inv_locate_a_Bk[intro]: "inv_locate_a (as, am) (q, aaa, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1177
            \<Longrightarrow> inv_locate_a (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1178
apply(simp only: inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1179
apply(erule disj_forward)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1180
defer
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1181
apply(erule disj_forward, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1182
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1183
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1184
lemma locate_a_2_locate_a[simp]: "inv_locate_a (as, am) (q, aaa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1185
       \<Longrightarrow> inv_locate_a (as, am) (q, aaa, Oc # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1186
apply(simp only: inv_locate_a.simps at_begin_norm.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1187
                 at_begin_fst_bwtn.simps at_begin_fst_awtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1188
apply(erule_tac disjE, erule exE, erule exE, erule exE, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1189
      rule disjI2, rule disjI2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1190
defer
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1191
apply(erule_tac disjE, erule exE, erule exE, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1192
      erule exE, rule disjI2, rule disjI2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1193
prefer 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1194
apply(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1195
proof-
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1196
  fix lm1 tn rn
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1197
  assume k: "lm1 = am @ 0\<up>tn \<and> length lm1 = q \<and> (if lm1 = [] then aaa = Bk # Bk # 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1198
    ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Bk # xs = Bk\<up>rn"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1199
  thus "\<exists>lm1 tn rn. lm1 = am @ 0 \<up> tn \<and> length lm1 = q \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1200
    (if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Oc # xs = [Oc] @ Bk \<up> rn"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1201
    (is "\<exists>lm1 tn rn. ?P lm1 tn rn")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1202
  proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1203
    from k have "?P lm1 tn (rn - 1)"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1204
      by (auto simp: Cons_replicate_eq)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1205
    thus ?thesis by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1206
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1207
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1208
  fix lm1 lm2 rn
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1209
  assume h1: "am = lm1 @ lm2 \<and> length lm1 = q \<and> (if lm1 = [] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1210
    then aaa = Bk # Bk # ires else aaa = Bk # <rev lm1> @ Bk # Bk # ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1211
    Bk # xs = <lm2> @ Bk\<up>rn"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1212
  from h1 have h2: "lm2 = []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1213
    apply(auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1214
    apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1215
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1216
  from h1 and h2 show "\<exists>lm1 tn rn. lm1 = am @ 0\<up>tn \<and> length lm1 = q \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1217
    (if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1218
    Oc # xs = [Oc] @ Bk\<up>rn" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1219
    (is "\<exists>lm1 tn rn. ?P lm1 tn rn")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1220
  proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1221
    from h1 and h2  have "?P lm1 0 (rn - 1)"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1222
      apply(auto simp:tape_of_nat_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1223
      by(case_tac "rn::nat", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1224
    thus ?thesis by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1225
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1226
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1227
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1228
lemma inv_locate_a[simp]: "inv_locate_a (as, am) (q, aaa, []) ires \<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1229
               inv_locate_a (as, am) (q, aaa, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1230
apply(insert locate_a_2_locate_a [of as am q aaa "[]"])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1231
apply(subgoal_tac "inv_locate_a (as, am) (q, aaa, [Bk]) ires", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1232
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1233
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1234
(*inv: from locate_b to locate_b*)
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1235
lemma inv_locate_b[simp]: "inv_locate_b (as, am) (q, aaa, Oc # xs) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1236
         \<Longrightarrow> inv_locate_b (as, am) (q, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1237
apply(simp only: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1238
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1239
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1240
      rule_tac x = tn in exI, rule_tac x = m in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1241
apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - 1" in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1242
      rule_tac x = rn in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1243
apply(case_tac mr, simp_all, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1244
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1245
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1246
lemma tape_nat[simp]:  "<[x::nat]> = Oc\<up>(Suc x)"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1247
apply(simp add: tape_of_nat_def tape_of_list_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1248
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1249
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1250
lemma tape_empty_list[simp]: " <([]::nat list)> = []"
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1251
apply(simp add: tape_of_list_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1252
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1253
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1254
lemma inv_locate[simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; \<exists>n. xs = Bk\<up>n\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1255
            \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1256
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1257
apply(rule_tac disjI2, rule_tac disjI1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1258
apply(simp only: in_middle.simps at_begin_fst_bwtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1259
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1260
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = tn in exI, simp split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1261
apply(case_tac mr, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1262
apply(case_tac "length am", simp_all, case_tac tn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1263
apply(case_tac lm2, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1264
apply(case_tac am, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1265
apply(case_tac n, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1266
apply(case_tac n, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1267
apply(case_tac mr, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1268
apply(case_tac lm2, simp_all add: tape_of_nl_cons split: if_splits, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1269
apply(case_tac [!] n, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1270
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1271
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1272
lemma repeat_Bk_no_Oc[simp]: "(Oc # r = Bk \<up> rn) = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1273
apply(case_tac rn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1274
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1275
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1276
lemma repeat_Bk[simp]: "(\<exists>rna. Bk \<up> rn = Bk # Bk \<up> rna) \<or> rn = 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1277
apply(case_tac rn, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1278
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1279
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1280
lemma inv_locate_b_Oc_via_a[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1281
      "inv_locate_a (as, lm) (q, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1282
       \<Longrightarrow> inv_locate_b (as, lm) (q, Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1283
apply(simp only: inv_locate_a.simps inv_locate_b.simps in_middle.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1284
          at_begin_norm.simps at_begin_fst_bwtn.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1285
          at_begin_fst_awtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1286
apply(erule disjE, erule exE, erule exE, erule exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1287
apply(rule_tac x = lm1 in exI, rule_tac x = "tl lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1288
apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1289
apply(case_tac lm2, auto simp: tape_of_nl_cons )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1290
apply(rule_tac x = 1 in exI, rule_tac x = a in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1291
apply(case_tac list, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1292
apply(case_tac rn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1293
apply(rule_tac x = "lm @ replicate tn 0" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1294
      rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1295
      rule_tac x = "Suc tn" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1296
      rule_tac x = 0 in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1297
apply(simp only: replicate_Suc[THEN sym] exp_ind)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1298
apply(rule_tac x = "Suc 0" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1299
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1300
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1301
lemma length_equal: "xs = ys \<Longrightarrow> length xs = length ys"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1302
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1303
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1304
lemma inv_locate_a_Bk_via_b[simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1305
                \<not> (\<exists>n. xs = Bk\<up>n)\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1306
       \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1307
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1308
apply(rule_tac disjI1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1309
apply(simp only: in_middle.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1310
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1311
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = lm2 in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1312
apply(subgoal_tac "tn = 0", simp , auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1313
apply(case_tac [!] mr, simp_all, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1314
apply(simp add: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1315
apply(drule_tac length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1316
apply(case_tac "length am", simp_all, erule_tac x = rn in allE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1317
apply(drule_tac length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1318
apply(case_tac "(Suc (length lm1) - length am)", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1319
apply(case_tac lm2, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1320
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1321
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1322
lemma locate_b_2_a[intro]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1323
       "inv_locate_b (as, am) (q, aaa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1324
    \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1325
apply(case_tac "\<exists> n. xs = Bk\<up>n", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1326
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1327
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1328
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1329
lemma inv_locate_b_Bk[simp]:  "inv_locate_b (as, am) (q, l, []) ires 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1330
           \<Longrightarrow>  inv_locate_b (as, am) (q, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1331
apply(simp only: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1332
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1333
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1334
      rule_tac x = tn in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1335
      rule_tac x = ml in exI, rule_tac x = mr in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1336
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1337
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1338
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1339
(*inv: from locate_b to after_write*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1340
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1341
lemma not_even_then_odd[simp]: "(a mod 2 \<noteq> 0) = (a mod 2 = Suc 0)  "
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1342
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1343
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1344
lemma div_rounding_down[simp]: "(2*q - Suc 0) div 2 = (q - 1)" "(Suc (2*q)) div 2 = q"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1345
by arith+
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1346
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1347
lemma even_plus_one_odd[simp]: "x mod 2 = 0 \<Longrightarrow> Suc x mod 2 = Suc 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1348
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1349
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1350
lemma odd_plus_one_even[simp]: "x mod 2 = Suc 0 \<Longrightarrow> Suc x mod 2 = 0"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1351
by arith
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1352
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1353
lemma locate_b_2_locate_a[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1354
    "\<lbrakk>q > 0;  inv_locate_b (as, am) (q - Suc 0, aaa, Bk # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1355
   \<Longrightarrow>  inv_locate_a (as, am) (q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1356
apply(insert locate_b_2_a [of as am "q - 1" aaa xs ires], simp)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1357
  done
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1358
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1359
(*inv: from locate_b to after_write*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1360
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1361
lemma findnth_inv_layout_of_via_crsp[simp]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1362
  "crsp (layout_of ap) (as, lm) (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1363
  \<Longrightarrow> findnth_inv (layout_of ap) n (as, lm) (Suc 0, l, r) ires"
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1364
by(auto simp: crsp.simps findnth_inv.simps inv_locate_a.simps
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1365
               at_begin_norm.simps at_begin_fst_awtn.simps at_begin_fst_bwtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1366
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1367
lemma findnth_correct_pre: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1368
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1369
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1370
  and not0: "n > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1371
  and f: "f = (\<lambda> stp. (steps (Suc 0, l, r) (findnth n, 0) stp, n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1372
  and P: "P = (\<lambda> ((s, l, r), n). s = Suc (2 * n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1373
  and Q: "Q = (\<lambda> ((s, l, r), n). findnth_inv ly n (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1374
  shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1375
proof(rule_tac LE = findnth_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1376
  show "wf findnth_LE"  by(intro wf_findnth_LE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1377
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1378
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1379
    using crsp layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1380
    apply(simp add: f P Q steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1381
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1382
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1383
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1384
    using not0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1385
    apply(simp add: f P steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1386
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1387
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1388
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1389
        \<in> findnth_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1390
  proof(rule_tac allI, rule_tac impI, simp add: f, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1391
      case_tac "steps (Suc 0, l, r) (findnth n, 0) na", simp add: P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1392
    fix na a b c
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1393
    assume "a \<noteq> Suc (2 * n) \<and> Q ((a, b, c), n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1394
    thus  "Q (step (a, b, c) (findnth n, 0), n) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1395
        ((step (a, b, c) (findnth n, 0), n), (a, b, c), n) \<in> findnth_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1396
      apply(case_tac c, case_tac [2] aa)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1397
      apply(simp_all add: step.simps findnth_LE_def Q findnth_inv.simps mod_2  lex_pair_def split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1398
      apply(auto simp: mod_ex1 mod_ex2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1399
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1400
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1401
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1402
            
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1403
lemma inv_locate_aI[intro]: "inv_locate_a (as, lm) (0, Bk # Bk # ires, <lm> @ Bk \<up> x) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1404
apply(auto simp: crsp.simps inv_locate_a.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1405
done
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1406
lemma inv_locate_a_via_crsp[simp]:
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1407
 "crsp ly (as, lm) (s, l, r) ires \<Longrightarrow> inv_locate_a (as, lm) (0, l, r) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1408
apply(auto simp: crsp.simps inv_locate_a.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1409
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1410
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1411
lemma findnth_correct: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1412
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1413
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1414
  shows "\<exists> stp l' r'. steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1415
              \<and> inv_locate_a (as, lm) (n, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1416
  using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1417
  apply(case_tac "n = 0")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1418
  apply(rule_tac x = 0 in exI, auto simp: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1419
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1420
  apply(drule_tac findnth_correct_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1421
  apply(rule_tac x = stp in exI, simp add: findnth_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1422
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1423
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1424
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1425
fun inc_inv :: "nat \<Rightarrow> inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1426
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1427
  "inc_inv n (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1428
              (let lm' = abc_lm_s lm n (Suc (abc_lm_v lm n)) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1429
                if s = 0 then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1430
                else if s = 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1431
                   inv_locate_a (as, lm) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1432
                else if s = 2 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1433
                   inv_locate_b (as, lm) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1434
                else if s = 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1435
                   inv_after_write (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1436
                else if s = Suc 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1437
                   inv_after_move (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1438
                else if s = Suc 4 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1439
                   inv_after_clear (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1440
                else if s = Suc (Suc 4) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1441
                   inv_on_right_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1442
                else if s = Suc (Suc 5) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1443
                   inv_on_left_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1444
                else if s = Suc (Suc (Suc 5)) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1445
                   inv_check_left_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1446
                else if s = Suc (Suc (Suc (Suc 5))) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1447
                   inv_after_left_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1448
                else if s = Suc (Suc (Suc (Suc (Suc 5)))) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1449
                   inv_stop (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1450
                else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1451
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1452
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1453
fun abc_inc_stage1 :: "config \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1454
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1455
  "abc_inc_stage1 (s, l, r) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1456
            (if s = 0 then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1457
             else if s \<le> 2 then 5
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1458
             else if s \<le> 6 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1459
             else if s \<le> 8 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1460
             else if s = 9 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1461
             else 1)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1462
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1463
fun abc_inc_stage2 :: "config \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1464
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1465
  "abc_inc_stage2 (s, l, r) =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1466
                (if s = 1 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1467
                 else if s = 2 then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1468
                 else if s = 3 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1469
                 else if s = 4 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1470
                 else if s = 5 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1471
                 else if s = 6 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1472
                                  if r \<noteq> [] then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1473
                                  else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1474
                 else if s = 7 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1475
                 else if s = 8 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1476
                 else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1477
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1478
fun abc_inc_stage3 :: "config \<Rightarrow>  nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1479
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1480
  "abc_inc_stage3 (s, l, r) = (
