thys/Abacus.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 21 Feb 2013 05:34:39 +0000
changeset 190 f1ecb4a68a54
parent 181 4d54702229fd
child 285 447b433b67fa
permissions -rw-r--r--
renamed sete definition to adjust and old special case of adjust to adjust0
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     1
(* Title: thys/Abacus.thy
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     2
   Author: Jian Xu, Xingyuan Zhang, and Christian Urban
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     3
*)
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     4
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     5
header {* Abacus Machines *}
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     6
163
67063c5365e1 changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
     7
theory Abacus
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
     8
imports Turing_Hoare Abacus_Mopup
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
begin
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
111
dfc629cd11de made uncomputable compatible with abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
    11
declare replicate_Suc[simp add]
dfc629cd11de made uncomputable compatible with abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
    12
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
    13
(* Abacus instructions *)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
datatype abc_inst =
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
     Inc nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
   | Dec nat nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
   | Goto nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
  
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
type_synonym abc_prog = "abc_inst list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
type_synonym abc_state = nat
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
  The memory of Abacus machine is defined as a list of contents, with 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
  every units addressed by index into the list.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
  *}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
type_synonym abc_lm = "nat list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
  Fetching contents out of memory. Units not represented by list elements are considered
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
  as having content @{text "0"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
fun abc_lm_v :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
  where 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
    "abc_lm_v lm n = (if (n < length lm) then (lm!n) else 0)"         
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
  Set the content of memory unit @{text "n"} to value @{text "v"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
  @{text "am"} is the Abacus memory before setting.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
  If address @{text "n"} is outside to scope of @{text "am"}, @{text "am"} 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
  is extended so that @{text "n"} becomes in scope.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
fun abc_lm_s :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_lm"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
    "abc_lm_s am n v = (if (n < length am) then (am[n:=v]) else 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
                           am@ (replicate (n - length am) 0) @ [v])"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
  The configuration of Abaucs machines consists of its current state and its
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
  current memory:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
type_synonym abc_conf = "abc_state \<times> abc_lm"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
  Fetch instruction out of Abacus program:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
fun abc_fetch :: "nat \<Rightarrow> abc_prog \<Rightarrow> abc_inst option" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
  "abc_fetch s p = (if (s < length p) then Some (p ! s)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
                    else None)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
  Single step execution of Abacus machine. If no instruction is feteched, 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
  configuration does not change.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
fun abc_step_l :: "abc_conf \<Rightarrow> abc_inst option \<Rightarrow> abc_conf"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
  "abc_step_l (s, lm) a = (case a of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
               None \<Rightarrow> (s, lm) |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
               Some (Inc n)  \<Rightarrow> (let nv = abc_lm_v lm n in
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
                       (s + 1, abc_lm_s lm n (nv + 1))) |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
               Some (Dec n e) \<Rightarrow> (let nv = abc_lm_v lm n in
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
                       if (nv = 0) then (e, abc_lm_s lm n 0) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
                       else (s + 1,  abc_lm_s lm n (nv - 1))) |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
               Some (Goto n) \<Rightarrow> (n, lm) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
               )"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
  Multi-step execution of Abacus machine.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
fun abc_steps_l :: "abc_conf \<Rightarrow> abc_prog \<Rightarrow> nat \<Rightarrow> abc_conf"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
  "abc_steps_l (s, lm) p 0 = (s, lm)" |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
  "abc_steps_l (s, lm) p (Suc n) = 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
      abc_steps_l (abc_step_l (s, lm) (abc_fetch s p)) p n"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
section {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
  Compiling Abacus machines into Truing machines
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
subsection {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
  Compiling functions
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
  @{text "findnth n"} returns the TM which locates the represention of
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   102
  memory cell @{text "n"} on the tape and changes representation of zero
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   103
  on the way.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
fun findnth :: "nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
  "findnth 0 = []" |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
  "findnth (Suc n) = (findnth n @ [(W1, 2 * n + 1), 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
           (R, 2 * n + 2), (R, 2 * n + 3), (R, 2 * n + 2)])"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
  @{text "tinc_b"} returns the TM which increments the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
  of the memory cell under rw-head by one and move the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
  of cells afterwards to the right accordingly.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
  *}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
definition tinc_b :: "instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
  "tinc_b \<equiv> [(W1, 1), (R, 2), (W1, 3), (R, 2), (W1, 3), (R, 4), 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
             (L, 7), (W0, 5), (R, 6), (W0, 5), (W1, 3), (R, 6),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
             (L, 8), (L, 7), (R, 9), (L, 7), (R, 10), (W0, 9)]" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
  @{text "tinc ss n"} returns the TM which simulates the execution of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
  Abacus instruction @{text "Inc n"}, assuming that TM is located at
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
  location @{text "ss"} in the final TM complied from the whole
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
  Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
fun tinc :: "nat \<Rightarrow> nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
  "tinc ss n = shift (findnth n @ shift tinc_b (2 * n)) (ss - 1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
  @{text "tinc_b"} returns the TM which decrements the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
  of the memory cell under rw-head by one and move the representation 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
  of cells afterwards to the left accordingly.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
  *}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
definition tdec_b :: "instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   143
  "tdec_b \<equiv>  [(W1, 1), (R, 2), (L, 14), (R, 3), (L, 4), (R, 3),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
              (R, 5), (W0, 4), (R, 6), (W0, 5), (L, 7), (L, 8),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
              (L, 11), (W0, 7), (W1, 8), (R, 9), (L, 10), (R, 9),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
              (R, 5), (W0, 10), (L, 12), (L, 11), (R, 13), (L, 11),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
              (R, 17), (W0, 13), (L, 15), (L, 14), (R, 16), (L, 14),
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
              (R, 0), (W0, 16)]"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
  @{text "tdec ss n label"} returns the TM which simulates the execution of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
  Abacus instruction @{text "Dec n label"}, assuming that TM is located at
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
  location @{text "ss"} in the final TM complied from the whole
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   155
  Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
fun tdec :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
  where
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
   160
  "tdec ss n e = shift (findnth n) (ss - 1) @ adjust (shift (shift tdec_b (2 * n)) (ss - 1)) e"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   161
 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
  @{text "tgoto f(label)"} returns the TM simulating the execution of Abacus instruction
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
  @{text "Goto label"}, where @{text "f(label)"} is the corresponding location of
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
  @{text "label"} in the final TM compiled from the overall Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   168
fun tgoto :: "nat \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
  "tgoto n = [(Nop, n), (Nop, n)]"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
  The layout of the final TM compiled from an Abacus program is represented
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
  as a list of natural numbers, where the list element at index @{text "n"} represents the 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   175
  starting state of the TM simulating the execution of @{text "n"}-th instruction
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
  in the Abacus program.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
type_synonym layout = "nat list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   180
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
  @{text "length_of i"} is the length of the 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
  TM simulating the Abacus instruction @{text "i"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   184
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
fun length_of :: "abc_inst \<Rightarrow> nat"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
  "length_of i = (case i of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   188
                    Inc n   \<Rightarrow> 2 * n + 9 |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   189
                    Dec n e \<Rightarrow> 2 * n + 16 |
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   190
                    Goto n  \<Rightarrow> 1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   191
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   192
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   193
  @{text "layout_of ap"} returns the layout of Abacus program @{text "ap"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   194
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   195
fun layout_of :: "abc_prog \<Rightarrow> layout"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   196
  where "layout_of ap = map length_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   197
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   198
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   199
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   200
  @{text "start_of layout n"} looks out the starting state of @{text "n"}-th
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   201
  TM in the finall TM.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   202
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   203
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   204
fun start_of :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   205
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   206
  "start_of ly x = (Suc (listsum (take x ly))) "
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   207
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   208
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   209
  @{text "ci lo ss i"} complies Abacus instruction @{text "i"}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   210
  assuming the TM of @{text "i"} starts from state @{text "ss"} 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   211
  within the overal layout @{text "lo"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   214
fun ci :: "layout \<Rightarrow> nat \<Rightarrow> abc_inst \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   215
  where
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   216
  "ci ly ss (Inc n) = tinc ss n"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
| "ci ly ss (Dec n e) = tdec ss n (start_of ly e)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
| "ci ly ss (Goto n) = tgoto (start_of ly n)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   219
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
  @{text "tpairs_of ap"} transfroms Abacus program @{text "ap"} pairing
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   222
  every instruction with its starting state.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   223
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   224
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   225
fun tpairs_of :: "abc_prog \<Rightarrow> (nat \<times> abc_inst) list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
  where "tpairs_of ap = (zip (map (start_of (layout_of ap)) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   227
                         [0..<(length ap)]) ap)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   228
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   229
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   230
  @{text "tms_of ap"} returns the list of TMs, where every one of them simulates
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   231
  the corresponding Abacus intruction in @{text "ap"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   232
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   233
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   234
fun tms_of :: "abc_prog \<Rightarrow> (instr list) list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
  where "tms_of ap = map (\<lambda> (n, tm). ci (layout_of ap) n tm) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   236
                         (tpairs_of ap)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   237
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   238
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   239
  @{text "tm_of ap"} returns the final TM machine compiled from Abacus program @{text "ap"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   241
fun tm_of :: "abc_prog \<Rightarrow> instr list"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   242
  where "tm_of ap = concat (tms_of ap)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   243
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   244
lemma length_findnth: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   245
  "length (findnth n) = 4 * n"
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   246
by (induct n, auto)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   247
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   248
lemma ci_length : "length (ci ns n ai) div 2 = length_of ai"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   249
apply(auto simp: ci.simps tinc_b_def tdec_b_def length_findnth
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
   250
                 split: abc_inst.splits simp del: adjust.simps)
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
   251
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   252
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   253
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
   254
subsection {* Representation of Abacus memory by TM tapes *}
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   255
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   256
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   257
  @{text "crsp acf tcf"} meams the abacus configuration @{text "acf"}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   258
  is corretly represented by the TM configuration @{text "tcf"}.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   259
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   260
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   261
fun crsp :: "layout \<Rightarrow> abc_conf \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow> bool"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   262
  where 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   263
  "crsp ly (as, lm) (s, l, r) inres = 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   264
           (s = start_of ly as \<and> (\<exists> x. r = <lm> @ Bk\<up>x) \<and> 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   265
            l = Bk # Bk # inres)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   266
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   267
declare crsp.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   268
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   269
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   270
  The type of invarints expressing correspondence between 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   271
  Abacus configuration and TM configuration.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   272
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   273
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   274
type_synonym inc_inv_t = "abc_conf \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow> bool"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   275
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   276
declare tms_of.simps[simp del] tm_of.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   277
        layout_of.simps[simp del] abc_fetch.simps [simp del]  
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   278
        tpairs_of.simps[simp del] start_of.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   279
        ci.simps [simp del] length_of.simps[simp del] 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   280
        layout_of.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   281
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   282
text {*
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   283
  The lemmas in this section lead to the correctness of 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   284
  the compilation of @{text "Inc n"} instruction.