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1481
              if s = 4 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1482
              else if s = 5 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1483
              else if s = 6 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1484
                   if r \<noteq> [] \<and> hd r = Oc then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1485
                   else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1486
              else if s = 3 then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1487
              else if s = 2 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1488
              else if s = 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1489
                      if (r \<noteq> [] \<and> hd r = Oc) then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1490
                      else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1491
              else 10 - s)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1492
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1493
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1494
definition inc_measure :: "config \<Rightarrow> nat \<times> nat \<times> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1495
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1496
  "inc_measure c = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1497
    (abc_inc_stage1 c, abc_inc_stage2 c, abc_inc_stage3 c)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1498
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1499
definition lex_triple :: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1500
   "((nat \<times> (nat \<times> nat)) \<times> (nat \<times> (nat \<times> nat))) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1501
  where "lex_triple \<equiv> less_than <*lex*> lex_pair"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1502
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1503
definition inc_LE :: "(config \<times> config) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1504
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1505
  "inc_LE \<equiv> (inv_image lex_triple inc_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1506
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1507
declare inc_inv.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1508
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1509
lemma wf_inc_le[intro]: "wf inc_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1510
by(auto intro:wf_inv_image simp: inc_LE_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1511
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1512
lemma inv_locate_b_2_after_write[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1513
      "inv_locate_b (as, am) (n, aaa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1514
      \<Longrightarrow> inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1515
          (s, aaa, Oc # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1516
apply(auto simp: in_middle.simps inv_after_write.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1517
                 abc_lm_v.simps abc_lm_s.simps  inv_locate_b.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1518
apply(case_tac [!] mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1519
apply(rule_tac x = rn in exI, rule_tac x = "Suc m" in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1520
      rule_tac x = "lm1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1521
apply(rule_tac x = "lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1522
apply(simp only: Suc_diff_le exp_ind)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1523
apply(subgoal_tac "lm2 = []", simp)
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1524
  apply(drule_tac length_equal, simp)
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1525
  by (metis (no_types, lifting) add_diff_inverse_nat append.assoc append_eq_append_conv length_append length_replicate list.inject)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1526
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1527
lemma inv_after_write_via_locate_b[simp]: "inv_locate_b (as, am) (n, aaa, []) ires \<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1528
     inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1529
                     (s, aaa, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1530
apply(insert inv_locate_b_2_after_write [of as am n aaa "[]"])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1531
by(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1532
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1533
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1534
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1535
(*inv: from after_write to after_move*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1536
lemma inv_after_move_Oc_via_write[simp]: "inv_after_write (as, lm) (x, l, Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1537
                \<Longrightarrow> inv_after_move (as, lm) (y, Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1538
apply(auto simp:inv_after_move.simps inv_after_write.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1539
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1540
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1541
lemma inv_after_write_Suc[simp]: "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1542
                )) (x, aaa, Bk # xs) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1543
 "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1544
                        (x, aaa, []) ires = False"
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1545
apply(auto simp: inv_after_write.simps )
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1546
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1547
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1548
(*inv: from after_move to after_clear*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1549
lemma inv_after_clear_Bk_via_Oc[simp]: "inv_after_move (as, lm) (s, l, Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1550
                \<Longrightarrow> inv_after_clear (as, lm) (s', l, Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1551
apply(auto simp: inv_after_move.simps inv_after_clear.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1552
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1553
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1554
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1555
lemma inv_after_move_2_inv_on_left_moving[simp]:  
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1556
  assumes "inv_after_move (as, lm) (s, l, Bk # r) ires"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1557
  shows "(l = [] \<longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1558
         inv_on_left_moving (as, lm) (s', [], Bk # Bk # r) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1559
      (l \<noteq> [] \<longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1560
         inv_on_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1561
proof (cases l)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1562
  case (Cons a list)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1563
  from assms Cons show ?thesis
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1564
    apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1565
    apply(rule conjI, force, rule impI, rule disjI1, simp only: inv_on_left_moving_norm.simps)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1566
    apply(erule exE)+
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1567
    apply(subgoal_tac "lm2 = []")
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1568
    apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,  
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1569
        rule_tac x = m in exI, rule_tac x = m in exI, 
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1570
        rule_tac x = 1 in exI,  
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1571
        rule_tac x = "rn - 1" in exI) apply (auto split:if_splits)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1572
    apply(case_tac [1-2] rn, simp_all)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1573
    by(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1574
next
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1575
  case Nil thus ?thesis using assms
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1576
    unfolding inv_after_move.simps inv_on_left_moving.simps
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1577
    by (auto split:if_splits)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1578
qed
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1579
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1580
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1581
lemma inv_after_move_2_inv_on_left_moving_B[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1582
    "inv_after_move (as, lm) (s, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1583
      \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1584
          (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, [hd l]) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1585
apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1586
apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI, rule disjI1,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1587
        simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1588
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1589
apply(subgoal_tac "lm2 = []")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1590
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1591
      rule_tac x = m in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1592
      rule_tac x = 1 in exI, rule_tac x = "rn - 1" in exI, simp, case_tac rn)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1593
apply(auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1594
apply(case_tac [!] lm2, auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1595
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1596
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1597
lemma inv_after_clear_2_inv_on_right_moving[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1598
     "inv_after_clear (as, lm) (x, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1599
      \<Longrightarrow> inv_on_right_moving (as, lm) (y, Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1600
apply(auto simp: inv_after_clear.simps inv_on_right_moving.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1601
apply(subgoal_tac "lm2 \<noteq> []")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1602
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1603
      rule_tac x = "hd lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1604
apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1605
apply(simp, rule conjI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1606
apply(case_tac [!] "lm2::nat list", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1607
apply(case_tac rn, auto split: if_splits simp: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1608
apply(case_tac [!] rn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1609
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1610
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1611
lemma inv_after_clear_singleton_Bk[simp]: "inv_after_clear (as, lm) (x, l, []) ires\<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1612
               inv_after_clear (as, lm) (y, l, [Bk]) ires" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1613
by(auto simp: inv_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1614
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1615
lemma inv_on_right_moving_Bk[simp]: "inv_after_clear (as, lm) (x, l, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1616
             \<Longrightarrow> inv_on_right_moving (as, lm) (y, Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1617
by(insert 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1618
    inv_after_clear_2_inv_on_right_moving[of as lm n l "[]"], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1619
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1620
(*inv: from on_right_moving to on_right_movign*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1621
lemma inv_on_right_moving_Oc[simp]: "inv_on_right_moving (as, lm) (x, l, Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1622
      \<Longrightarrow> inv_on_right_moving (as, lm) (y, Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1623
apply(auto simp: inv_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1624
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1625
           rule_tac x = "ml + mr" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1626
apply(rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1627
           rule_tac x = "mr - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1628
apply(case_tac mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1629
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1630
      rule_tac x = "ml + mr" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1631
apply(rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1632
      rule_tac x = "mr - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1633
apply(case_tac mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1634
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1635
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1636
lemma inv_on_right_moving_2_inv_on_right_moving[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1637
     "inv_on_right_moving (as, lm) (x, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1638
     \<Longrightarrow> inv_after_write (as, lm) (y, l, Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1639
apply(auto simp: inv_on_right_moving.simps inv_after_write.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1640
apply(case_tac mr, auto simp: split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1641
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1642
      
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1643
lemma inv_on_right_moving_singleton_Bk[simp]: "inv_on_right_moving (as, lm) (x, l, []) ires\<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1644
             inv_on_right_moving (as, lm) (y, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1645
apply(auto simp: inv_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1646
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1647
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1648
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1649
(*inv: from on_right_moving to after_write*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1650
lemma inv_after_write_singleton_Oc[simp]: "inv_on_right_moving (as, lm) (x, l, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1651
       \<Longrightarrow> inv_after_write (as, lm) (y, l, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1652
apply(rule_tac inv_on_right_moving_2_inv_on_right_moving, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1653
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1654
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1655
(*inv: from on_left_moving to on_left_moving*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1656
lemma no_inv_on_left_moving_in_middle_B_Oc[simp]: "inv_on_left_moving_in_middle_B (as, lm) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1657
               (s, l, Oc # r) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1658
apply(auto simp: inv_on_left_moving_in_middle_B.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1659
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1660
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1661
lemma no_inv_on_left_moving_norm_Bk[simp]: "inv_on_left_moving_norm (as, lm) (s, l, Bk # r) ires 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1662
             = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1663
apply(auto simp: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1664
apply(case_tac [!] mr, auto simp: )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1665
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1666
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1667
lemma inv_on_left_moving_in_middle_B_Bk[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1668
  "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1669
    hd l = Bk; l \<noteq> []\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1670
     inv_on_left_moving_in_middle_B (as, lm) (s, tl l, Bk # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1671
apply(case_tac l, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1672
apply(simp only: inv_on_left_moving_norm.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1673
                 inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1674
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1675
apply(rule_tac x = lm1 in exI, rule_tac x = "m # lm2" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1676
apply(case_tac [!] ml, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1677
apply(auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1678
apply(rule_tac [!] x = "Suc rn" in exI, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1679
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1680
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1681
lemma inv_on_left_moving_norm_Oc_Oc[simp]: "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires; 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1682
                hd l = Oc; l \<noteq> []\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1683
            \<Longrightarrow> inv_on_left_moving_norm (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1684
                                        (s, tl l, Oc # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1685
apply(simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1686
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1687
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1688
      rule_tac x = m in exI, rule_tac x = "ml - 1" in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1689
      rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1690
apply(case_tac ml, auto simp: split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1691
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1692
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1693
lemma inv_on_left_moving_in_middle_B_Bk_Oc[simp]: "inv_on_left_moving_norm (as, lm) (s, [], Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1694
     \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1695
apply(auto simp: inv_on_left_moving_norm.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1696
                 inv_on_left_moving_in_middle_B.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1697
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1698
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1699
lemma inv_on_left_moving_Oc_cases[simp]:"inv_on_left_moving (as, lm) (s, l, Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1700
    \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s, [], Bk # Oc # r) ires)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1701
 \<and>  (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s, tl l, hd l # Oc # r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1702
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1703
apply(case_tac "l \<noteq> []", rule conjI, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1704
apply(case_tac "hd l", simp, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1705
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1706
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1707
lemma from_on_left_moving_to_check_left_moving[simp]: "inv_on_left_moving_in_middle_B (as, lm) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1708
                                      (s, Bk # list, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1709
          \<Longrightarrow> inv_check_left_moving_on_leftmost (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1710
                                      (s', list, Bk # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1711
apply(auto simp: inv_on_left_moving_in_middle_B.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1712
                 inv_check_left_moving_on_leftmost.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1713
apply(case_tac [!] "rev lm1", simp_all)
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  1714
apply(case_tac [!] lista, simp_all add: tape_of_nat_def tape_of_list_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1715
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1716
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1717
lemma inv_check_left_moving_in_middle_no_Bk[simp]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1718
    "inv_check_left_moving_in_middle (as, lm) (s, l, Bk # r) ires= False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1719
by(auto simp: inv_check_left_moving_in_middle.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1720
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1721
lemma inv_check_left_moving_on_leftmost_Bk_Bk[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1722
 "inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # r) ires\<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1723
  inv_check_left_moving_on_leftmost (as, lm) (s', [], Bk # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1724
apply(auto simp: inv_on_left_moving_in_middle_B.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1725
                 inv_check_left_moving_on_leftmost.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1726
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1727
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1728
lemma inv_check_left_moving_on_leftmost_no_Oc[simp]: "inv_check_left_moving_on_leftmost (as, lm) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1729
                                       (s, list, Oc # r) ires= False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1730
by(auto simp: inv_check_left_moving_on_leftmost.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1731
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1732
lemma inv_check_left_moving_in_middle_Oc_Bk[simp]: "inv_on_left_moving_in_middle_B (as, lm) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1733
                                         (s, Oc # list, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1734
 \<Longrightarrow> inv_check_left_moving_in_middle (as, lm) (s', list, Oc # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1735
apply(auto simp: inv_on_left_moving_in_middle_B.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1736
                 inv_check_left_moving_in_middle.simps  split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1737
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1738
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1739
lemma inv_on_left_moving_2_check_left_moving[simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1740
 "inv_on_left_moving (as, lm) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1741
 \<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], Bk # Bk # r) ires)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1742
 \<and> (l \<noteq> [] \<longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1743
      inv_check_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1744
apply(simp add: inv_on_left_moving.simps inv_check_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1745
apply(case_tac l, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1746
apply(case_tac a, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1747
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1748
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1749
lemma inv_on_left_moving_norm_no_empty[simp]: "inv_on_left_moving_norm (as, lm) (s, l, []) ires = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1750
apply(auto simp: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1751
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1752
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1753
lemma inv_on_left_moving_Bk[simp]: "inv_on_left_moving (as, lm) (s, l, []) ires\<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1754
     inv_on_left_moving (as, lm) (6 + 2 * n, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1755
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1756
apply(auto simp: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1757
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1758
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1759
lemma inv_on_left_moving_no_empty[simp]: "inv_on_left_moving (as, lm) (s, l, []) ires = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1760
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1761
apply(simp add: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1762
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1763
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1764
lemma inv_on_left_moving_cases_left[simp]: "inv_on_left_moving (as, lm) (s, l, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1765
 \<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1766
    (l \<noteq> [] \<longrightarrow> inv_check_left_moving (as, lm) (s', tl l, [hd l]) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1767
by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1768
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1769
lemma Bk_plus_one[intro]: "\<exists>rna. Bk # Bk \<up> rn = Bk \<up> rna"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1770
  apply(rule_tac x = "Suc rn" in exI, simp)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1771
  done
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1772
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1773
lemma 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1774