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   285
*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   286
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   287
declare abc_step_l.simps[simp del] abc_steps_l.simps[simp del]
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   288
lemma [simp]: "start_of ly as > 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   289
apply(simp add: start_of.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   290
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   291
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   292
lemma abc_steps_l_0: "abc_steps_l ac ap 0 = ac"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   293
by(case_tac ac, simp add: abc_steps_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   294
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   295
lemma abc_step_red: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   296
 "abc_steps_l (as, am) ap stp = (bs, bm) \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   297
  abc_steps_l (as, am) ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap) "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   298
proof(induct stp arbitrary: as am bs bm)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   299
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   300
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   301
    by(simp add: abc_steps_l.simps abc_steps_l_0)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   302
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   303
  case (Suc stp as am bs bm)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   304
  have ind: "\<And>as am bs bm. abc_steps_l (as, am) ap stp = (bs, bm) \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   305
    abc_steps_l (as, am) ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   306
    by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   307
  have h:" abc_steps_l (as, am) ap (Suc stp) = (bs, bm)" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   308
  obtain as' am' where g: "abc_step_l (as, am) (abc_fetch as ap) = (as', am')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   309
    by(case_tac "abc_step_l (as, am) (abc_fetch as ap)", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   310
  then have "abc_steps_l (as', am') ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   311
    using h
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   312
    by(rule_tac ind, simp add: abc_steps_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   313
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   314
    using g
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   315
    by(simp add: abc_steps_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   316
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   317
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   318
lemma tm_shift_fetch: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   319
  "\<lbrakk>fetch A s b = (ac, ns); ns \<noteq> 0 \<rbrakk>
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   320
  \<Longrightarrow> fetch (shift A off) s b = (ac, ns + off)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   321
apply(case_tac b)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   322
apply(case_tac [!] s, auto simp: fetch.simps shift.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   323
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   324
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   325
lemma tm_shift_eq_step:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   326
  assumes exec: "step (s, l, r) (A, 0) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   327
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   328
  shows "step (s + off, l, r) (shift A off, off) = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   329
using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   330
apply(simp add: step.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   331
apply(case_tac "fetch A s (read r)", auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   332
apply(drule_tac [!] off = off in tm_shift_fetch, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   333
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   334
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   335
declare step.simps[simp del] steps.simps[simp del] shift.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   336
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   337
lemma tm_shift_eq_steps: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   338
  assumes exec: "steps (s, l, r) (A, 0) stp = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   339
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   340
  shows "steps (s + off, l, r) (shift A off, off) stp = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   341
  using exec notfinal
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   342
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   343
  fix stp s' l' r'
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   344
  assume ind: "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (A, 0) stp = (s', l', r'); s' \<noteq> 0\<rbrakk> 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   345
     \<Longrightarrow> steps (s + off, l, r) (shift A off, off) stp = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   346
  and h: " steps (s, l, r) (A, 0) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   347
  obtain s1 l1 r1 where g: "steps (s, l, r) (A, 0) stp = (s1, l1, r1)" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   348
    apply(case_tac "steps (s, l, r) (A, 0) stp") by blast
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   349
  moreover then have "s1 \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   350
    using h
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   351
    apply(simp add: step_red)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   352
    apply(case_tac "0 < s1", auto)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   353
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   354
  ultimately have "steps (s + off, l, r) (shift A off, off) stp =
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
                   (s1 + off, l1, r1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
    apply(rule_tac ind, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
  thus "steps (s + off, l, r) (shift A off, off) (Suc stp) = (s' + off, l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
    using h g assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
    apply(simp add: step_red)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
    apply(rule_tac tm_shift_eq_step, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   363
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   364
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   365
lemma startof_not0[simp]: "0 < start_of ly as"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
apply(simp add: start_of.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   367
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   369
lemma startof_ge1[simp]: "Suc 0 \<le> start_of ly as"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   370
apply(simp add: start_of.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   371
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   373
lemma start_of_Suc1: "\<lbrakk>ly = layout_of ap; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   374
       abc_fetch as ap = Some (Inc n)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   375
       \<Longrightarrow> start_of ly (Suc as) = start_of ly as + 2 * n + 9"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   376
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   377
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   378
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   379
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   380
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   381
lemma start_of_Suc2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   382
  "\<lbrakk>ly = layout_of ap;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   383
  abc_fetch as ap = Some (Dec n e)\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   384
        start_of ly (Suc as) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   385
            start_of ly as + 2 * n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   386
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   387
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   388
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   389
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   390
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   391
lemma start_of_Suc3:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   392
  "\<lbrakk>ly = layout_of ap;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   393
  abc_fetch as ap = Some (Goto n)\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   394
  start_of ly (Suc as) = start_of ly as + 1"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   395
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   396
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   397
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   398
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   399
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   400
lemma length_ci_inc: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   401
  "length (ci ly ss (Inc n)) = 4*n + 18"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   402
apply(auto simp: ci.simps length_findnth tinc_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   403
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   404
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   405
lemma length_ci_dec: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   406
  "length (ci ly ss (Dec n e)) = 4*n + 32"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   407
apply(auto simp: ci.simps length_findnth tdec_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   408
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   409
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   410
lemma length_ci_goto: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   411
  "length (ci ly ss (Goto n )) = 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   412
apply(auto simp: ci.simps length_findnth tdec_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   413
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   414
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   415
lemma take_Suc_last[elim]: "Suc as \<le> length xs \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   416
            take (Suc as) xs = take as xs @ [xs ! as]"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   417
apply(induct xs arbitrary: as, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   418
apply(case_tac as, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   419
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   420
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   421
lemma concat_suc: "Suc as \<le> length xs \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   422
       concat (take (Suc as) xs) = concat (take as xs) @ xs! as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   423
apply(subgoal_tac "take (Suc as) xs = take as xs @ [xs ! as]", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   424
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   425
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   426
lemma concat_take_suc_iff: "Suc n \<le> length tps \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   427
       concat (take n tps) @ (tps ! n) = concat (take (Suc n) tps)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   428
apply(drule_tac concat_suc, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   429
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   430
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   431
lemma concat_drop_suc_iff: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   432
   "Suc n < length tps \<Longrightarrow> concat (drop (Suc n) tps) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   433
           tps ! Suc n @ concat (drop (Suc (Suc n)) tps)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   434
apply(induct tps arbitrary: n, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   435
apply(case_tac tps, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   436
apply(case_tac n, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   437
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   438
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   439
declare append_assoc[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   440
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   441
lemma  tm_append:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   442
  "\<lbrakk>n < length tps; tp = tps ! n\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   443
  \<exists> tp1 tp2. concat tps = tp1 @ tp @ tp2 \<and> tp1 = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   444
  concat (take n tps) \<and> tp2 = concat (drop (Suc n) tps)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   445
apply(rule_tac x = "concat (take n tps)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   446
apply(rule_tac x = "concat (drop (Suc n) tps)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   447
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   448
apply(induct n, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   449
apply(case_tac tps, simp, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   450
apply(subgoal_tac "concat (take n tps) @ (tps ! n) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   451
               concat (take (Suc n) tps)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   452
apply(simp only: append_assoc[THEN sym], simp only: append_assoc)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   453
apply(subgoal_tac " concat (drop (Suc n) tps) = tps ! Suc n @ 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   454
                  concat (drop (Suc (Suc n)) tps)", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   455
apply(rule_tac concat_drop_suc_iff, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   456
apply(rule_tac concat_take_suc_iff, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   457
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   458
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   459
declare append_assoc[simp]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   460
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   461
lemma map_of:  "n < length xs \<Longrightarrow> (map f xs) ! n = f (xs ! n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   462
by(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   463
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   464
lemma [simp]: "length (tms_of aprog) = length aprog"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   465
apply(auto simp: tms_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   466
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   467
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   468
lemma ci_nth: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   469
  "\<lbrakk>ly = layout_of aprog; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   470
  abc_fetch as aprog = Some ins\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   471
  \<Longrightarrow> ci ly (start_of ly as) ins = tms_of aprog ! as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   472
apply(simp add: tms_of.simps tpairs_of.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   473
      abc_fetch.simps  map_of del: map_append split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   474
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   475
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   476
lemma t_split:"\<lbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   477
        ly = layout_of aprog;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   478
        abc_fetch as aprog = Some ins\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   479
      \<Longrightarrow> \<exists> tp1 tp2. concat (tms_of aprog) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   480
            tp1 @ (ci ly (start_of ly as) ins) @ tp2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   481
            \<and> tp1 = concat (take as (tms_of aprog)) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   482
              tp2 = concat (drop (Suc as) (tms_of aprog))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   483
apply(insert tm_append[of "as" "tms_of aprog" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   484
                             "ci ly (start_of ly as) ins"], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   485
apply(subgoal_tac "ci ly (start_of ly as) ins = (tms_of aprog) ! as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   486
apply(subgoal_tac "length (tms_of aprog) = length aprog")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   487