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[simp]:
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1775
assumes "inv_check_left_moving_in_middle (as, lm) (s, Bk # list, Oc # r) ires"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1776
shows "inv_on_left_moving_in_middle_B (as, lm) (s', list, Bk # Oc # r) ires"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1777
  using assms
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1778
  apply(simp only: inv_check_left_moving_in_middle.simps 
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1779
                   inv_on_left_moving_in_middle_B.simps)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1780
  apply(erule_tac exE)+
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1781
  apply(rule_tac x = "rev (tl (rev lm1))" in exI, 
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1782
        rule_tac x = "[hd (rev lm1)] @ lm2" in exI, auto)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1783
  apply(case_tac [!] "rev lm1",simp_all add: tape_of_nat_def tape_of_list_def tape_of_nat_list.simps)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1784
  apply(case_tac [!] a, simp_all)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1785
  apply(case_tac [1] lm2, auto simp:tape_of_nat_def)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1786
  apply(case_tac [3] lm2, auto simp:tape_of_nat_def)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1787
  apply(case_tac [!] lista, simp_all add: tape_of_nat_def)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1788
        done
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1789
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1790
lemma inv_check_left_moving_in_middle_Bk_Oc[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1791
 "inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires\<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1792
     inv_check_left_moving_in_middle (as, lm) (s', [Bk], Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1793
apply(auto simp: inv_check_left_moving_in_middle.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1794
done
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1795
lemma inv_on_left_moving_in_middle_B_Bk_Oc_via_check[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1796
 "inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1797
   \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', [], Bk # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1798
apply(insert 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1799
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[of 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1800
                  as lm n "[]" r], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1801
done 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1802
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1803
lemma inv_on_left_moving_norm_Oc_Oc_via_middle[simp]: "inv_check_left_moving_in_middle (as, lm) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1804
                       (s, Oc # list, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1805
   \<Longrightarrow> inv_on_left_moving_norm (as, lm) (s', list, Oc # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1806
apply(auto simp: inv_check_left_moving_in_middle.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1807
                 inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1808
apply(rule_tac x = "rev (tl (rev lm1))" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1809
      rule_tac x = lm2 in exI, rule_tac x = "hd (rev lm1)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1810
apply(rule_tac conjI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1811
apply(case_tac "rev lm1", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1812
apply(rule_tac x = "hd (rev lm1) - 1" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1813
apply(rule_tac [!] x = "Suc (Suc 0)" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1814
apply(case_tac [!] "rev lm1", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1815
apply(case_tac [!] a, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1816
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1817
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1818
lemma inv_check_left_moving_Oc_cases[simp]: "inv_check_left_moving (as, lm) (s, l, Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1819
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], Bk # Oc # r) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1820
   (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, hd l # Oc # r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1821
apply(case_tac l, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1822
      auto simp: inv_check_left_moving.simps inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1823
apply(case_tac a, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1824
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1825
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1826
(*inv: check_left_moving to after_left_moving*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1827
lemma inv_after_left_moving_Bk_via_check[simp]: "inv_check_left_moving (as, lm) (s, l, Bk # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1828
                \<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1829
apply(auto simp: inv_check_left_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1830
 inv_check_left_moving_on_leftmost.simps inv_after_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1831
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1832
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1833
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1834
lemma inv_after_left_moving_Bk_empty_via_check[simp]:"inv_check_left_moving (as, lm) (s, l, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1835
      \<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1836
by(simp add: inv_check_left_moving.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1837
inv_check_left_moving_in_middle.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1838
inv_check_left_moving_on_leftmost.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1839
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1840
(*inv: after_left_moving to inv_stop*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1841
lemma inv_stop_Bk_move[simp]: "inv_after_left_moving (as, lm) (s, l, Bk # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1842
       \<Longrightarrow> inv_stop (as, lm) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1843
apply(auto simp: inv_after_left_moving.simps inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1844
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1845
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1846
lemma inv_stop_Bk_empty[simp]: "inv_after_left_moving (as, lm) (s, l, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1847
             \<Longrightarrow> inv_stop (as, lm) (s', Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1848
by(auto simp: inv_after_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1849
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1850
(*inv: stop to stop*)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1851
lemma inv_stop_indep_fst[simp]: "inv_stop (as, lm) (x, l, r) ires \<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1852
               inv_stop (as, lm) (y, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1853
apply(simp add: inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1854
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1855
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1856
lemma inv_after_clear_no_Oc[simp]: "inv_after_clear (as, lm) (s, aaa, Oc # xs) ires= False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1857
apply(auto simp: inv_after_clear.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1858
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1859
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1860
lemma inv_after_left_moving_no_Oc[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1861
  "inv_after_left_moving (as, lm) (s, aaa, Oc # xs) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1862
by(auto simp: inv_after_left_moving.simps  )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1863
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1864
lemma inv_after_clear_Suc_nonempty[simp]:
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1865
  "inv_after_clear (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) (s, b, []) ires = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1866
apply(auto simp: inv_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1867
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1868
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1869
lemma inv_on_left_moving_Suc_nonempty[simp]: "inv_on_left_moving (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1870
           (s, b, Oc # list) ires \<Longrightarrow> b \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1871
apply(auto simp: inv_on_left_moving.simps inv_on_left_moving_norm.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1872
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1873
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1874
lemma inv_check_left_moving_Suc_nonempty[simp]:
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1875
  "inv_check_left_moving (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) (s, b, Oc # list) ires \<Longrightarrow> b \<noteq> []"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1876
apply(auto simp: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps split: if_splits)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1877
  done
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  1878
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1879
lemma tinc_correct_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1880
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1881
  and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1882
  and lm': "lm' = abc_lm_s lm n (Suc (abc_lm_v lm n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1883
  and f: "f = steps (Suc 0, l, r) (tinc_b, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1884
  and P: "P = (\<lambda> (s, l, r). s = 10)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1885
  and Q: "Q = (\<lambda> (s, l, r). inc_inv n (as, lm) (s, l, r) ires)" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1886
  shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1887
proof(rule_tac LE = inc_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1888
  show "wf inc_LE" by(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1889
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1890
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1891
    using inv_start
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1892
    apply(simp add: f P Q steps.simps inc_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1893
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1894
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1895
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1896
    apply(simp add: f P steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1897
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1898
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1899
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1900
        \<in> inc_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1901
  proof(rule_tac allI, rule_tac impI, simp add: f, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1902
      case_tac "steps (Suc 0, l, r) (tinc_b, 0) n", simp add: P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1903
    fix n a b c
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1904
    assume "a \<noteq> 10 \<and> Q (a, b, c)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1905
    thus  "Q (step (a, b, c) (tinc_b, 0)) \<and> (step (a, b, c) (tinc_b, 0), a, b, c) \<in> inc_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1906
      apply(simp add:Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1907
      apply(simp add: inc_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1908
      apply(case_tac c, case_tac [2] aa)
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  1909
      apply(auto simp: Let_def step.simps tinc_b_def split: if_splits)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1910
      apply(simp_all add: inc_inv.simps inc_LE_def lex_triple_def lex_pair_def inc_measure_def 
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1911
                          numeral)         
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1912
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1913
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1914
qed
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1915
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1916
lemma tinc_correct: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1917
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1918
  and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1919
  and lm': "lm' = abc_lm_s lm n (Suc (abc_lm_v lm n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1920
  shows "\<exists> stp l' r'. steps (Suc 0, l, r) (tinc_b, 0) stp = (10, l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1921
              \<and> inv_stop (as, lm') (10, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1922
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1923
  apply(drule_tac tinc_correct_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1924
  apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1925
  apply(simp add: inc_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1926
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1927
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1928
declare inv_locate_a.simps[simp del] abc_lm_s.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1929
        abc_lm_v.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1930
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  1931
lemma is_even_4[simp]: "(4::nat) * n mod 2 = 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1932
apply(arith)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1933
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1934
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1935
lemma crsp_step_inc_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1936
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1937
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1938
  and aexec: "abc_step_l (as, lm) (Some (Inc n)) = (asa, lma)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1939
  shows "\<exists> stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1940
        = (2*n + 10, Bk # Bk # ires, <lma> @ Bk\<up>k) \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1941
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1942
  have "\<exists> stp l' r'. steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1943
    \<and> inv_locate_a (as, lm) (n, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1944
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1945
    apply(rule_tac findnth_correct, simp_all add: crsp layout)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1946
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1947
  from this obtain stp l' r' where a:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1948
    "steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1949
    \<and> inv_locate_a (as, lm) (n, l', r') ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1950
  moreover have
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1951
    "\<exists> stp la ra. steps (Suc 0, l', r') (tinc_b, 0) stp = (10, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1952
                        \<and> inv_stop (as, lma) (10, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1953
    using assms a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1954
  proof(rule_tac lm' = lma and n = n and lm = lm and ly = ly and ap = ap in tinc_correct,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1955
      simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1956
    show "lma = abc_lm_s lm n (Suc (abc_lm_v lm n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1957
      using aexec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1958
      apply(simp add: abc_step_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1959
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1960
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1961
  from this obtain stpa la ra where b:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1962
    "steps (Suc 0, l', r') (tinc_b, 0) stpa = (10, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1963
    \<and> inv_stop (as, lma) (10, la, ra) ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1964
  from a b show "\<exists>stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1965
    = (2 * n + 10, Bk # Bk # ires, <lma> @ Bk \<up> k) \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1966
    apply(rule_tac x = "stp + stpa" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1967
    using tm_append_steps[of "Suc 0" l r "findnth n" stp l' r' tinc_b stpa 10 la ra "length (findnth n) div 2"]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1968
    apply(simp add: length_findnth inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1969
    apply(case_tac stpa, simp_all add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1970
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1971
qed 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1972
     
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1973
lemma crsp_step_inc:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1974
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1975
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1976
  and fetch: "abc_fetch as ap = Some (Inc n)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1977
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Inc n)))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1978
  (steps (s, l, r) (ci ly (start_of ly as) (Inc n), start_of ly as - Suc 0) stp) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1979
proof(case_tac "(abc_step_l (as, lm) (Some (Inc n)))")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1980
  fix a b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1981
  assume aexec: "abc_step_l (as, lm) (Some (Inc n)) = (a, b)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1982
  then have "\<exists> stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1983
        = (2*n + 10, Bk # Bk # ires, <b> @ Bk\<up>k) \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1984
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1985
    apply(rule_tac crsp_step_inc_pre, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1986
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1987
  thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1988
    using assms aexec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1989
    apply(erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1990
    apply(erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1991
    apply(erule_tac conjE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1992
    apply(rule_tac x = stp in exI, simp add: ci.simps tm_shift_eq_steps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1993
    apply(drule_tac off = "(start_of (layout_of ap) as - Suc 0)" in tm_shift_eq_steps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1994
    apply(auto simp: crsp.simps abc_step_l.simps fetch start_of_Suc1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1995
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1996
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1997
    
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1998
subsection{* Crsp of Dec n e*}
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  1999
declare adjust.simps[simp del]
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2000
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2001
type_synonym dec_inv_t = "(nat * nat list) \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow>  bool"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2002
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2003
fun dec_first_on_right_moving :: "nat \<Rightarrow> dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2004
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2005
  "dec_first_on_right_moving n (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2006
               (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2007
         ml + mr = Suc m \<and> length lm1 = n \<and> ml > 0 \<and> m > 0 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2008
             (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2009
                          else  l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2010
    ((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> (r = Oc\<up>mr \<and> lm2 = [])))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2011
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2012
fun dec_on_right_moving :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2013
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2014
  "dec_on_right_moving (as, lm) (s, l, r) ires =  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2015
   (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2016
                             ml + mr = Suc (Suc m) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2017
   (if lm1 = [] then l = Oc\<up>ml@ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2018
                else  l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2019
   ((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> (r = Oc\<up>mr \<and> lm2 = [])))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2020
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2021
fun dec_after_clear :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2022
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2023
  "dec_after_clear (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2024
              (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2025
                ml + mr = Suc m \<and> ml = Suc m \<and> r \<noteq> [] \<and> r \<noteq> [] \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2026
               (if lm1 = [] then l = Oc\<up>ml@ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2027
                            else l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2028
               (tl r = Bk # <lm2> @ Bk\<up>rn \<or> tl r = [] \<and> lm2 = []))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2029
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2030
fun dec_after_write :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2031
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2032
  "dec_after_write (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2033
         (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2034
       ml + mr = Suc m \<and> ml = Suc m \<and> lm2 \<noteq> [] \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2035
       (if lm1 = [] then l = Bk # Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2036
                    else l = Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2037
       tl r = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2038
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2039
fun dec_right_move :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2040
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2041
  "dec_right_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2042
        (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2043
            \<and> ml = Suc m \<and> mr = (0::nat) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2044
              (if lm1 = [] then l = Bk # Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2045
                          else l = Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2046
           \<and> (r = Bk # <lm2> @ Bk\<up>rn \<or> r = [] \<and> lm2 = []))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2047
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2048
fun dec_check_right_move :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2049
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2050
  "dec_check_right_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2051
        (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2052
           ml = Suc m \<and> mr = (0::nat) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2053
           (if lm1 = [] then l = Bk # Bk # Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2054
                       else l = Bk # Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2055
           r = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2056
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2057
fun dec_left_move :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2058
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2059
  "dec_left_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2060
    (\<exists> lm1 m rn. (lm::nat list) = lm1 @ [m::nat] \<and>   
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2061
    rn > 0 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2062
   (if lm1 = [] then l = Bk # Oc\<up>Suc m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2063
    else l = Bk # Oc\<up>Suc m @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> r = Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2064
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2065
declare
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2066
  dec_on_right_moving.simps[simp del] dec_after_clear.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2067
  dec_after_write.simps[simp del] dec_left_move.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2068