apply(simp add: abc_fetch.simps split: if_splits, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   488
apply(rule_tac ci_nth, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   489
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   490
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   491
lemma math_sub: "\<lbrakk>x >= Suc 0; x - 1 = z\<rbrakk> \<Longrightarrow> x + y - Suc 0 = z + y"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   492
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   493
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   494
lemma start_more_one: "as \<noteq> 0 \<Longrightarrow> start_of ly as >= Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   495
apply(induct as, simp add: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   496
apply(case_tac as, auto simp: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   497
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   498
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   499
lemma div_apart: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   500
          \<Longrightarrow> (x + y) div 2 = x div 2 + y div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   501
apply(drule mod_eqD)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   502
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   503
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   504
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   505
lemma div_apart_iff: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   506
           (x + y) mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   507
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   508
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   509
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   510
lemma [simp]: "length (layout_of aprog) = length aprog"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   511
apply(auto simp: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   512
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   513
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   514
lemma start_of_ind: "\<lbrakk>as < length aprog; ly = layout_of aprog\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   515
       start_of ly (Suc as) = start_of ly as + 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   516
                          length ((tms_of aprog) ! as) div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   517
apply(simp only: start_of.simps, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   518
apply(auto simp: start_of.simps tms_of.simps layout_of.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   519
                 tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   520
apply(simp add: ci_length take_Suc take_Suc_conv_app_nth)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   521
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   522
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   523
lemma concat_take_suc: "Suc n \<le> length xs \<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   524
  concat (take (Suc n) xs) = concat (take n xs) @ (xs ! n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   525
apply(subgoal_tac "take (Suc n) xs =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   526
                   take n xs @ [xs ! n]")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   527
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   528
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   529
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   530
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   531
  "\<lbrakk>as < length aprog; (abc_fetch as aprog) = Some ins\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   532
  \<Longrightarrow> ci (layout_of aprog) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   533
  (start_of (layout_of aprog) as) (ins) \<in> set (tms_of aprog)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   534
apply(insert ci_nth[of "layout_of aprog" aprog as], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   535
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   536
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   537
lemma [simp]: "length (tms_of ap) = length ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   538
by(auto simp: tms_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   539
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   540
lemma [intro]:  "n < length ap \<Longrightarrow> length (tms_of ap ! n) mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   541
apply(auto simp: tms_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   542
apply(case_tac "ap ! n", auto simp: ci.simps length_findnth tinc_b_def tdec_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   543
apply arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   544
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   545
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   546
lemma compile_mod2: "length (concat (take n (tms_of ap))) mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   547
apply(induct n, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   548
apply(case_tac "n < length (tms_of ap)", simp add: take_Suc_conv_app_nth, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   549
apply(subgoal_tac "length (tms_of ap ! n) mod 2 = 0")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   550
apply arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   551
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   552
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   553
lemma tpa_states:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   554
  "\<lbrakk>tp = concat (take as (tms_of ap));
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   555
  as \<le> length ap\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   556
  start_of (layout_of ap) as = Suc (length tp div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   557
proof(induct as arbitrary: tp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   558
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   559
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   560
    by(simp add: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   561
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   562
  case (Suc as tp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   563
  have ind: "\<And>tp. \<lbrakk>tp = concat (take as (tms_of ap)); as \<le> length ap\<rbrakk> \<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   564
    start_of (layout_of ap) as = Suc (length tp div 2)" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   565
  have tp: "tp = concat (take (Suc as) (tms_of ap))" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   566
  have le: "Suc as \<le> length ap" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   567
  have a: "start_of (layout_of ap) as = Suc (length (concat (take as (tms_of ap))) div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   568
    using le
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   569
    by(rule_tac ind, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   570
  from a tp le show "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   571
    apply(simp add: start_of.simps take_Suc_conv_app_nth)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   572
    apply(subgoal_tac "length (concat (take as (tms_of ap))) mod 2= 0")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   573
    apply(subgoal_tac " length (tms_of ap ! as) mod 2 = 0")
163
67063c5365e1 changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 115
diff changeset
   574
    apply(simp add: Abacus.div_apart) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   575
    apply(simp add: layout_of.simps ci_length  tms_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   576
    apply(auto  intro: compile_mod2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   577
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   578
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   579
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
   580
declare fetch.simps[simp]
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   581
lemma append_append_fetch: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   582
    "\<lbrakk>length tp1 mod 2 = 0; length tp mod 2 = 0;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   583
      length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + length tp div 2\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   584
    \<Longrightarrow>fetch (tp1 @ tp @ tp2) a b = fetch tp (a - length tp1 div 2) b "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   585
apply(subgoal_tac "\<exists> x. a = length tp1 div 2 + x", erule exE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   586
apply(case_tac x, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   587
apply(subgoal_tac "length tp1 div 2 + Suc nat = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   588
             Suc (length tp1 div 2 + nat)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   589
apply(simp only: fetch.simps nth_of.simps, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   590
apply(case_tac b, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   591
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   592
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   593
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   594
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   595
apply(auto simp: nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   596
apply(rule_tac x = "a - length tp1 div 2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   597
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   598
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   599
lemma step_eq_fetch':
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   600
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   601
  and compile: "tp = tm_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   602
  and fetch: "abc_fetch as ap = Some ins"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   603
  and range1: "s \<ge> start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   604
  and range2: "s < start_of ly (Suc as)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   605
  shows "fetch tp s b = fetch (ci ly (start_of ly as) ins)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   606
       (Suc s - start_of ly as) b "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   607
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   608
  have "\<exists>tp1 tp2. concat (tms_of ap) = tp1 @ ci ly (start_of ly as) ins @ tp2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   609
    tp1 = concat (take as (tms_of ap)) \<and> tp2 = concat (drop (Suc as) (tms_of ap))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   610
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   611
    by(rule_tac t_split, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   612
  then obtain tp1 tp2 where a: "concat (tms_of ap) = tp1 @ ci ly (start_of ly as) ins @ tp2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   613
    tp1 = concat (take as (tms_of ap)) \<and> tp2 = concat (drop (Suc as) (tms_of ap))" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   614
  then have b: "start_of (layout_of ap) as = Suc (length tp1 div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   615
    using fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   616
    apply(rule_tac tpa_states, simp, simp add: abc_fetch.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   617
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   618
  have "fetch (tp1 @ (ci ly (start_of ly as) ins) @ tp2)  s b = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   619
        fetch (ci ly (start_of ly as) ins) (s - length tp1 div 2) b"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   620
  proof(rule_tac append_append_fetch)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   621
    show "length tp1 mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   622
      using a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   623
      by(auto, rule_tac compile_mod2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   624
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   625
    show "length (ci ly (start_of ly as) ins) mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   626
      apply(case_tac ins, auto simp: ci.simps length_findnth tinc_b_def tdec_b_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   627
      by(arith, arith)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   628
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   629
    show "length tp1 div 2 < s \<and> s \<le> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   630
      length tp1 div 2 + length (ci ly (start_of ly as) ins) div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   631
    proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   632
      have "length (ci ly (start_of ly as) ins) div 2 = length_of ins"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   633
        using ci_length by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   634
      moreover have "start_of ly (Suc as) = start_of ly as + length_of ins"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   635
        using fetch layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   636
        apply(simp add: start_of.simps abc_fetch.simps List.take_Suc_conv_app_nth 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   637
          split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   638
        apply(simp add: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   639
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   640
      ultimately show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   641
        using b layout range1 range2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   642
        apply(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   643
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   644
    qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   645
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   646
  thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   647
    using b layout a compile  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   648
    apply(simp add: tm_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   649
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   650
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   651
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   652
lemma step_eq_fetch: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   653
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   654
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   655
  and abc_fetch: "abc_fetch as ap = Some ins" 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   656
  and fetch: "fetch (ci ly (start_of ly as) ins)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   657
       (Suc s - start_of ly as) b = (ac, ns)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   658
  and notfinal: "ns \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   659
  shows "fetch tp s b = (ac, ns)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   660
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   661
  have "s \<ge> start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   662
  proof(cases "s \<ge> start_of ly as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   663
    case True thus "?thesis" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   664
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   665
    case False 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   666
    have "\<not> start_of ly as \<le> s" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   667
    then have "Suc s - start_of ly as = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   668
      by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   669
    then have "fetch (ci ly (start_of ly as) ins)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   670
       (Suc s - start_of ly as) b = (Nop, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   671
      by(simp add: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   672
    with notfinal fetch show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   673
      by(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   674
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   675
  moreover have "s < start_of ly (Suc as)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   676
  proof(cases "s < start_of ly (Suc as)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   677
    case True thus "?thesis" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   678
  next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   679
    case False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   680
    have h: "\<not> s < start_of ly (Suc as)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   681
      by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   682
    then have "s > start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   683