  dec_check_right_move.simps[simp del] dec_right_move.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2069
  dec_first_on_right_moving.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2070
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2071
fun inv_locate_n_b :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2072
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2073
  "inv_locate_n_b (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2074
    (\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<up>tn = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2075
     length lm1 = s \<and> m + 1 = ml + mr \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2076
     ml = 1 \<and> tn = s + 1 - length lm \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2077
     (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2078
      else l = Oc\<up>ml @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2079
     (r = Oc\<up>mr @ [Bk] @ <lm2>@ Bk\<up>rn \<or> (lm2 = [] \<and> r = Oc\<up>mr))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2080
  )"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2081
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2082
fun dec_inv_1 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2083
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2084
  "dec_inv_1 ly n e (as, am) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2085
           (let ss = start_of ly as in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2086
            let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2087
            let am'' = abc_lm_s am n (abc_lm_v am n) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2088
              if s = start_of ly e then inv_stop (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2089
              else if s = ss then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2090
              else if s = ss + 2 * n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2091
                  inv_locate_b (as, am) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2092
              else if s = ss + 2 * n + 13 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2093
                  inv_on_left_moving (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2094
              else if s = ss + 2 * n + 14 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2095
                  inv_check_left_moving (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2096
              else if s = ss + 2 * n + 15 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2097
                  inv_after_left_moving (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2098
              else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2099
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2100
declare fetch.simps[simp del]
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2101
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2102
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2103
lemma x_plus_helpers:
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2104
  "x + 4 = Suc (x + 3)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2105
  "x + 5 = Suc (x + 4)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2106
  "x + 6 = Suc (x + 5)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2107
  "x + 7 = Suc (x + 6)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2108
  "x + 8 = Suc (x + 7)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2109
  "x + 9 = Suc (x + 8)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2110
  "x + 10 = Suc (x + 9)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2111
  "x + 11 = Suc (x + 10)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2112
  "x + 12 = Suc (x + 11)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2113
  "x + 13 = Suc (x + 12)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2114
  "14 + x = Suc (x + 13)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2115
  "15 + x = Suc (x + 14)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2116
  "16 + x = Suc (x + 15)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2117
  by auto
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2118
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2119
lemma fetch_Dec[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2120
  "fetch (ci ly (start_of ly as) (Dec n e)) (Suc (2 * n)) Bk = (W1,  start_of ly as + 2 *n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2121
  "fetch (ci ly (start_of ly as) (Dec n e)) (Suc (2 * n)) Oc = (R,  Suc (start_of ly as) + 2 *n)"
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2122
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Oc
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2123
     = (R, start_of ly as + 2*n + 2)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2124
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Bk
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2125
     = (L, start_of ly as + 2*n + 13)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2126
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (Suc (Suc (Suc (2 * n)))) Oc
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2127
     = (R, start_of ly as + 2*n + 2)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2128
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (Suc (Suc (Suc (2 * n)))) Bk
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2129
     = (L, start_of ly as + 2*n + 3)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2130
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 4) Oc = (W0, start_of ly as + 2*n + 3)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2131
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 4) Bk = (R, start_of ly as + 2*n + 4)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2132
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 5) Bk = (R, start_of ly as + 2*n + 5)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2133
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 6) Bk = (L, start_of ly as + 2*n + 6)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2134
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 6) Oc = (L, start_of ly as + 2*n + 7)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2135
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 7) Bk = (L, start_of ly as + 2*n + 10)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2136
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 8) Bk = (W1, start_of ly as + 2*n + 7)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2137
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 8) Oc = (R, start_of ly as + 2*n + 8)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2138
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 9) Bk = (L, start_of ly as + 2*n + 9)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2139
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 9) Oc = (R, start_of ly as + 2*n + 8)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2140
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 10) Bk = (R, start_of ly as + 2*n + 4)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2141
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 10) Oc = (W0, start_of ly as + 2*n + 9)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2142
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 11) Oc = (L, start_of ly as + 2*n + 10)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2143
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 11) Bk = (L, start_of ly as + 2*n + 11)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2144
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 12) Oc = (L, start_of ly as + 2*n + 10)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2145
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 12) Bk = (R, start_of ly as + 2*n + 12)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2146
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (2 * n + 13) Bk = (R, start_of ly as + 2*n + 16)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2147
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (14 + 2 * n) Oc = (L, start_of ly as + 2*n + 13)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2148
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (14 + 2 * n) Bk = (L, start_of ly as + 2*n + 14)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2149
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (15 + 2 * n) Oc = (L, start_of ly as + 2*n + 13)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2150
  "fetch (ci (ly) (start_of ly as) (Dec n e)) (15 + 2 * n) Bk = (R, start_of ly as + 2*n + 15)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2151
  "fetch (ci (ly) (start_of (ly) as) (Dec n e)) (16 + 2 * n) Bk = (R, start_of (ly) e)"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2152
  unfolding x_plus_helpers fetch.simps
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2153
  by(auto simp: ci.simps findnth.simps 
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2154
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2155
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2156
lemma steps_start_of_invb_inv_locate_a1[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2157
  "\<lbrakk>r = [] \<or> hd r = Bk; inv_locate_a (as, lm) (n, l, r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2158
    \<Longrightarrow> \<exists>stp la ra.
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2159
  steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2160
  start_of ly as - Suc 0) stp = (Suc (start_of ly as + 2 * n), la, ra) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2161
  inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2162
apply(rule_tac x = "Suc (Suc 0)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2163
apply(auto simp: steps.simps step.simps length_ci_dec)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2164
apply(case_tac r, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2165
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2166
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2167
lemma steps_start_of_invb_inv_locate_a2[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2168
  "\<lbrakk>inv_locate_a (as, lm) (n, l, r) ires; r \<noteq> [] \<and> hd r \<noteq> Bk\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2169
    \<Longrightarrow> \<exists>stp la ra.
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2170
  steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2171
  start_of ly as - Suc 0) stp = (Suc (start_of ly as + 2 * n), la, ra) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2172
  inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2173
apply(rule_tac x = "(Suc 0)" in exI, case_tac "hd r", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2174
apply(auto simp: steps.simps step.simps length_ci_dec)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2175
apply(case_tac r, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2176
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2177
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2178
fun abc_dec_1_stage1:: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2179
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2180
  "abc_dec_1_stage1 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2181
       (if s > ss \<and> s \<le> ss + 2*n + 1 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2182
        else if s = ss + 2 * n + 13 \<or> s = ss + 2*n + 14 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2183
        else if s = ss + 2*n + 15 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2184
        else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2185
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2186
fun abc_dec_1_stage2:: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2187
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2188
  "abc_dec_1_stage2 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2189
       (if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2190
        else if s = ss + 2*n + 13 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2191
        else if s = ss + 2*n + 14 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2192
        else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2193
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2194
fun abc_dec_1_stage3 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2195
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2196
  "abc_dec_1_stage3 (s, l, r) ss n  = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2197
        (if s \<le> ss + 2*n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2198
             if (s - ss) mod 2 = 0 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2199
                         if r \<noteq> [] \<and> hd r = Oc then 0 else 1  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2200
                         else length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2201
         else if s = ss + 2 * n + 13 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2202
             if r \<noteq> [] \<and> hd r = Oc then 2 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2203
             else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2204
         else if s = ss + 2 * n + 14 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2205
             if r \<noteq> [] \<and> hd r = Oc then 3 else 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2206
         else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2207
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2208
fun abc_dec_1_measure :: "(config \<times> nat \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2209
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2210
  "abc_dec_1_measure (c, ss, n) = (abc_dec_1_stage1 c ss n, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2211
                   abc_dec_1_stage2 c ss n, abc_dec_1_stage3 c ss n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2212
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2213
definition abc_dec_1_LE ::
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2214
  "((config \<times> nat \<times>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2215
  nat) \<times> (config \<times> nat \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2216
  where "abc_dec_1_LE \<equiv> (inv_image lex_triple abc_dec_1_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2217
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2218
lemma wf_dec_le: "wf abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2219
by(auto intro:wf_inv_image simp:abc_dec_1_LE_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2220
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2221
lemma startof_Suc2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2222
  "abc_fetch as ap = Some (Dec n e) \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2223
        start_of (layout_of ap) (Suc as) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2224
            start_of (layout_of ap) as + 2 * n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2225
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2226
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2227
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2228
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2229
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2230
lemma start_of_less_2: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2231
  "start_of ly e \<le> start_of ly (Suc e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2232
apply(case_tac "e < length ly")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2233
apply(auto simp: start_of.simps take_Suc take_Suc_conv_app_nth)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2234
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2235
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2236
lemma start_of_less_1: "start_of ly e \<le> start_of ly (e + d)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2237
proof(induct d)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2238
  case 0 thus "?case" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2239
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2240
  case (Suc d)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2241
  have "start_of ly e \<le> start_of ly (e + d)"  by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2242
  moreover have "start_of ly (e + d) \<le> start_of ly (Suc (e + d))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2243
    by(rule_tac start_of_less_2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2244
  ultimately show"?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2245
    by(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2246
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2247
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2248
lemma start_of_less: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2249
  assumes "e < as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2250
  shows "start_of ly e \<le> start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2251
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2252
  obtain d where " as = e + d"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2253
    using assms by (metis less_imp_add_positive)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2254
  thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2255
    by(simp add: start_of_less_1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2256
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2257
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2258
lemma start_of_ge: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2259
  assumes fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2260
  and layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2261
  and great: "e > as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2262
  shows "start_of ly e \<ge> start_of ly as + 2*n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2263
proof(cases "e = Suc as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2264
  case True
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2265
  have "e = Suc as" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2266
  moreover hence "start_of ly (Suc as) = start_of ly as + 2*n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2267
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2268
    by(simp add: startof_Suc2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2269
  ultimately show "?thesis" by (simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2270
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2271
  case False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2272
  have "e \<noteq> Suc as" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2273
  then have "e > Suc as" using great by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2274
  then have "start_of ly (Suc as) \<le> start_of ly e"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2275
    by(simp add: start_of_less)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2276
  moreover have "start_of ly (Suc as) = start_of ly as + 2*n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2277
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2278
    by(simp add: startof_Suc2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2279
  ultimately show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2280
    by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2281
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2282
    
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2283
lemma abc_fetch_contrE[elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e); as < e; 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2284
  Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2285
  by(drule_tac start_of_ge, auto)
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2286
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2287
lemma abc_fetch_contrE2[elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e); as > e;
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2288
  Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2289
apply(drule_tac ly = "layout_of ap" in start_of_less[of])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2290
apply(arith)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2291
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2292
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2293
lemma abc_fetch_contrE3[elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e);
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2294
  Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2295
apply(subgoal_tac "as = e \<or> as < e \<or> as > e", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2296
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2297
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2298
lemma fetch_c_Oc[simp]:"fetch (ci (ly) (start_of ly as) (Dec n e)) (Suc (2 * n))  Oc
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2299
  = (R, start_of ly as + 2*n + 1)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2300
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2301
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2302
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2303
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2304
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2305
declare dec_inv_1.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2306
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2307
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2308
lemma start_of_ineq1[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2309
 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2310
   \<Longrightarrow> (start_of ly e \<noteq> Suc (start_of ly as + 2 * n) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2311
        start_of ly e \<noteq> Suc (Suc (start_of ly as + 2 * n)) \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2312
        start_of ly e \<noteq> start_of ly as + 2 * n + 3 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2313
        start_of ly e \<noteq> start_of ly as + 2 * n + 4 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2314
        start_of ly e \<noteq> start_of ly as + 2 * n + 5 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2315
        start_of ly e \<noteq> start_of ly as + 2 * n + 6 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2316
        start_of ly e \<noteq> start_of ly as + 2 * n + 7 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2317
        start_of ly e \<noteq> start_of ly as + 2 * n + 8 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2318
        start_of ly e \<noteq> start_of ly as + 2 * n + 9 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2319
        start_of ly e \<noteq> start_of ly as + 2 * n + 10 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2320
        start_of ly e \<noteq> start_of ly as + 2 * n + 11 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2321
        start_of ly e \<noteq> start_of ly as + 2 * n + 12 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2322
        start_of ly e \<noteq> start_of ly as + 2 * n + 13 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2323
        start_of ly e \<noteq> start_of ly as + 2 * n + 14 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2324
        start_of ly e \<noteq> start_of ly as + 2 * n + 15)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2325
using start_of_ge[of as aprog n e ly] start_of_less[of e as ly]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2326
apply(case_tac "e < as", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2327
apply(case_tac "e = as", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2328
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2329
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2330
lemma start_of_ineq2[simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2331
      \<Longrightarrow> (Suc (start_of ly as + 2 * n) \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2332
          Suc (Suc (start_of ly as + 2 * n)) \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2333
          start_of ly as + 2 * n + 3 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2334
          start_of ly as + 2 * n + 4 \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2335
          start_of ly as + 2 * n + 5 \<noteq>start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2336
          start_of ly as + 2 * n + 6 \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2337
          start_of ly as + 2 * n + 7 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2338
          start_of ly as + 2 * n + 8 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2339
          start_of ly as + 2 * n + 9 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2340
          start_of ly as + 2 * n + 10 \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2341
          start_of ly as + 2 * n + 11 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2342
          start_of ly as + 2 * n + 12 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2343
          start_of ly as + 2 * n + 13 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2344
          start_of ly as + 2 * n + 14 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2345
          start_of ly as + 2 * n + 15 \<noteq> start_of ly e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2346
using start_of_ge[of as aprog n e ly] start_of_less[of e as ly]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2347
apply(case_tac "e < as", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2348
apply(case_tac "e = as", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2349
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2350
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2351
lemma inv_locate_b_nonempty[simp]: "inv_locate_b (as, lm) (n, [], []) ires = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2352
apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2353
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2354
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2355
lemma inv_locate_b_no_Bk[simp]: "inv_locate_b (as, lm) (n, [], Bk # list) ires = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2356
apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2357
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2358
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2359
lemma dec_first_on_right_moving_Oc[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2360
 "\<lbrakk>dec_first_on_right_moving n (as, am) (s, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2361
   \<Longrightarrow> dec_first_on_right_moving n (as, am) (s', Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2362
apply(simp only: dec_first_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2363
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2364
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2365
      rule_tac x = m in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2366
apply(rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2367
      rule_tac x = "mr - 1" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2368
apply(case_tac [!] mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2369
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2370
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2371
lemma dec_first_on_right_moving_Bk_nonempty[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2372
  "dec_first_on_right_moving n (as, am) (s, l, Bk # xs) ires \<Longrightarrow> l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2373
apply(auto simp: dec_first_on_right_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2374
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2375
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2376
lemma replicateE[elim]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2377
  "\<lbrakk>\<not> length lm1 < length am; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2378
    am @ replicate (length lm1 - length am) 0 @ [0::nat] = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2379
                                                lm1 @ m # lm2;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2380
    0 < m\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2381
   \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2382
apply(subgoal_tac "lm2 = []", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2383
apply(drule_tac length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2384
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2385
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2386
lemma dec_after_clear_Bk_strip_hd[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2387
 "\<lbrakk>dec_first_on_right_moving n (as, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2388
                   abc_lm_s am n (abc_lm_v am n)) (s, l, Bk # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2389
\<Longrightarrow> dec_after_clear (as, abc_lm_s am n 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2390
                 (abc_lm_v am n - Suc 0)) (s', tl l, hd l # Bk # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2391
apply(simp only: dec_first_on_right_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2392
                 dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2393
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2394
apply(case_tac "n < length am")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2395
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2396
      rule_tac x = "m - 1" in exI, auto simp: )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2397
apply(case_tac [!] mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2398
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2399
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2400
lemma dec_first_on_right_moving_dec_after_clear_cases[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2401
 "\<lbrakk>dec_first_on_right_moving n (as, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2402
                   abc_lm_s am n (abc_lm_v am n)) (s, l, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2403
\<Longrightarrow> (l = [] \<longrightarrow> dec_after_clear (as, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2404
             abc_lm_s am n (abc_lm_v am n - Suc 0)) (s', [], [Bk]) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2405
    (l \<noteq> [] \<longrightarrow> dec_after_clear (as, abc_lm_s am n 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2406
                      (abc_lm_v am n - Suc 0)) (s', tl l, [hd l]) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2407
apply(subgoal_tac "l \<noteq> []", 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2408
      simp only: dec_first_on_right_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2409
                 dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2410
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2411
apply(case_tac "n < length am", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2412
apply(rule_tac x = lm1 in exI, rule_tac x = "m - 1" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2413
apply(case_tac [1-2] m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2414
apply(auto simp: dec_first_on_right_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2415
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2416
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2417
lemma dec_after_clear_Bk_via_Oc[simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Oc # r) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2418
                \<Longrightarrow> dec_after_clear (as, am) (s', l, Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2419
apply(auto simp: dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2420
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2421
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2422
lemma dec_right_move_Bk_via_clear_Bk[simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Bk # r) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2423
                \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2424
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2425
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2426
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2427
lemma dec_right_move_Bk_via_clear_empty[simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2428
             \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2429
apply(auto simp: dec_after_clear.simps dec_right_move.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2430
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2431
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2432
lemma dec_right_move_Bk_Bk_via_clear[simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2433
             \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2434
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2435
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2436
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2437
lemma dec_right_move_no_Oc[simp]:"dec_right_move (as, am) (s, l, Oc # r) ires = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2438
apply(auto simp: dec_right_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2439
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2440
              
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2441
lemma dec_right_move_2_check_right_move[simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2442
     "\<lbrakk>dec_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2443
      \<Longrightarrow> dec_check_right_move (as, am) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2444
apply(auto simp: dec_right_move.simps dec_check_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2445
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2446
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2447
lemma lm_iff_empty[simp]: "(<lm::nat list> = []) = (lm = [])"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2448
apply(case_tac lm, simp_all add: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2449
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2450
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2451
lemma dec_right_move_asif_Bk_singleton[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2452
 "dec_right_move (as, am) (s, l, []) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2453
  dec_right_move (as, am) (s, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2454
apply(simp add: dec_right_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2455
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2456
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2457
lemma dec_check_right_move_Bk_via_move[simp]: "\<lbrakk>dec_right_move (as, am) (s, l, []) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2458
             \<Longrightarrow> dec_check_right_move (as, am) (s, Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2459
apply(insert dec_right_move_2_check_right_move[of as am s l "[]" s'], 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2460
      simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2461
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2462
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2463
lemma dec_check_right_move_nonempty[simp]: "dec_check_right_move (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2464
apply(auto simp: dec_check_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2465
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2466
 
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2467
lemma dec_check_right_move_Oc_tail[simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Oc # r) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2468
             \<Longrightarrow> dec_after_write (as, am) (s', tl l, hd l # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2469
apply(auto simp: dec_check_right_move.simps dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2470
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2471
      rule_tac x = m in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2472
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2473
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2474
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2475
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2476
lemma dec_left_move_Bk_tail[simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2477
                \<Longrightarrow> dec_left_move (as, am) (s', tl l, hd l # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2478
apply(auto simp: dec_check_right_move.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2479
                 dec_left_move.simps inv_after_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2480
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2481
apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2482
apply(rule_tac [!] x = "(Suc rn)" in exI, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2483
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2484
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2485
lemma dec_left_move_tail[simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, []) ires\<rbrakk>
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2486
             \<Longrightarrow> dec_left_move (as, am) (s', tl l, [hd l]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2487
apply(auto simp: dec_check_right_move.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2488
                 dec_left_move.simps inv_after_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2489
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2490
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2491
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2492
lemma dec_left_move_no_Oc[simp]: "dec_left_move (as, am) (s, aaa, Oc # xs) ires = False"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2493
apply(auto simp: dec_left_move.simps inv_after_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2494
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2495
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2496
lemma dec_left_move_nonempty[simp]: "dec_left_move (as, am) (s, l, r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2497
             \<Longrightarrow> l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2498
apply(auto simp: dec_left_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2499
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2500
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2501
lemma inv_on_left_moving_in_middle_B_Oc_Bk_Bks[simp]: "inv_on_left_moving_in_middle_B (as, [m])
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2502
  (s', Oc # Oc\<up>m @ Bk # Bk # ires, Bk # Bk\<up>rn) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2503
apply(simp add: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2504
apply(rule_tac x = "[m]" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2505
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2506
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2507
lemma inv_on_left_moving_in_middle_B_Oc_Bk_Bk[simp]: "inv_on_left_moving_in_middle_B (as, [m])
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2508
  (s', Oc # Oc\<up>m @ Bk # Bk # ires, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2509
apply(simp add: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2510
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2511
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2512
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2513
lemma inv_on_left_moving_in_middle_B_Oc_Bk_Bks_rev[simp]: "lm1 \<noteq> [] \<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2514
  inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s', 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2515
  Oc # Oc\<up>m @ Bk # <rev lm1> @ Bk # Bk # ires, Bk # Bk\<up>rn) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2516
apply(simp only: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2517
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2518
apply(simp add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2519
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2520
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2521
lemma inv_on_left_moving_in_middle_B_Oc_Bk_Bk_rev[simp]: "lm1 \<noteq> [] \<Longrightarrow> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2522
  inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s', 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2523
  Oc # Oc\<up> m @ Bk # <rev lm1> @ Bk # Bk # ires, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2524
apply(simp only: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2525
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2526
apply(simp add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2527
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2528
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2529
lemma inv_on_left_moving_Bk_tail[simp]: "dec_left_move (as, am) (s, l, Bk # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2530
       \<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, hd l # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2531
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2532
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2533
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2534
lemma inv_on_left_moving_tail[simp]: "dec_left_move (as, am) (s, l, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2535
             \<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, [hd l]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2536
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2537
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2538
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2539
lemma dec_on_right_moving_Oc_mv[simp]: "dec_after_write (as, am) (s, l, Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2540
       \<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2541
apply(auto simp: dec_after_write.simps dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2542
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2543
      rule_tac x = "hd lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2544
apply(rule_tac x = "Suc 0" in exI,rule_tac x =  "Suc (hd lm2)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2545
apply(case_tac lm2, auto split: if_splits simp: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2546
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2547
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2548
lemma dec_after_write_Oc_via_Bk[simp]: "dec_after_write (as, am) (s, l, Bk # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2549
       \<Longrightarrow> dec_after_write (as, am) (s', l, Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2550
apply(auto simp: dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2551
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2552
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2553
lemma dec_after_write_Oc_empty[simp]: "dec_after_write (as, am) (s, aaa, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2554
             \<Longrightarrow> dec_after_write (as, am) (s', aaa, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2555
apply(auto simp: dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2556
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2557
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2558
lemma dec_on_right_moving_Oc_move[simp]: "dec_on_right_moving (as, am) (s, l, Oc # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2559
       \<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2560
apply(simp only: dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2561
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2562
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2563
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2564
      rule_tac x = "m" in exI, rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2565
      rule_tac x = "mr - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2566
apply(case_tac mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2567
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2568
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2569
lemma dec_on_right_moving_nonempty[simp]: "dec_on_right_moving (as, am) (s, l, r) ires\<Longrightarrow>  l \<noteq> []"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2570
apply(auto simp: dec_on_right_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2571
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2572
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2573
lemma dec_after_clear_Bk_tail[simp]: "dec_on_right_moving (as, am) (s, l, Bk # r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2574
      \<Longrightarrow>  dec_after_clear (as, am) (s', tl l, hd l # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2575
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2576
apply(case_tac [!] mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2577
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2578
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2579
lemma dec_after_clear_tail[simp]: "dec_on_right_moving (as, am) (s, l, []) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2580
             \<Longrightarrow> dec_after_clear (as, am) (s', tl l, [hd l]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2581
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2582
apply(simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2583
apply(rule_tac x = lm1 in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2584
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2585
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2586
lemma inv_stop_abc_lm_s_nonempty[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2587
 "inv_stop (as, abc_lm_s am n (abc_lm_v am n)) (s, l, r) ires \<Longrightarrow> l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2588
apply(auto simp: inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2589
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2590
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2591
lemma dec_false_1[simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2592
 "\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2593
  \<Longrightarrow> False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2594
apply(auto simp: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2595
apply(case_tac "length lm1 \<ge> length am", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2596
apply(subgoal_tac "lm2 = []", simp, subgoal_tac "m = 0", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2597
apply(case_tac mr, auto simp: )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2598
apply(subgoal_tac "Suc (length lm1) - length am = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2599
                   Suc (length lm1 - length am)", 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2600
      simp add: exp_ind del: replicate.simps, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2601
apply(drule_tac xs = "am @ replicate (Suc (length lm1) - length am) 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2602
                and ys = "lm1 @ m # lm2" in length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2603
apply(case_tac mr, auto simp: abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2604
apply(case_tac "mr = 0", simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2605
apply(subgoal_tac "Suc (length lm1) - length am = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2606
                       Suc (length lm1 - length am)", 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2607
      simp add: exp_ind del: replicate.simps, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2608
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2609
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2610
lemma inv_on_left_moving_Bk_tl[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2611
 "\<lbrakk>inv_locate_b (as, am) (n, aaa, Bk # xs) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2612
   abc_lm_v am n = 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2613
   \<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2614
                         (s, tl aaa, hd aaa # Bk # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2615
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2616
apply(simp only: inv_locate_b.simps in_middle.simps) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2617
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2618
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2619
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2620
         (as, abc_lm_s am n 0) (s, tl aaa, hd aaa # Bk # xs) ires", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2621
apply(simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2622
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2623
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2624
      rule_tac x =  m in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2625
      rule_tac x = "Suc 0" in exI, simp add: abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2626
apply(case_tac mr, simp_all, auto simp: abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2627
apply(simp only: exp_ind[THEN sym] replicate_Suc Nat.Suc_diff_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2628
apply(auto simp: inv_on_left_moving_in_middle_B.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2629
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2630
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2631
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2632
lemma inv_on_left_moving_tl[simp]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2633
 "\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2634
   \<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2635
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2636
apply(simp only: inv_locate_b.simps in_middle.simps) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2637
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2638
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2639
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2640
         (as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2641
apply(simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2642
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2643
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2644
      rule_tac x =  m in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2645
      rule_tac x = "Suc 0" in exI, simp add: abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2646
apply(case_tac mr, simp_all, auto simp: abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2647
apply(simp_all only: exp_ind Nat.Suc_diff_le del: replicate_Suc, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2648
apply(auto simp: inv_on_left_moving_in_middle_B.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2649
apply(case_tac [!] m, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2650
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2651
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2652
lemma update_zero_to_zero[simp]: "\<lbrakk>am ! n = (0::nat); n < length am\<rbrakk> \<Longrightarrow> am[n := 0] = am"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2653
apply(simp add: list_update_same_conv)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2654
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2655
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2656
lemma abc_lm_v_zero: "\<lbrakk>abc_lm_v (a # list) 0 = 0\<rbrakk> \<Longrightarrow> a = 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2657
apply(simp add: abc_lm_v.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2658
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2659
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2660