      using abc_fetch layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   684
      apply(simp add: start_of.simps abc_fetch.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   685
      apply(simp add: List.take_Suc_conv_app_nth, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   686
      apply(subgoal_tac "layout_of ap ! as > 0") 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   687
      apply arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   688
      apply(simp add: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   689
      apply(case_tac "ap!as", auto simp: length_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   690
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   691
    from this and h have "fetch (ci ly (start_of ly as) ins) (Suc s - start_of ly as) b = (Nop, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   692
      using abc_fetch layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   693
      apply(case_tac b, simp_all add: Suc_diff_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   694
      apply(case_tac [!] ins, simp_all add: start_of_Suc2 start_of_Suc1 start_of_Suc3)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   695
      apply(simp_all only: length_ci_inc length_ci_dec length_ci_goto, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   696
      using layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   697
      apply(subgoal_tac [!] "start_of ly (Suc as) = start_of ly as + 2*nat1 + 16", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   698
      apply(rule_tac [!] start_of_Suc2, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   699
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   700
    from fetch and notfinal this show "?thesis"by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   701
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   702
  ultimately show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   703
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   704
    apply(drule_tac b= b and ins = ins in step_eq_fetch', auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   705
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   706
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   707
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   708
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   709
lemma step_eq_in:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   710
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   711
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   712
  and fetch: "abc_fetch as ap = Some ins"    
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   713
  and exec: "step (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   714
  = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   715
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   716
  shows "step (s, l, r) (tp, 0) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   717
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   718
  apply(simp add: step.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   719
  apply(case_tac "fetch (ci (layout_of ap) (start_of (layout_of ap) as) ins)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   720
    (Suc s - start_of (layout_of ap) as) (read r)", simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   721
  using layout
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   722
  apply(drule_tac s = s and b = "read r" and ac = a in step_eq_fetch, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   723
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   724
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   725
lemma steps_eq_in:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   726
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   727
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   728
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   729
  and fetch: "abc_fetch as ap = Some ins"    
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   730
  and exec: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   731
  = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   732
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   733
  shows "steps (s, l, r) (tp, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   734
  using exec notfinal
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   735
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   736
  fix stp s' l' r'
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   737
  assume ind: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   738
    "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp = (s', l', r'); s' \<noteq> 0\<rbrakk>
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   739
              \<Longrightarrow> steps (s, l, r) (tp, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   740
  and h: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   741
  obtain s1 l1 r1 where g: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp = 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   742
                        (s1, l1, r1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   743
    apply(case_tac "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp") by blast
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   744
  moreover hence "s1 \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   745
    using h
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   746
    apply(simp add: step_red)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   747
    apply(case_tac "0 < s1", simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   748
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   749
  ultimately have "steps (s, l, r) (tp, 0) stp = (s1, l1, r1)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   750
    apply(rule_tac ind, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   751
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   752
  thus "steps (s, l, r) (tp, 0) (Suc stp) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   753
    using h g assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   754
    apply(simp add: step_red)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   755
    apply(rule_tac step_eq_in, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   756
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   757
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   758
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   759
lemma tm_append_fetch_first: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   760
  "\<lbrakk>fetch A s b = (ac, ns); ns \<noteq> 0\<rbrakk> \<Longrightarrow> 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   761
    fetch (A @ B) s b = (ac, ns)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   762
apply(case_tac b)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   763
apply(case_tac [!] s, auto simp: fetch.simps nth_append split: if_splits)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   764
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   765
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   766
lemma tm_append_first_step_eq: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   767
  assumes "step (s, l, r) (A, off) = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   768
  and "s' \<noteq> 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   769
  shows "step (s, l, r) (A @ B, off) = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   770
using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   771
apply(simp add: step.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   772
apply(case_tac "fetch A (s - off) (read r)")
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   773
apply(frule_tac  B = B and b = "read r" in tm_append_fetch_first, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   774
done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   775
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   776
lemma tm_append_first_steps_eq: 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   777
  assumes "steps (s, l, r) (A, off) stp = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   778
  and "s' \<noteq> 0"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   779
  shows "steps (s, l, r) (A @ B, off) stp = (s', l', r')"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   780
using assms
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   781
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   782
  fix stp s' l' r'
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   783
  assume ind: "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (A, off) stp = (s', l', r'); s' \<noteq> 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   784
    \<Longrightarrow> steps (s, l, r) (A @ B, off) stp = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   785
    and h: "steps (s, l, r) (A, off) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   786
  obtain sa la ra where a: "steps (s, l, r) (A, off) stp = (sa, la, ra)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   787
    apply(case_tac "steps (s, l, r) (A, off) stp") by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   788
  hence "steps (s, l, r) (A @ B, off) stp = (sa, la, ra) \<and> sa \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   789
    using h ind[of sa la ra]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   790
    apply(case_tac sa, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   791
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   792
  thus "steps (s, l, r) (A @ B, off) (Suc stp) = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   793
    using h a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   794
    apply(simp add: step_red)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   795
    apply(rule_tac tm_append_first_step_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   796
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   797
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   798
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   799
lemma tm_append_second_fetch_eq:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   800
  assumes
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   801
  even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   802
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   803
  and fetch: "fetch B s b = (ac, ns)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   804
  and notfinal: "ns \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   805
  shows "fetch (A @ shift B off) (s + off) b = (ac, ns + off)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   806
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   807
apply(case_tac b)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   808
apply(case_tac [!] s, auto simp: fetch.simps nth_append shift.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   809
  split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   810
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   811
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   812
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   813
lemma tm_append_second_step_eq: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   814
  assumes 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   815
  exec: "step0 (s, l, r) B = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   816
  and notfinal: "s' \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   817
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   818
  and even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   819
  shows "step0 (s + off, l, r) (A @ shift B off) = (s' + off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   820
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   821
apply(simp add: step.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   822
apply(case_tac "fetch B s (read r)")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   823
apply(frule_tac tm_append_second_fetch_eq, simp_all, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   824
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   825
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   826
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   827
lemma tm_append_second_steps_eq: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   828
  assumes 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   829
  exec: "steps (s, l, r) (B, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   830
  and notfinal: "s' \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   831
  and off: "off = length A div 2"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   832
  and even: "length A mod 2 = 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   833
  shows "steps (s + off, l, r) (A @ shift B off, 0) stp = (s' + off, l', r')"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   834
using exec notfinal
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   835
proof(induct stp arbitrary: s' l' r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   836
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   837
  thus "steps0 (s + off, l, r) (A @ shift B off) 0 = (s' + off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   838
    by(simp add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   839
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   840
  case (Suc stp s' l' r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   841
  have ind: "\<And>s' l' r'. \<lbrakk>steps0 (s, l, r) B stp = (s', l', r'); s' \<noteq> 0\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   842
    steps0 (s + off, l, r) (A @ shift B off) stp = (s' + off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   843
    by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   844
  have h: "steps0 (s, l, r) B (Suc stp) = (s', l', r')" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   845
  have k: "s' \<noteq> 0" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   846
  obtain s'' l'' r'' where a: "steps0 (s, l, r) B stp = (s'', l'', r'')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   847
    by (metis prod_cases3)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   848
  then have b: "s'' \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   849
    using h k
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   850
    by(rule_tac notI, auto simp: step_red)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   851
  from a b have c: "steps0 (s + off, l, r) (A @ shift B off) stp = (s'' + off, l'', r'')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   852
    by(erule_tac ind, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   853
  from c b h a k assms show "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   854
    apply(simp add: step_red) by(rule tm_append_second_step_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   855
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   856
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   857
lemma tm_append_second_fetch0_eq:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   858
  assumes
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   859
  even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   860
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   861
  and fetch: "fetch B s b = (ac, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   862
  and notfinal: "s \<noteq> 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   863
  shows "fetch (A @ shift B off) (s + off) b = (ac, 0)"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   864
using assms
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   865
apply(case_tac b)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   866
apply(case_tac [!] s, auto simp: fetch.simps nth_append shift.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   867
  split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   868
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   869
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   870
lemma tm_append_second_halt_eq:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   871
  assumes 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   872
  exec: "steps (Suc 0, l, r) (B, 0) stp = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   873
  and wf_B: "tm_wf (B, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   874
  and off: "off = length A div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   875
  and even: "length A mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   876
  shows "steps (Suc off, l, r) (A @ shift B off, 0) stp = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   877
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   878
  have "\<exists>n. \<not> is_final (steps0 (1, l, r) B n) \<and> steps0 (1, l, r) B (Suc n) = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   879
    using exec by(rule_tac before_final, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   880
 then obtain n where a: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   881
   "\<not> is_final (steps0 (1, l, r) B n) \<and> steps0 (1, l, r) B (Suc n) = (0, l', r')" ..
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   882
 obtain s'' l'' r'' where b: "steps0 (1, l, r) B n = (s'', l'', r'') \<and> s'' >0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   883
   using a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   884
   by(case_tac "steps0 (1, l, r) B n", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   885
 have c: "steps (Suc 0 + off, l, r) (A @ shift B off, 0) n = (s'' + off, l'', r'')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   886
   using a b assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   887
   by(rule_tac tm_append_second_steps_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   888
 obtain ac where d: "fetch B s'' (read r'') = (ac, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   889
   using  b a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   890
   by(case_tac "fetch B s'' (read r'')", auto simp: step_red step.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   891
 then have "fetch (A @ shift B off) (s'' + off) (read r'') = (ac, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   892
   using assms b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   893
   by(rule_tac tm_append_second_fetch0_eq, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   894
 then have e: "steps (Suc 0 + off, l, r) (A @ shift B off, 0) (Suc n) = (0, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   895
   using a b assms c d
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   896
   by(simp add: step_red step.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   897
 from a have "n < stp"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   898
   using exec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   899
 proof(cases "n < stp")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   900
   case  True thus "?thesis" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   901
 next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   902
   case False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   903
   have "\<not> n < stp" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   904
   then obtain d where  "n = stp + d"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   905
     by (metis add.comm_neutral less_imp_add_positive nat_neq_iff)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   906
   thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   907
     using a e exec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   908
     by(simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   909
 qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   910
 then obtain d where "stp = Suc n + d"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   911
   by(metis add_Suc less_iff_Suc_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   912
 thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   913
   using e
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   914
   by(simp only: steps_add, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   915
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   916
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   917
lemma tm_append_steps: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   918
  assumes 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   919
  aexec: "steps (s, l, r) (A, 0) stpa = (Suc (length A div 2), la, ra)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   920
  and bexec: "steps (Suc 0, la, ra) (B, 0) stpb =  (sb, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   921
  and notfinal: "sb \<noteq> 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   922
  and off: "off = length A div 2"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   923
  and even: "length A mod 2 = 0"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   924
  shows "steps (s, l, r) (A @ shift B off, 0) (stpa + stpb) = (sb + off, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   925
proof -
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   926
  have "steps (s, l, r) (A@shift B off, 0) stpa = (Suc (length A div 2), la, ra)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   927
    apply(rule_tac tm_append_first_steps_eq)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   928
    apply(auto simp: assms)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   929
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   930
  moreover have "steps (1 + off, la, ra) (A @ shift B off, 0) stpb = (sb + off, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   931
    apply(rule_tac tm_append_second_steps_eq)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   932
    apply(auto simp: assms bexec)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   933
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   934
  ultimately show "steps (s, l, r) (A @ shift B off, 0) (stpa + stpb) = (sb + off, lb, rb)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   935
    apply(simp add: steps_add off)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   936
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   937
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   938
       
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   939
subsection {* Crsp of Inc*}
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   940
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   941
fun at_begin_fst_bwtn :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   942
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   943
  "at_begin_fst_bwtn (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   944
      (\<exists> lm1 tn rn. lm1 = (lm @ 0\<up>tn) \<and> length lm1 = s \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   945
          (if lm1 = [] then l = Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   946
           else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = Bk\<up>rn)" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   947
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   948
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   949
fun at_begin_fst_awtn :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   950
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   951
  "at_begin_fst_awtn (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   952
      (\<exists> lm1 tn rn. lm1 = (lm @ 0\<up>tn) \<and> length lm1 = s \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   953
         (if lm1 = []  then l = Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   954
          else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = [Oc]@Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   955
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   956
fun at_begin_norm :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   957
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   958
  "at_begin_norm (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   959
      (\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and> length lm1 = s \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   960
        (if lm1 = [] then l = Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   961
         else l = Bk # <rev lm1> @ Bk # Bk # ires ) \<and> r = <lm2>@Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   962
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   963
fun in_middle :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   964
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   965
  "in_middle (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   966
      (\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<up>tn = lm1 @ [m] @ lm2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   967
       \<and> length lm1 = s \<and> m + 1 = ml + mr \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   968
         ml \<noteq> 0 \<and> tn = s + 1 - length lm \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   969
       (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   970
        else l = Oc\<up>ml@[Bk]@<rev lm1>@
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   971
                 Bk # Bk # ires) \<and> (r = Oc\<up>mr @ [Bk] @ <lm2>@ Bk\<up>rn \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   972
      (lm2 = [] \<and> r = Oc\<up>mr))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   973
      )"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   974
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   975
fun inv_locate_a :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   976
  where "inv_locate_a (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   977
     (at_begin_norm (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   978
      at_begin_fst_bwtn (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   979
      at_begin_fst_awtn (as, lm) (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   980
      )"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   981
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   982
fun inv_locate_b :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   983
  where "inv_locate_b (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   984
        (in_middle (as, lm) (s, l, r)) ires "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   985
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   986
fun inv_after_write :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   987
  where "inv_after_write (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   988
           (\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   989
             (if lm1 = [] then l = Oc\<up>m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   990
              else Oc # l = Oc\<up>Suc m@ Bk # <rev lm1> @ 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   991
                      Bk # Bk # ires) \<and> r = [Oc] @ <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   992
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   993
fun inv_after_move :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   994
  where "inv_after_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   995
      (\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   996
        (if lm1 = [] then l = Oc\<up>Suc m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   997
         else l = Oc\<up>Suc m@ Bk # <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   998
        r = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
   999
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1000
fun inv_after_clear :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1001
  where "inv_after_clear (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1002
       (\<exists> rn m lm1 lm2 r'. lm = lm1 @ m # lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1003
        (if lm1 = [] then l = Oc\<up>Suc m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1004
         else l = Oc\<up>Suc m @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1005
          r = Bk # r' \<and> Oc # r' = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1006
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1007
fun inv_on_right_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1008
  where "inv_on_right_moving (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1009
       (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1010
            ml + mr = m \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1011
          (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1012
          else l = Oc\<up>ml  @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1013
         ((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1014
          (r = Oc\<up>mr \<and> lm2 = [])))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1015
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1016
fun inv_on_left_moving_norm :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1017
  where "inv_on_left_moving_norm (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1018
      (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1019
             ml + mr = Suc m \<and> mr > 0 \<and> (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1020
                                         else l =  Oc\<up>ml @ Bk # <rev lm1> @ Bk # Bk # ires)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1021
        \<and> (r = Oc\<up>mr @ Bk # <lm2> @ Bk\<up>rn \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1022
           (lm2 = [] \<and> r = Oc\<up>mr)))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1023
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1024
fun inv_on_left_moving_in_middle_B:: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1025
  where "inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1026
                (\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1027
                     (if lm1 = [] then l = Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1028
                      else l = <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1029
                      r = Bk # <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1030
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1031
fun inv_on_left_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1032
  where "inv_on_left_moving (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1033
       (inv_on_left_moving_norm  (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1034
        inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1035
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1036
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1037
fun inv_check_left_moving_on_leftmost :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1038
  where "inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1039
                (\<exists> rn. l = ires \<and> r = [Bk, Bk] @ <lm> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1040
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1041
fun inv_check_left_moving_in_middle :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1042
  where "inv_check_left_moving_in_middle (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1043
              (\<exists> lm1 lm2 r' rn. lm = lm1 @ lm2 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1044
                 (Oc # l = <rev lm1> @ Bk # Bk # ires) \<and> r = Oc # Bk # r' \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1045
                           r' = <lm2> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1046
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1047
fun inv_check_left_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1048
  where "inv_check_left_moving (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1049
             (inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires \<or>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1050
             inv_check_left_moving_in_middle (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1051
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1052
fun inv_after_left_moving :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1053
  where "inv_after_left_moving (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1054
              (\<exists> rn. l = Bk # ires \<and> r = Bk # <lm> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1055
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1056
fun inv_stop :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1057
  where "inv_stop (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1058
              (\<exists> rn. l = Bk # Bk # ires \<and> r = <lm> @  Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1059
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1060
lemma halt_lemma2': 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1061
  "\<lbrakk>wf LE;  \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1062
    (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE)); Q (f 0)\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1063
      \<Longrightarrow> \<exists> n. P (f n)"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  1064