lemma inv_locate_a_via_stop[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2661
 "inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2662
          (start_of (layout_of aprog) e, aaa, Oc # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2663
  \<Longrightarrow> inv_locate_a (as, abc_lm_s am n 0) (0, aaa, Oc # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2664
apply(simp add: inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2665
apply(rule disjI1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2666
apply(auto simp: inv_stop.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2667
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2668
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2669
lemma inv_locate_b_cases_via_stop[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2670
 "\<lbrakk>inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2671
          (start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2672
  \<Longrightarrow> inv_locate_b (as, am) (0, Oc # aaa, xs) ires \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2673
      inv_locate_b (as, abc_lm_s am n 0) (0, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2674
apply(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2675
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2676
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2677
lemma dec_false2: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2678
 "inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2679
  (start_of (layout_of aprog) e, aaa, Bk # xs) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2680
apply(auto simp: inv_stop.simps abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2681
apply(case_tac [!] am, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2682
apply(case_tac [!] n, auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2683
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2684
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2685
lemma dec_false3:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2686
   "inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2687
              (start_of (layout_of aprog) e, aaa, []) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2688
apply(auto simp: inv_stop.simps abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2689
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2690
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2691
declare dec_inv_1.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2692
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2693
declare inv_locate_n_b.simps [simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2694
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2695
lemma inv_locate_n_b_Oc_via_at_begin_fst_bwtn[simp]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2696
  "\<lbrakk>0 < abc_lm_v am n; 0 < n; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2697
    at_begin_fst_bwtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2698
 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2699
apply(simp add: at_begin_fst_bwtn.simps inv_locate_n_b.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2700
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2701
 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2702
lemma Suc_minus:"length am + tn = n
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2703
       \<Longrightarrow> Suc tn = Suc n - length am "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2704
apply(arith)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2705
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2706
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2707
lemma dec_first_on_right_moving_Oc_via_inv_locate_n_b[simp]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2708
 "\<lbrakk>inv_locate_n_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2709
 \<Longrightarrow> dec_first_on_right_moving n (as, abc_lm_s am n (abc_lm_v am n))  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2710
                                      (s, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2711
apply(auto simp: inv_locate_n_b.simps dec_first_on_right_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2712
                 abc_lm_s.simps abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2713
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2714
      rule_tac x = m in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2715
apply(rule_tac x = "Suc (Suc 0)" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2716
      rule_tac x = "m - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2717
apply(case_tac m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2718
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2719
      rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2720
      simp add: Suc_diff_le exp_ind del: replicate.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2721
apply(rule_tac x = "Suc (Suc 0)" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2722
      rule_tac x = "m - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2723
apply(case_tac m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2724
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2725
      rule_tac x = m in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2726
apply(rule_tac x = "Suc (Suc 0)" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2727
      rule_tac x = "m - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2728
apply(case_tac m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2729
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2730
      rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2731
      simp add: Suc_diff_le exp_ind del: replicate.simps, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2732
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2733
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2734
lemma inv_on_left_moving_nonempty[simp]: "inv_on_left_moving (as, am) (s, [], r) ires 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2735
  = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2736
apply(simp add: inv_on_left_moving.simps inv_on_left_moving_norm.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2737
                inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2738
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2739
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2740
lemma inv_check_left_moving_startof_nonempty[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2741
  "inv_check_left_moving (as, abc_lm_s am n 0)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2742
  (start_of (layout_of aprog) as + 2 * n + 14, [], Oc # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2743
 = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2744
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2745
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2746
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2747
lemma start_of_lessE[elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e);
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2748
                start_of (layout_of ap) as < start_of (layout_of ap) e; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2749
                start_of (layout_of ap) e \<le> Suc (start_of (layout_of ap) as + 2 * n)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2750
       \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2751
  using start_of_less[of e as "layout_of ap"] start_of_ge[of as ap n e "layout_of ap"]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2752
apply(case_tac "as < e", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2753
apply(case_tac "as = e", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2754
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2755
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2756
lemma crsp_step_dec_b_e_pre':
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2757
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2758
  and inv_start: "inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2759
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2760
  and dec_0: "abc_lm_v lm n = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2761
  and f: "f = (\<lambda> stp. (steps (Suc (start_of ly as) + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2762
            start_of ly as - Suc 0) stp, start_of ly as, n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2763
  and P: "P = (\<lambda> ((s, l, r), ss, x). s = start_of ly e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2764
  and Q: "Q = (\<lambda> ((s, l, r), ss, x). dec_inv_1 ly x e (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2765
  shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2766
proof(rule_tac LE = abc_dec_1_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2767
  show "wf abc_dec_1_LE" by(intro wf_dec_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2768
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2769
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2770
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2771
    apply(simp add: f steps.simps Q dec_inv_1.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2772
    apply(subgoal_tac "e > as \<or> e = as \<or> e < as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2773
    apply(auto simp: Let_def start_of_ge start_of_less inv_start)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2774
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2775
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2776
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2777
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2778
    apply(simp add: f steps.simps P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2779
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2780
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2781
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2782
    using fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2783
  proof(rule_tac allI, rule_tac impI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2784
    fix na
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2785
    assume "\<not> P (f na) \<and> Q (f na)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2786
    thus "Q (f (Suc na)) \<and> (f (Suc na), f na) \<in> abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2787
      apply(simp add: f)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2788
      apply(case_tac "steps (Suc (start_of ly as + 2 * n), la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2789
        (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) na", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2790
    proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2791
      fix a b c 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2792
      assume "\<not> P ((a, b, c), start_of ly as, n) \<and> Q ((a, b, c), start_of ly as, n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2793
      thus "Q (step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2794
               ((step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2795
                   (a, b, c), start_of ly as, n) \<in> abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2796
        apply(simp add: Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2797
        apply(case_tac c, case_tac [2] aa)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2798
        apply(simp_all add: dec_inv_1.simps Let_def split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2799
        using fetch layout dec_0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2800
        apply(auto simp: step.simps P dec_inv_1.simps Let_def abc_dec_1_LE_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2801
        using dec_0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2802
        apply(drule_tac dec_false_1, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2803
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2804
    qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2805
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2806
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2807
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2808
lemma crsp_step_dec_b_e_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2809
  assumes "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2810
  and inv_start: "inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2811
  and dec_0: "abc_lm_v lm n  = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2812
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2813
  shows "\<exists>stp lb rb.
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2814
       steps (Suc (start_of ly as) + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2815
       start_of ly as - Suc 0) stp = (start_of ly e, lb, rb) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2816
       dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2817
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2818
  apply(drule_tac crsp_step_dec_b_e_pre', auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2819
  apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2820
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2821
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2822
lemma crsp_abc_step_via_stop[simp]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2823
  "\<lbrakk>abc_lm_v lm n = 0;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2824
  inv_stop (as, abc_lm_s lm n (abc_lm_v lm n)) (start_of ly e, lb, rb) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2825
  \<Longrightarrow> crsp ly (abc_step_l (as, lm) (Some (Dec n e))) (start_of ly e, lb, rb) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2826
apply(auto simp: crsp.simps abc_step_l.simps inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2827
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2828
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2829
lemma crsp_step_dec_b_e:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2830
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2831
  and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2832
  and dec_0: "abc_lm_v lm n = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2833
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2834
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2835
  (steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2836
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2837
  let ?P = "ci ly (start_of ly as) (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2838
  let ?off = "start_of ly as - Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2839
  have "\<exists> stp la ra. steps (start_of ly as + 2 * n, l, r) (?P, ?off) stp = (Suc (start_of ly as) + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2840
             \<and>  inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2841
    using inv_start
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2842
    apply(case_tac "r = [] \<or> hd r = Bk", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2843
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2844
  from this obtain stpa la ra where a:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2845
    "steps (start_of ly as + 2 * n, l, r) (?P, ?off) stpa = (Suc (start_of ly as) + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2846
             \<and>  inv_locate_b (as, lm) (n, la, ra) ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2847
  have "\<exists> stp lb rb. steps (Suc (start_of ly as) + 2 * n, la, ra) (?P, ?off) stp = (start_of ly e, lb, rb)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2848
             \<and>  dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2849
    using assms a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2850
    apply(rule_tac crsp_step_dec_b_e_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2851
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2852
  from this obtain stpb lb rb where b:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2853
    "steps (Suc (start_of ly as) + 2 * n, la, ra) (?P, ?off) stpb = (start_of ly e, lb, rb)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2854
             \<and>  dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"  by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2855
  from a b show "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2856
    (steps (start_of ly as + 2 * n, l, r) (?P, ?off) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2857
    apply(rule_tac x = "stpa + stpb" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2858
    apply(simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2859
    using dec_0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2860
    apply(simp add: dec_inv_1.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2861
    apply(case_tac stpa, simp_all add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2862
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2863
qed    
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2864
  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2865
fun dec_inv_2 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2866
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2867
  "dec_inv_2 ly n e (as, am) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2868
           (let ss = start_of ly as in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2869
            let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2870
            let am'' = abc_lm_s am n (abc_lm_v am n) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2871
              if s = 0 then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2872
              else if s = ss + 2 * n then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2873
                      inv_locate_a (as, am) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2874
              else if s = ss + 2 * n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2875
                      inv_locate_n_b (as, am) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2876
              else if s = ss + 2 * n + 2 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2877
                      dec_first_on_right_moving n (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2878
              else if s = ss + 2 * n + 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2879
                      dec_after_clear (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2880
              else if s = ss + 2 * n + 4 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2881
                      dec_right_move (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2882
              else if s = ss + 2 * n + 5 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2883
                      dec_check_right_move (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2884
              else if s = ss + 2 * n + 6 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2885
                      dec_left_move (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2886
              else if s = ss + 2 * n + 7 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2887
                      dec_after_write (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2888
              else if s = ss + 2 * n + 8 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2889
                      dec_on_right_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2890
              else if s = ss + 2 * n + 9 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2891
                      dec_after_clear (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2892
              else if s = ss + 2 * n + 10 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2893
                      inv_on_left_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2894
              else if s = ss + 2 * n + 11 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2895
                      inv_check_left_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2896
              else if s = ss + 2 * n + 12 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2897
                      inv_after_left_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2898
              else if s = ss + 2 * n + 16 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2899
                      inv_stop (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2900
              else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2901
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2902
declare dec_inv_2.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2903
fun abc_dec_2_stage1 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2904
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2905
  "abc_dec_2_stage1 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2906
              (if s \<le> ss + 2*n + 1 then 7
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2907
               else if s = ss + 2*n + 2 then 6 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2908
               else if s = ss + 2*n + 3 then 5
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2909
               else if s \<ge> ss + 2*n + 4 \<and> s \<le> ss + 2*n + 9 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2910
               else if s = ss + 2*n + 6 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2911
               else if s = ss + 2*n + 10 \<or> s = ss + 2*n + 11 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2912
               else if s = ss + 2*n + 12 then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2913
               else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2914
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2915
fun abc_dec_2_stage2 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2916
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2917
  "abc_dec_2_stage2 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2918
       (if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2919
        else if s = ss + 2*n + 10 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2920
        else if s = ss + 2*n + 11 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2921
        else if s = ss + 2*n + 4 then length r - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2922
        else if s = ss + 2*n + 5 then length r 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2923
        else if s = ss + 2*n + 7 then length r - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2924
        else if s = ss + 2*n + 8 then  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2925
              length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2926
        else if s = ss + 2*n + 9 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2927
              length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2928
        else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2929
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2930
fun abc_dec_2_stage3 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2931
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2932
  "abc_dec_2_stage3 (s, l, r) ss n  =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2933
        (if s \<le> ss + 2*n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2934
            if (s - ss) mod 2 = 0 then if r \<noteq> [] \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2935
                                          hd r = Oc then 0 else 1  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2936
            else length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2937
         else if s = ss + 2 * n + 10 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2938
             if  r \<noteq> [] \<and> hd r = Oc then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2939
             else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2940
         else if s = ss + 2 * n + 11 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2941
             if r \<noteq> [] \<and> hd r = Oc then 3 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2942
             else 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2943
         else (ss + 2 * n + 16 - s))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2944
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2945
fun abc_dec_2_stage4 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2946
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2947
  "abc_dec_2_stage4 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2948
          (if s = ss + 2*n + 2 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2949
           else if s = ss + 2*n + 8 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2950
           else if s = ss + 2*n + 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2951
               if r \<noteq> [] \<and> hd r = Oc then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2952
               else 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2953
           else if s = ss + 2*n + 7 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2954
               if r \<noteq> [] \<and> hd r = Oc then 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2955
               else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2956
           else if s = ss + 2*n + 9 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2957
               if r \<noteq> [] \<and> hd r = Oc then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2958
               else 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2959
           else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2960
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2961
fun abc_dec_2_measure :: "(config \<times> nat \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat \<times> nat)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2962
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2963
  "abc_dec_2_measure (c, ss, n) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2964
  (abc_dec_2_stage1 c ss n, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2965
  abc_dec_2_stage2 c ss n, abc_dec_2_stage3 c ss n,  abc_dec_2_stage4 c ss n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2966
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2967
definition lex_square:: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2968
   "((nat \<times> nat \<times> nat \<times> nat) \<times> (nat \<times> nat \<times> nat \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2969
  where "lex_square \<equiv> less_than <*lex*> lex_triple"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2970
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2971
definition abc_dec_2_LE ::
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2972
  "((config \<times> nat \<times>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2973
  nat) \<times> (config \<times> nat \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2974
  where "abc_dec_2_LE \<equiv> (inv_image lex_square abc_dec_2_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2975
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2976
lemma wf_dec2_le: "wf abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2977
by(auto intro:wf_inv_image simp:abc_dec_2_LE_def lex_square_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2978
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2979
lemma fix_add: "fetch ap ((x::nat) + 2*n) b = fetch ap (2*n + x) b"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  2980
  using Suc_1 add.commute by metis
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2981
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2982
lemma inv_locate_n_b_Bk_elim[elim]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2983
 "\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) (n, aaa, Bk # xs) ires\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2984
 \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2985
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2986
apply(case_tac [!] m, auto)
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2987
  done
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2988
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2989
lemma inv_locate_n_b_nonemptyE[elim]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2990
 "\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2991
                                (n, aaa, []) ires\<rbrakk> \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2992
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2993
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2994
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  2995
lemma no_Ocs_dec_after_write[simp]: "dec_after_write (as, am) (s, aa, r) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2996
           \<Longrightarrow> takeWhile (\<lambda>a. a = Oc) aa = []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2997
apply(simp only : dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2998
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2999
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3000
apply(case_tac aa, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3001
apply(case_tac a, simp only: takeWhile.simps , simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3002
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3003
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3004
lemma fewer_Ocs_dec_on_right_moving[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3005
     "\<lbrakk>dec_on_right_moving (as, lm) (s, aa, []) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3006
       length (takeWhile (\<lambda>a. a = Oc) (tl aa)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3007
           \<noteq> length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3008
    \<Longrightarrow> length (takeWhile (\<lambda>a. a = Oc) (tl aa)) < 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3009
                       length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3010
apply(simp only: dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3011
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3012
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3013
apply(case_tac mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3014
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3015
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3016
lemma more_Ocs_dec_after_clear[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3017
  "dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3018
             (start_of (layout_of aprog) as + 2 * n + 9, aa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3019
 \<Longrightarrow> length xs - Suc 0 < length xs + 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3020
                             length (takeWhile (\<lambda>a. a = Oc) aa)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3021
apply(simp only: dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3022
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3023
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3024
apply(simp split: if_splits )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3025
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3026
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3027
lemma more_Ocs_dec_after_clear2[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3028
 "\<lbrakk>dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3029
       (start_of (layout_of aprog) as + 2 * n + 9, aa, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3030
    \<Longrightarrow> Suc 0 < length (takeWhile (\<lambda>a. a = Oc) aa)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3031
apply(simp add: dec_after_clear.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3032
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3033
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3034
lemma inv_check_left_moving_nonemptyE[elim]: 
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3035
  "inv_check_left_moving (as, lm) (s, [], Oc # xs) ires
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3036
 \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3037
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3038
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3039
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3040
lemma inv_check_left_moving_nonempty[simp]:
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3041
  "inv_check_left_moving (as, lm) (s, [], Oc # list) ires = False"
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3042
  by auto
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3043
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3044
lemma inv_locate_n_b_Oc_via_at_begin_norm[simp]:
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3045
"\<lbrakk>0 < abc_lm_v am n; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3046
  at_begin_norm (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3047
  \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3048
apply(simp only: at_begin_norm.simps inv_locate_n_b.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3049
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3050
apply(rule_tac x = lm1 in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3051
apply(case_tac "length lm2", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3052
apply(case_tac "lm2", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3053
apply(case_tac "lm2", auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3054
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3055
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3056
lemma inv_locate_n_b_Oc_via_at_begin_fst_awtn[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3057
 "\<lbrakk>0 < abc_lm_v am n; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3058
   at_begin_fst_awtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3059
 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3060
apply(simp only: at_begin_fst_awtn.simps inv_locate_n_b.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3061
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3062
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3063
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3064
      rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3065
apply(simp add: exp_ind del: replicate.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3066
apply(rule conjI)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3067
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3068
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3069
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3070
lemma inv_locate_n_b_Oc_via_inv_locate_n_a[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3071
 "\<lbrakk>0 < abc_lm_v am n; inv_locate_a (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3072
 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc#aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3073
apply(auto simp: inv_locate_a.simps at_begin_fst_bwtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3074
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3075
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3076
lemma more_Oc_dec_on_right_moving[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3077
 "\<lbrakk>dec_on_right_moving (as, am) (s, aa, Bk # xs) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3078
   Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3079
   \<noteq> length (takeWhile (\<lambda>a. a = Oc) aa)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3080
  \<Longrightarrow> Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3081
    < length (takeWhile (\<lambda>a. a = Oc) aa)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3082
apply(simp only: dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3083
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3084
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3085
apply(case_tac ml, auto split: if_splits )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3086
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3087
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3088
lemma crsp_step_dec_b_suc_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3089
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3090
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3091
  and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3092
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3093
  and dec_suc: "0 < abc_lm_v lm n"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3094
  and f: "f = (\<lambda> stp. (steps (start_of ly as + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3095
            start_of ly as - Suc 0) stp, start_of ly as, n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3096
  and P: "P = (\<lambda> ((s, l, r), ss, x). s = start_of ly as + 2*n + 16)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3097
  and Q: "Q = (\<lambda> ((s, l, r), ss, x). dec_inv_2 ly x e (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3098
  shows "\<exists> stp. P (f stp) \<and> Q(f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3099
  proof(rule_tac LE = abc_dec_2_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3100
  show "wf abc_dec_2_LE" by(intro wf_dec2_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3101
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3102
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3103
    using layout fetch inv_start
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3104
    apply(simp add: f steps.simps Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3105
    apply(simp only: dec_inv_2.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3106
    apply(auto simp: Let_def start_of_ge start_of_less inv_start dec_inv_2.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3107
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3108
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3109
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3110
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3111
    apply(simp add: f steps.simps P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3112
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3113
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3114
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3115
    using fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3116
  proof(rule_tac allI, rule_tac impI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3117
    fix na
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3118
    assume "\<not> P (f na) \<and> Q (f na)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3119
    thus "Q (f (Suc na)) \<and> (f (Suc na), f na) \<in> abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3120
      apply(simp add: f)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3121
      apply(case_tac "steps ((start_of ly as + 2 * n), la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3122
        (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) na", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3123
    proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3124
      fix a b c 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3125
      assume "\<not> P ((a, b, c), start_of ly as, n) \<and> Q ((a, b, c), start_of ly as, n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3126
      thus "Q (step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3127
               ((step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3128
                   (a, b, c), start_of ly as, n) \<in> abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3129
        apply(simp add: Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3130
        apply(erule_tac conjE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3131
        apply(case_tac c, case_tac [2] aa)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3132
        apply(simp_all add: dec_inv_2.simps Let_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3133
        apply(simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3134
        using fetch layout dec_suc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3135
        apply(auto simp: step.simps P dec_inv_2.simps Let_def abc_dec_2_LE_def lex_triple_def lex_pair_def lex_square_def
115
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  3136
                         fix_add numeral_3_eq_3) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3137
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3138
    qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3139
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3140
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3141
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3142
lemma crsp_abc_step_l_start_of[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3143
  "\<lbrakk>inv_stop (as, abc_lm_s lm n (abc_lm_v lm n - Suc 0)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3144
  (start_of (layout_of ap) as + 2 * n + 16, a, b) ires;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3145
   abc_lm_v lm n > 0;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3146
   abc_fetch as ap = Some (Dec n e)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3147
  \<Longrightarrow> crsp (layout_of ap) (abc_step_l (as, lm) (Some (Dec n e))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3148
  (start_of (layout_of ap) as + 2 * n + 16, a, b) ires"
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  3149
  by(auto simp: inv_stop.simps crsp.simps  abc_step_l.simps startof_Suc2)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3150
  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3151
lemma crsp_step_dec_b_suc:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3152
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3153
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3154
  and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3155
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3156
  and dec_suc: "0 < abc_lm_v lm n"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3157
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3158
              (steps (start_of ly as + 2 * n, la, ra) (ci (layout_of ap) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3159
                  (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3160
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3161
  apply(drule_tac crsp_step_dec_b_suc_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3162
  apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3163
  apply(simp add: dec_inv_2.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3164
  apply(case_tac stp, simp_all add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3165
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3166
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3167
lemma crsp_step_dec_b:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3168
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3169
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3170
  and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3171
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3172
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3173
  (steps (start_of ly as + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3174
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3175
apply(case_tac "abc_lm_v lm n = 0")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3176
apply(rule_tac crsp_step_dec_b_e, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3177
apply(rule_tac crsp_step_dec_b_suc, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3178
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3179
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3180
lemma crsp_step_dec: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3181
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3182
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3183
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3184
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3185
  (steps (s, l, r) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3186
proof(simp add: ci.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3187
  let ?off = "start_of ly as - Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3188
  let ?A = "findnth n"
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  3189
  let ?B = "adjust (shift (shift tdec_b (2 * n)) ?off) (start_of ly e)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3190
  have "\<exists> stp la ra. steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp = (start_of ly as + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3191
                    \<and> inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3192
  proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3193
    have "\<exists>stp l' r'. steps (Suc 0, l, r) (?A, 0) stp = (Suc (2 * n), l', r') \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3194
                     inv_locate_a (as, lm) (n, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3195
      using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3196
      apply(rule_tac findnth_correct, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3197
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3198
    then obtain stp l' r' where a: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3199
      "steps (Suc 0, l, r) (?A, 0) stp = (Suc (2 * n), l', r') \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3200
      inv_locate_a (as, lm) (n, l', r') ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3201
    then have "steps (Suc 0 + ?off, l, r) (shift ?A ?off, ?off) stp = (Suc (2 * n) + ?off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3202
      apply(rule_tac tm_shift_eq_steps, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3203
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3204
    moreover have "s = start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3205
      using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3206
      apply(auto simp: crsp.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3207
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3208
    ultimately show "\<exists> stp la ra. steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp = (start_of ly as + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3209
                    \<and> inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3210
      using a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3211
      apply(drule_tac B = ?B in tm_append_first_steps_eq, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3212
      apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3213
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3214
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3215
  from this obtain stpa la ra where a: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3216
    "steps (s, l, r) (shift ?A ?off @ ?B, ?off) stpa = (start_of ly as + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3217
                    \<and> inv_locate_a (as, lm) (n, la, ra) ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3218
  have "\<exists>stp. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3219
           (steps (start_of ly as + 2*n, la, ra) (shift ?A ?off @ ?B, ?off) stp) ires \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3220
    using assms a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3221
    apply(drule_tac crsp_step_dec_b, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3222
    apply(rule_tac x = stp in exI, simp add: ci.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3223
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3224
  then obtain stpb where b: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3225
    "crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3226
    (steps (start_of ly as + 2*n, la, ra) (shift ?A ?off @ ?B, ?off) stpb) ires \<and> stpb > 0" ..
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3227
  from a b show "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3228
    (steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3229
    apply(rule_tac x = "stpa + stpb" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3230
    apply(simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3231
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3232
qed    
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3233
  
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3234
subsection{*Crsp of Goto*}
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3235
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3236
lemma crsp_step_goto:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3237
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3238
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3239
  shows "\<exists>stp>0. crsp ly (abc_step_l (as, lm) (Some (Goto n)))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3240
  (steps (s, l, r) (ci ly (start_of ly as) (Goto n), 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3241
            start_of ly as - Suc 0) stp) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3242
using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3243
apply(rule_tac x = "Suc 0" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3244
apply(case_tac r, case_tac [2] a)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3245
apply(simp_all add: ci.simps steps.simps step.simps crsp.simps fetch.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3246
  crsp.simps abc_step_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3247
done
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3248
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3249
lemma crsp_step_in:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3250
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3251
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3252
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3253
  and fetch: "abc_fetch as ap = Some ins"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3254
  shows "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3255
                      (steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3256
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3257
  apply(case_tac ins, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3258
  apply(rule crsp_step_inc, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3259
  apply(rule crsp_step_dec, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3260
  apply(rule_tac crsp_step_goto, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3261
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3262
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3263
lemma crsp_step:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3264
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3265
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3266
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3267
  and fetch: "abc_fetch as ap = Some ins"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3268
  shows "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3269
                      (steps (s, l, r) (tp, 0) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3270
proof -
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3271
  have "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3272
                      (steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3273
    using assms
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3274
    apply(rule_tac crsp_step_in, simp_all)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3275
    done
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3276
  from this obtain stp where d: "stp > 0 \<and> crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3277
                      (steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires" ..