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1065
apply(intro exCI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1066
apply(subgoal_tac "\<forall> n. Q (f n)", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1067
apply(drule_tac f = f in wf_inv_image)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1068
apply(simp add: inv_image_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1069
apply(erule wf_induct, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1070
apply(erule_tac x = x in allE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1071
apply(erule_tac x = n in allE, erule_tac x = n in allE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1072
apply(erule_tac x = "Suc x" in allE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1073
apply(rule_tac allI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1074
apply(induct_tac n, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1075
apply(erule_tac x = na in allE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1076
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1077
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1078
lemma halt_lemma2'': 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1079
  "\<lbrakk>P (f n); \<not> P (f (0::nat))\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1080
         \<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1081
apply(induct n rule: nat_less_induct, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1082
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1083
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1084
lemma halt_lemma2''':
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1085
 "\<lbrakk>\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> LE;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1086
                 Q (f 0);  \<forall>i<na. \<not> P (f i)\<rbrakk> \<Longrightarrow> Q (f na)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1087
apply(induct na, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1088
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1089
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1090
lemma halt_lemma2: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1091
  "\<lbrakk>wf LE;  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1092
    Q (f 0); \<not> P (f 0);
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1093
    \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE))\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1094
  \<Longrightarrow> \<exists> n. P (f n) \<and> Q (f n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1095
apply(insert halt_lemma2' [of LE P f Q], simp, erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1096
apply(subgoal_tac "\<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1097
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1098
apply(rule_tac x = na in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1099
apply(rule halt_lemma2''', simp, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1100
apply(erule_tac halt_lemma2'', simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1101
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1102
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1103
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1104
fun findnth_inv :: "layout \<Rightarrow> nat \<Rightarrow> inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1105
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1106
  "findnth_inv ly n (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1107
              (if s = 0 then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1108
               else if s \<le> Suc (2*n) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1109
                  if s mod 2 = 1 then inv_locate_a (as, lm) ((s - 1) div 2, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1110
                  else inv_locate_b (as, lm) ((s - 1) div 2, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1111
               else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1112
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1113
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1114
fun findnth_state :: "config \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1115
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1116
  "findnth_state (s, l, r) n = (Suc (2*n) - s)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1117
  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1118
fun findnth_step :: "config \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1119
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1120
  "findnth_step (s, l, r) n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1121
           (if s mod 2 = 1 then
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1122
                   (if (r \<noteq> [] \<and> hd r = Oc) then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1123
                    else 1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1124
            else length r)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1125
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1126
fun findnth_measure :: "config \<times> nat \<Rightarrow> nat \<times> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1127
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1128
  "findnth_measure (c, n) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1129
     (findnth_state c n, findnth_step c n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1130
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1131
definition lex_pair :: "((nat \<times> nat) \<times> nat \<times> nat) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1132
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1133
  "lex_pair \<equiv> less_than <*lex*> less_than"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1134
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1135
definition findnth_LE :: "((config \<times> nat) \<times> (config \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1136
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1137
   "findnth_LE \<equiv> (inv_image lex_pair findnth_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1138
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1139
lemma wf_findnth_LE: "wf findnth_LE"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  1140
by(auto simp: findnth_LE_def lex_pair_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1141
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1142
declare findnth_inv.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1143
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1144
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1145
  "\<lbrakk>x < Suc (Suc (2 * n)); Suc x mod 2 = Suc 0; \<not> x < 2 * n\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1146
 \<Longrightarrow> x = 2*n"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1147
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1148
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1149
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1150
  "\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 = Suc 0\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1151
      \<Longrightarrow> fetch (findnth n) a Bk = (W1, a)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1152
apply(case_tac a, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1153
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1154
apply arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1155
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1156
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1157
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1158
  "\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 = Suc 0\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1159
      \<Longrightarrow> fetch (findnth n) a Oc = (R, Suc a)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1160
apply(case_tac a, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1161
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1162
apply(subgoal_tac "nat = 2 * n", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1163
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1164
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1165
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1166
  "\<lbrakk>0 < a; a < Suc (2*n); a mod 2 \<noteq> Suc 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1167
     \<Longrightarrow> fetch (findnth n) a Oc = (R, a)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1168
apply(case_tac a, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1169
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1170
apply(subgoal_tac "nat = Suc (2 * n)", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1171
apply arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1172
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1173
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1174
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1175
  "\<lbrakk>0 < a; a < Suc (2*n); a mod 2 \<noteq> Suc 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1176
     \<Longrightarrow> fetch (findnth n) a Bk = (R, Suc a)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1177
apply(case_tac a, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1178
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1179
apply(subgoal_tac "nat = Suc (2 * n)", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1180
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1181
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1182
declare at_begin_norm.simps[simp del] at_begin_fst_bwtn.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1183
   at_begin_fst_awtn.simps[simp del] in_middle.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1184
   abc_lm_s.simps[simp del] abc_lm_v.simps[simp del]  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1185
   ci.simps[simp del] inv_after_move.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1186
   inv_on_left_moving_norm.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1187
   inv_on_left_moving_in_middle_B.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1188
   inv_after_clear.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1189
   inv_after_write.simps[simp del] inv_on_left_moving.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1190
   inv_on_right_moving.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1191
   inv_check_left_moving.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1192
   inv_check_left_moving_in_middle.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1193
   inv_check_left_moving_on_leftmost.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1194
   inv_after_left_moving.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1195
   inv_stop.simps[simp del] inv_locate_a.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1196
   inv_locate_b.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1197
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1198
lemma [intro]: "\<exists>rn. [Bk] = Bk \<up> rn"
111
dfc629cd11de made uncomputable compatible with abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
  1199
by (metis replicate_0 replicate_Suc)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1200
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1201
lemma [intro]:  "at_begin_norm (as, am) (q, aaa, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1202
             \<Longrightarrow> at_begin_norm (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1203
apply(simp add: at_begin_norm.simps, erule_tac exE, erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1204
apply(rule_tac x = lm1 in exI, simp, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1205
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1206
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1207
lemma [intro]: "at_begin_fst_bwtn (as, am) (q, aaa, []) ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1208
            \<Longrightarrow> at_begin_fst_bwtn (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1209
apply(simp only: at_begin_fst_bwtn.simps, erule_tac exE, erule_tac exE, erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1210
apply(rule_tac x = "am @ 0\<up>tn" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1211
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1212
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1213
lemma [intro]: "at_begin_fst_awtn (as, am) (q, aaa, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1214
           \<Longrightarrow> at_begin_fst_awtn (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1215
apply(auto simp: at_begin_fst_awtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1216
done 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1217
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1218
lemma [intro]: "inv_locate_a (as, am) (q, aaa, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1219
            \<Longrightarrow> inv_locate_a (as, am) (q, aaa, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1220
apply(simp only: inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1221
apply(erule disj_forward)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1222
defer
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1223
apply(erule disj_forward, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1224
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1225
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1226
lemma locate_a_2_locate_a[simp]: "inv_locate_a (as, am) (q, aaa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1227
       \<Longrightarrow> inv_locate_a (as, am) (q, aaa, Oc # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1228
apply(simp only: inv_locate_a.simps at_begin_norm.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1229
                 at_begin_fst_bwtn.simps at_begin_fst_awtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1230
apply(erule_tac disjE, erule exE, erule exE, erule exE, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1231
      rule disjI2, rule disjI2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1232
defer
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1233
apply(erule_tac disjE, erule exE, erule exE, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1234
      erule exE, rule disjI2, rule disjI2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1235
prefer 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1236
apply(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1237
proof-
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1238
  fix lm1 tn rn
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1239
  assume k: "lm1 = am @ 0\<up>tn \<and> length lm1 = q \<and> (if lm1 = [] then aaa = Bk # Bk # 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1240
    ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Bk # xs = Bk\<up>rn"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1241
  thus "\<exists>lm1 tn rn. lm1 = am @ 0 \<up> tn \<and> length lm1 = q \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1242
    (if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Oc # xs = [Oc] @ Bk \<up> rn"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1243
    (is "\<exists>lm1 tn rn. ?P lm1 tn rn")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1244
  proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1245
    from k have "?P lm1 tn (rn - 1)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1246
      apply(auto simp: Oc_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1247
      by(case_tac [!] "rn::nat", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1248
    thus ?thesis by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1249
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1250
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1251
  fix lm1 lm2 rn
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1252
  assume h1: "am = lm1 @ lm2 \<and> length lm1 = q \<and> (if lm1 = [] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1253