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3278
  obtain s' l' r' where e:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3279
    "(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3280
    apply(case_tac "(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp)")
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3281
    by blast
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3282
  then have "steps (s, l, r) (tp, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3283
    using assms d
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3284
    apply(rule_tac steps_eq_in)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3285
    apply(simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3286
    apply(case_tac "(abc_step_l (as, lm) (Some ins))", simp add: crsp.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3287
    done    
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3288
  thus " \<exists>stp>0. crsp ly (abc_step_l (as, lm) (Some ins)) (steps (s, l, r) (tp, 0) stp) ires"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3289
    using d e
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3290
    apply(rule_tac x = stp in exI, simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3291
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3292
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3293
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3294
lemma crsp_steps:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3295
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3296
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3297
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3298
  shows "\<exists> stp. crsp ly (abc_steps_l (as, lm) ap n)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3299
                      (steps (s, l, r) (tp, 0) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3300
  using crsp
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3301
  apply(induct n)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3302
  apply(rule_tac x = 0 in exI) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3303
  apply(simp add: steps.simps abc_steps_l.simps, simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3304
  apply(case_tac "(abc_steps_l (as, lm) ap n)", auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3305
  apply(frule_tac abc_step_red, simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3306
  apply(case_tac "abc_fetch a ap", simp add: abc_step_l.simps, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3307
  apply(case_tac "steps (s, l, r) (tp, 0) stp", simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3308
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3309
  apply(drule_tac s = ab and l = ba and r = c in crsp_step, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3310
  apply(rule_tac x = "stp + stpa" in exI, simp add: steps_add)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3311
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3312
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3313
lemma tp_correct': 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3314
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3315
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3316
  and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3317
  and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3318
  shows "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp = (start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3319
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3320
  apply(drule_tac n = stp in crsp_steps, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3321
  apply(rule_tac x = stpa in exI)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3322
  apply(case_tac "steps (Suc 0, l, r) (tm_of ap, 0) stpa", simp add: crsp.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3323
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3324
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3325
text{*The tp @ [(Nop, 0), (Nop, 0)] is nomoral turing machines, so we can use Hoare_plus when composing with Mop machine*}
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3326
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3327
lemma layout_id_cons: "layout_of (ap @ [p]) = layout_of ap @ [length_of p]"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3328
apply(simp add: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3329
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3330
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3331
lemma map_start_of_layout[simp]:  
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3332
  "map (start_of (layout_of xs @ [length_of x])) [0..<length xs] =  (map (start_of (layout_of xs)) [0..<length xs])"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3333
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3334
apply(simp add: layout_of.simps start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3335
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3336
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3337
lemma tpairs_id_cons: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3338
  "tpairs_of (xs @ [x]) = tpairs_of xs @ [(start_of (layout_of (xs @ [x])) (length xs), x)]"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3339
apply(auto simp: tpairs_of.simps layout_id_cons )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3340
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3341
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3342
lemma map_length_ci:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3343
  "(map (length \<circ> (\<lambda>(xa, y). ci (layout_of xs @ [length_of x]) xa y)) (tpairs_of xs)) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3344
  (map (length \<circ> (\<lambda>(x, y). ci (layout_of xs) x y)) (tpairs_of xs)) "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3345
apply(auto)
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  3346
apply(case_tac b, auto simp: ci.simps adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3347
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3348
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3349
lemma length_tp'[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3350
  "\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow>
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  3351
       length tp = 2 * sum_list (take (length ap) (layout_of ap))"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3352
proof(induct ap arbitrary: ly tp rule: rev_induct)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3353
  case Nil
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3354
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3355
    by(simp add: tms_of.simps tm_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3356
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3357
  fix x xs ly tp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3358
  assume ind: "\<And>ly tp. \<lbrakk>ly = layout_of xs; tp = tm_of xs\<rbrakk> \<Longrightarrow> 
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  3359
    length tp = 2 * sum_list (take (length xs) (layout_of xs))"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3360
  and layout: "ly = layout_of (xs @ [x])"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3361
  and tp: "tp = tm_of (xs @ [x])"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3362
  obtain ly' where a: "ly' = layout_of xs"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3363
    by metis
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3364
  obtain tp' where b: "tp' = tm_of xs"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3365
    by metis
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  3366
  have c: "length tp' = 2 * sum_list (take (length xs) (layout_of xs))"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3367
    using a b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3368
    by(erule_tac ind, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3369
  thus "length tp = 2 * 
288
a9003e6d0463 Up to date for Isabelle 2018. Gave names to simp rules in UF and UTM
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 285
diff changeset
  3370
    sum_list (take (length (xs @ [x])) (layout_of (xs @ [x])))"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3371
    using tp b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3372
    apply(auto simp: layout_id_cons tm_of.simps tms_of.simps length_concat tpairs_id_cons map_length_ci)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3373
    apply(case_tac x)
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  3374
    apply(auto simp: ci.simps tinc_b_def tdec_b_def length_findnth adjust.simps length_of.simps
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3375
                 split: abc_inst.splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3376
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3377
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3378
290
6e1c03614d36 Gave lemmas names in Abacus.ty
Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
parents: 288
diff changeset
  3379
lemma fetch_Nops[simp]: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3380
  "\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3381
        fetch (tp @ [(Nop, 0), (Nop, 0)]) (start_of ly (length ap)) b = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3382
       (Nop, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3383
apply(case_tac b)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3384
apply(simp_all add: start_of.simps fetch.simps nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3385
done
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
  3386
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3387
lemma length_tp:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3388
  "\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3389
  start_of ly (length ap) = Suc (length tp div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3390
apply(frule_tac length_tp', simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3391
apply(simp add: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3392
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3393
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3394
lemma compile_correct_halt: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3395
  assumes layout: "ly = layout_of ap"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3396
  and compile: "tp = tm_of ap"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3397
  and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3398
  and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3399
  and rs_loc: "n < length am"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3400
  and rs: "abc_lm_v am n = rs"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3401
  and off: "off = length tp div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3402
  shows "\<exists> stp i j. steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stp = (0, Bk\<up>i @ Bk # Bk # ires, Oc\<up>Suc rs @ Bk\<up>j)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3403
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3404
  have "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3405
    using assms tp_correct'[of ly ap tp lm l r ires stp am]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3406
    by(simp add: length_tp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3407
  then obtain stp k where "steps (Suc 0, l, r) (tp, 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3408
    by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3409
  then have a: "steps (Suc 0, l, r) (tp@shift (mopup n) off , 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3410
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3411
    by(auto intro: tm_append_first_steps_eq)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3412
  have "\<exists> stp i j. (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3413
    = (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3414
    using assms
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  3415
    by(rule_tac mopup_correct, auto simp: abc_lm_v.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3416
  then obtain stpb i j where 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3417
    "steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stpb
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3418
    = (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3419
  then have b: "steps (Suc 0 + off, Bk # Bk # ires, <am> @ Bk \<up> k) (tp @ shift (mopup n) off, 0) stpb
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3420
    = (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3421
    using assms wf_mopup
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3422
    apply(drule_tac tm_append_second_halt_eq, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3423
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3424
  from a b show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3425
    by(rule_tac x = "stp + stpb" in exI, simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3426
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3427
 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3428
declare mopup.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3429
lemma abc_step_red2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3430
  "abc_steps_l (s, lm) p (Suc n) = (let (as', am') = abc_steps_l (s, lm) p n in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3431
                                    abc_step_l (as', am') (abc_fetch as' p))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3432
apply(case_tac "abc_steps_l (s, lm) p n", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3433
apply(drule_tac abc_step_red, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3434
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3435
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3436
lemma crsp_steps2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3437
  assumes 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3438
  layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3439
  and compile: "tp = tm_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3440
  and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3441
  and nothalt: "as < length ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3442
  and aexec: "abc_steps_l (0, lm) ap stp = (as, am)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3443
  shows "\<exists>stpa\<ge>stp. crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3444
using nothalt aexec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3445
proof(induct stp arbitrary: as am)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3446
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3447
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3448
    using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3449
    by(rule_tac x = 0 in exI, auto simp: abc_steps_l.simps steps.simps crsp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3450
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3451
  case (Suc stp as am)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3452
  have ind: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3453
    "\<And> as am.  \<lbrakk>as < length ap; abc_steps_l (0, lm) ap stp = (as, am)\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3454
    \<Longrightarrow> \<exists>stpa\<ge>stp. crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3455
  have a: "as < length ap" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3456
  have b: "abc_steps_l (0, lm) ap (Suc stp) = (as, am)" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3457
  obtain as' am' where c: "abc_steps_l (0, lm) ap stp = (as', am')" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3458
    by(case_tac "abc_steps_l (0, lm) ap stp", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3459
  then have d: "as' < length ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3460
    using a b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3461
    by(simp add: abc_step_red2, case_tac "as' < length ap", simp,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3462
      simp add: abc_fetch.simps abc_steps_l.simps abc_step_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3463
  have "\<exists>stpa\<ge>stp. crsp ly (as', am') (steps (Suc 0, l, r) (tp, 0) stpa) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3464
    using d c ind by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3465
  from this obtain stpa where e: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3466
    "stpa \<ge> stp \<and>  crsp ly (as', am') (steps (Suc 0, l, r) (tp, 0) stpa) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3467
    by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3468
  obtain s' l' r' where f: "steps (Suc 0, l, r) (tp, 0) stpa = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3469
    by(case_tac "steps (Suc 0, l, r) (tp, 0) stpa", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3470
  obtain ins where g: "abc_fetch as' ap = Some ins" using d 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3471
    by(case_tac "abc_fetch as' ap",auto simp: abc_fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3472
  then have "\<exists>stp> (0::nat). crsp ly (abc_step_l (as', am') (Some ins)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3473
    (steps (s', l', r') (tp, 0) stp) ires "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3474
    using layout compile e f 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3475
    by(rule_tac crsp_step, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3476
  then obtain stpb where "stpb > 0 \<and> crsp ly (abc_step_l (as', am') (Some ins)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3477
    (steps (s', l', r') (tp, 0) stpb) ires" ..
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3478
  from this show "?case" using b e g f c
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3479
    by(rule_tac x = "stpa + stpb" in exI, simp add: steps_add abc_step_red2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3480
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3481
    
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3482
lemma compile_correct_unhalt: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3483
  assumes layout: "ly = layout_of ap"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3484
  and compile: "tp = tm_of ap"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3485
  and crsp: "crsp ly (0, lm) (1, l, r) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3486
  and off: "off = length tp div 2"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3487
  and abc_unhalt: "\<forall> stp. (\<lambda> (as, am). as < length ap) (abc_steps_l (0, lm) ap stp)"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3488
  shows "\<forall> stp.\<not> is_final (steps (1, l, r) (tp @ shift (mopup n) off, 0) stp)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3489
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3490
proof(rule_tac allI, rule_tac notI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3491
  fix stp
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3492
  assume h: "is_final (steps (1, l, r) (tp @ shift (mopup n) off, 0) stp)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3493
  obtain as am where a: "abc_steps_l (0, lm) ap stp = (as, am)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3494
    by(case_tac "abc_steps_l (0, lm) ap stp", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3495
  then have b: "as < length ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3496
    using abc_unhalt
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3497
    by(erule_tac x = stp in allE, simp)
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3498
  have "\<exists> stpa\<ge>stp. crsp ly (as, am) (steps (1, l, r) (tp, 0) stpa) ires "
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3499
    using assms b a
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3500
    apply(simp add: numeral)
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3501
    apply(rule_tac crsp_steps2)
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3502
    apply(simp_all)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3503
    done
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3504
  then obtain stpa where 
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3505
    "stpa\<ge>stp \<and> crsp ly (as, am) (steps (1, l, r) (tp, 0) stpa) ires" ..
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3506
  then obtain s' l' r' where b: "(steps (1, l, r) (tp, 0) stpa) = (s', l', r') \<and> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3507
       stpa\<ge>stp \<and> crsp ly (as, am) (s', l', r') ires"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3508
    by(case_tac "steps (1, l, r) (tp, 0) stpa", auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3509
  hence c:
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3510
    "(steps (1, l, r) (tp @ shift (mopup n) off, 0) stpa) = (s', l', r')"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3511
    by(rule_tac tm_append_first_steps_eq, simp_all add: crsp.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3512
  from b have d: "s' > 0 \<and> stpa \<ge> stp"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3513
    by(simp add: crsp.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3514
  then obtain diff where e: "stpa = stp + diff"   by (metis le_iff_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3515
  obtain s'' l'' r'' where f:
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3516
    "steps (1, l, r) (tp @ shift (mopup n) off, 0) stp = (s'', l'', r'') \<and> is_final (s'', l'', r'')"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3517
    using h
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3518
    by(case_tac "steps (1, l, r) (tp @ shift (mopup n) off, 0) stp", auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3519
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3520
  then have "is_final (steps (s'', l'', r'') (tp @ shift (mopup n) off, 0) diff)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 60
diff changeset
  3521
    by(auto intro: after_is_final)
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3522
  then have "is_final (steps (1, l, r) (tp @ shift (mopup n) off, 0) stpa)"
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3523
    using e f by simp
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3524
  from this and c d show "False" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3525
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3526
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3527
end
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3528