    then aaa = Bk # Bk # ires else aaa = Bk # <rev lm1> @ Bk # Bk # ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1254
    Bk # xs = <lm2> @ Bk\<up>rn"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1255
  from h1 have h2: "lm2 = []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1256
    apply(auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1257
    apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1258
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1259
  from h1 and h2 show "\<exists>lm1 tn rn. lm1 = am @ 0\<up>tn \<and> length lm1 = q \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1260
    (if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1261
    Oc # xs = [Oc] @ Bk\<up>rn" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1262
    (is "\<exists>lm1 tn rn. ?P lm1 tn rn")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1263
  proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1264
    from h1 and h2  have "?P lm1 0 (rn - 1)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1265
      apply(auto simp: Oc_def
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1266
                      tape_of_nl_abv tape_of_nat_list.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1267
      by(case_tac "rn::nat", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1268
    thus ?thesis by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1269
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1270
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1271
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1272
lemma [simp]: "inv_locate_a (as, am) (q, aaa, []) ires \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1273
               inv_locate_a (as, am) (q, aaa, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1274
apply(insert locate_a_2_locate_a [of as am q aaa "[]"])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1275
apply(subgoal_tac "inv_locate_a (as, am) (q, aaa, [Bk]) ires", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1276
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1277
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1278
(*inv: from locate_b to locate_b*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1279
lemma [simp]: "inv_locate_b (as, am) (q, aaa, Oc # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1280
         \<Longrightarrow> inv_locate_b (as, am) (q, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1281
apply(simp only: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1282
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1283
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1284
      rule_tac x = tn in exI, rule_tac x = m in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1285
apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - 1" in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1286
      rule_tac x = rn in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1287
apply(case_tac mr, simp_all, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1288
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1289
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1290
lemma [simp]:  "<[x::nat]> = Oc\<up>(Suc x)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1291
apply(simp add: tape_of_nat_abv tape_of_nl_abv)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1292
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1293
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1294
lemma [simp]: " <([]::nat list)> = []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1295
apply(simp add: tape_of_nl_abv)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1296
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1297
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1298
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; \<exists>n. xs = Bk\<up>n\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1299
            \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1300
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1301
apply(rule_tac disjI2, rule_tac disjI1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1302
apply(simp only: in_middle.simps at_begin_fst_bwtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1303
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1304
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = tn in exI, simp split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1305
apply(case_tac mr, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1306
apply(case_tac "length am", simp_all, case_tac tn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1307
apply(case_tac lm2, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1308
apply(case_tac am, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1309
apply(case_tac n, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1310
apply(case_tac n, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1311
apply(case_tac mr, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1312
apply(case_tac lm2, simp_all add: tape_of_nl_cons split: if_splits, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1313
apply(case_tac [!] n, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1314
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1315
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1316
lemma [simp]: "(Oc # r = Bk \<up> rn) = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1317
apply(case_tac rn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1318
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1319
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1320
lemma [simp]: "(\<exists>rna. Bk \<up> rn = Bk # Bk \<up> rna) \<or> rn = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1321
apply(case_tac rn, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1322
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1323
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1324
lemma [simp]: "(\<forall> x. a \<noteq> x) = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1325
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1326
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1327
lemma exp_ind: "a\<up>(Suc x) = a\<up>x @ [a]"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1328
apply(induct x, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1329
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1330
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1331
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1332
      "inv_locate_a (as, lm) (q, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1333
       \<Longrightarrow> inv_locate_b (as, lm) (q, Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1334
apply(simp only: inv_locate_a.simps inv_locate_b.simps in_middle.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1335
          at_begin_norm.simps at_begin_fst_bwtn.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1336
          at_begin_fst_awtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1337
apply(erule disjE, erule exE, erule exE, erule exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1338
apply(rule_tac x = lm1 in exI, rule_tac x = "tl lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1339
apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1340
apply(case_tac lm2, auto simp: tape_of_nl_cons )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1341
apply(rule_tac x = 1 in exI, rule_tac x = a in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1342
apply(case_tac list, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1343
apply(case_tac rn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1344
apply(rule_tac x = "lm @ replicate tn 0" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1345
      rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1346
      rule_tac x = "Suc tn" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1347
      rule_tac x = 0 in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1348
apply(simp only: replicate_Suc[THEN sym] exp_ind)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1349
apply(rule_tac x = "Suc 0" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1350
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1351
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1352
lemma length_equal: "xs = ys \<Longrightarrow> length xs = length ys"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1353
by auto
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1354
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1355
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1356
                \<not> (\<exists>n. xs = Bk\<up>n)\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1357
       \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1358
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1359
apply(rule_tac disjI1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1360
apply(simp only: in_middle.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1361
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1362
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = lm2 in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1363
apply(subgoal_tac "tn = 0", simp , auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1364
apply(case_tac [!] mr, simp_all, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1365
apply(simp add: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1366
apply(drule_tac length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1367
apply(case_tac "length am", simp_all, erule_tac x = rn in allE, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1368
apply(drule_tac length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1369
apply(case_tac "(Suc (length lm1) - length am)", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1370
apply(case_tac lm2, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1371
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1372
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1373
lemma locate_b_2_a[intro]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1374
       "inv_locate_b (as, am) (q, aaa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1375
    \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1376
apply(case_tac "\<exists> n. xs = Bk\<up>n", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1377
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1378
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1379
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1380
lemma [simp]:  "inv_locate_b (as, am) (q, l, []) ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1381
           \<Longrightarrow>  inv_locate_b (as, am) (q, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1382
apply(simp only: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1383
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1384
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1385
      rule_tac x = tn in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1386
      rule_tac x = ml in exI, rule_tac x = mr in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1387
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1388
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1389
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1390
(*inv: from locate_b to after_write*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1391
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1392
lemma [simp]: "(a mod 2 \<noteq> Suc 0) = (a mod 2 = 0)  "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1393
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1394
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1395
lemma [simp]: "(a mod 2 \<noteq> 0) = (a mod 2 = Suc 0)  "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1396
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1397
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1398
lemma mod_ex1: "(a mod 2 = Suc 0) = (\<exists> q. a = Suc (2 * q))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1399
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1400
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1401
lemma mod_ex2: "(a mod (2::nat) = 0) = (\<exists> q. a = 2 * q)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1402
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1403
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1404
lemma [simp]: "(2*q - Suc 0) div 2 = (q - 1)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1405
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1406
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1407
lemma [simp]: "(Suc (2*q)) div 2 = q"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1408
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1409
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1410
lemma mod_2: "x mod 2  = 0 \<or>  x mod 2 = Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1411
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1412
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1413
lemma [simp]: "x mod 2 = 0 \<Longrightarrow> Suc x mod 2 = Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1414
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1415
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1416
lemma [simp]: "x mod 2 = Suc 0 \<Longrightarrow> Suc x mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1417
by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1418
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1419
lemma [simp]:  "inv_locate_b (as, am) (q, l, []) ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1420
           \<Longrightarrow>  inv_locate_b (as, am) (q, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1421
apply(simp only: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1422
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1423
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1424
      rule_tac x = tn in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1425
      rule_tac x = ml in exI, rule_tac x = mr in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1426
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1427
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1428
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1429
lemma locate_b_2_locate_a[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1430
    "\<lbrakk>q > 0;  inv_locate_b (as, am) (q - Suc 0, aaa, Bk # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1431
   \<Longrightarrow>  inv_locate_a (as, am) (q, Bk # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1432
apply(insert locate_b_2_a [of as am "q - 1" aaa xs ires], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1433
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1434
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1435
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1436
lemma [simp]:  "inv_locate_b (as, am) (q, l, []) ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1437
           \<Longrightarrow>  inv_locate_b (as, am) (q, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1438
apply(simp only: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1439
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1440
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1441
      rule_tac x = tn in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1442
      rule_tac x = ml in exI, rule_tac x = mr in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1443
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1444
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1445
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1446
(*inv: from locate_b to after_write*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1447
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1448
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1449
  "crsp (layout_of ap) (as, lm) (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1450
  \<Longrightarrow> findnth_inv (layout_of ap) n (as, lm) (Suc 0, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1451
apply(auto simp: crsp.simps findnth_inv.simps inv_locate_a.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1452
               at_begin_norm.simps at_begin_fst_awtn.simps at_begin_fst_bwtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1453
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1454
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1455
lemma findnth_correct_pre: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1456
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1457
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1458
  and not0: "n > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1459
  and f: "f = (\<lambda> stp. (steps (Suc 0, l, r) (findnth n, 0) stp, n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1460
  and P: "P = (\<lambda> ((s, l, r), n). s = Suc (2 * n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1461
  and Q: "Q = (\<lambda> ((s, l, r), n). findnth_inv ly n (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1462
  shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1463
proof(rule_tac LE = findnth_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1464
  show "wf findnth_LE"  by(intro wf_findnth_LE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1465
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1466
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1467
    using crsp layout
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1468
    apply(simp add: f P Q steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1469
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1470
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1471
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1472
    using not0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1473
    apply(simp add: f P steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1474
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1475
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1476
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1477
        \<in> findnth_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1478
  proof(rule_tac allI, rule_tac impI, simp add: f, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1479
      case_tac "steps (Suc 0, l, r) (findnth n, 0) na", simp add: P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1480
    fix na a b c
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1481
    assume "a \<noteq> Suc (2 * n) \<and> Q ((a, b, c), n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1482
    thus  "Q (step (a, b, c) (findnth n, 0), n) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1483
        ((step (a, b, c) (findnth n, 0), n), (a, b, c), n) \<in> findnth_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1484
      apply(case_tac c, case_tac [2] aa)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1485
      apply(simp_all add: step.simps findnth_LE_def Q findnth_inv.simps mod_2  lex_pair_def split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1486
      apply(auto simp: mod_ex1 mod_ex2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1487
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1488
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1489
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1490
            
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1491
lemma [intro]: "inv_locate_a (as, lm) (0, Bk # Bk # ires, <lm> @ Bk \<up> x) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1492
apply(auto simp: crsp.simps inv_locate_a.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1493
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1494
lemma [simp]: "crsp ly (as, lm) (s, l, r) ires \<Longrightarrow> inv_locate_a (as, lm) (0, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1495
apply(auto simp: crsp.simps inv_locate_a.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1496
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1497
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1498
lemma findnth_correct: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1499
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1500
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1501
  shows "\<exists> stp l' r'. steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1502
              \<and> inv_locate_a (as, lm) (n, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1503
  using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1504
  apply(case_tac "n = 0")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1505
  apply(rule_tac x = 0 in exI, auto simp: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1506
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1507
  apply(drule_tac findnth_correct_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1508
  apply(rule_tac x = stp in exI, simp add: findnth_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1509
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1510
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1511
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1512
fun inc_inv :: "nat \<Rightarrow> inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1513
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1514
  "inc_inv n (as, lm) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1515
              (let lm' = abc_lm_s lm n (Suc (abc_lm_v lm n)) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1516
                if s = 0 then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1517
                else if s = 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1518
                   inv_locate_a (as, lm) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1519
                else if s = 2 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1520
                   inv_locate_b (as, lm) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1521
                else if s = 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1522
                   inv_after_write (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1523
                else if s = Suc 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1524
                   inv_after_move (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1525
                else if s = Suc 4 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1526
                   inv_after_clear (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1527
                else if s = Suc (Suc 4) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1528
                   inv_on_right_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1529
                else if s = Suc (Suc 5) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1530
                   inv_on_left_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1531
                else if s = Suc (Suc (Suc 5)) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1532
                   inv_check_left_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1533
                else if s = Suc (Suc (Suc (Suc 5))) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1534
                   inv_after_left_moving (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1535
                else if s = Suc (Suc (Suc (Suc (Suc 5)))) then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1536
                   inv_stop (as, lm') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1537
                else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1538
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1539
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1540
fun abc_inc_stage1 :: "config \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1541
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1542
  "abc_inc_stage1 (s, l, r) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1543
            (if s = 0 then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1544
             else if s \<le> 2 then 5
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1545
             else if s \<le> 6 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1546
             else if s \<le> 8 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1547
             else if s = 9 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1548
             else 1)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1549
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1550
fun abc_inc_stage2 :: "config \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1551
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1552
  "abc_inc_stage2 (s, l, r) =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1553
                (if s = 1 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1554
                 else if s = 2 then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1555
                 else if s = 3 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1556
                 else if s = 4 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1557
                 else if s = 5 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1558
                 else if s = 6 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1559
                                  if r \<noteq> [] then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1560
                                  else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1561
                 else if s = 7 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1562
                 else if s = 8 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1563
                 else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1564
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1565
fun abc_inc_stage3 :: "config \<Rightarrow>  nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1566
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1567
  "abc_inc_stage3 (s, l, r) = (
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1568
              if s = 4 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1569
              else if s = 5 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1570
              else if s = 6 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1571
                   if r \<noteq> [] \<and> hd r = Oc then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1572
                   else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1573
              else if s = 3 then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1574
              else if s = 2 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1575
              else if s = 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1576
                      if (r \<noteq> [] \<and> hd r = Oc) then 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1577
                      else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1578
              else 10 - s)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1579
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1580
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1581
definition inc_measure :: "config \<Rightarrow> nat \<times> nat \<times> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1582
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1583
  "inc_measure c = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1584
    (abc_inc_stage1 c, abc_inc_stage2 c, abc_inc_stage3 c)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1585
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1586
definition lex_triple :: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1587
   "((nat \<times> (nat \<times> nat)) \<times> (nat \<times> (nat \<times> nat))) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1588
  where "lex_triple \<equiv> less_than <*lex*> lex_pair"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1589
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1590
definition inc_LE :: "(config \<times> config) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1591
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1592
  "inc_LE \<equiv> (inv_image lex_triple inc_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1593
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1594
declare inc_inv.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1595
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1596
lemma wf_inc_le[intro]: "wf inc_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1597
by(auto intro:wf_inv_image simp: inc_LE_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1598
115
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1599
lemma numeral_5_eq_5: "5 = Suc (Suc (Suc (Suc (Suc 0))))"
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1600
by arith
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1601
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1602
lemma numeral_6_eq_6: "6 = Suc (Suc (Suc (Suc (Suc 1))))"
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1603
by arith
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1604
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1605
lemma numeral_7_eq_7: "7 = Suc (Suc (Suc (Suc (Suc 2))))"
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1606
by arith
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1607
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1608
lemma numeral_8_eq_8: "8 = Suc (Suc (Suc (Suc (Suc 3))))"
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1609
by arith
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1610
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1611
lemma numeral_9_eq_9: "9 = Suc (Suc (Suc (Suc (Suc (Suc 3)))))"
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1612
by arith
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1613
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1614
lemma numeral_10_eq_10: "10 = Suc (Suc (Suc (Suc (Suc (Suc (Suc 3))))))"
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  1615
by arith
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1616
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1617
lemma inv_locate_b_2_after_write[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1618
      "inv_locate_b (as, am) (n, aaa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1619
      \<Longrightarrow> inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1620
          (s, aaa, Oc # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1621
apply(auto simp: in_middle.simps inv_after_write.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1622
                 abc_lm_v.simps abc_lm_s.simps  inv_locate_b.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1623
apply(case_tac [!] mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1624
apply(rule_tac x = rn in exI, rule_tac x = "Suc m" in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1625
      rule_tac x = "lm1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1626
apply(rule_tac x = "lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1627
apply(simp only: Suc_diff_le exp_ind)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1628
apply(subgoal_tac "lm2 = []", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1629
apply(drule_tac length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1630
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1631
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1632
lemma [simp]: "inv_locate_b (as, am) (n, aaa, []) ires \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1633
     inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1634
                     (s, aaa, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1635
apply(insert inv_locate_b_2_after_write [of as am n aaa "[]"])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1636
by(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1637
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1638
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1639
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1640
(*inv: from after_write to after_move*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1641
lemma [simp]: "inv_after_write (as, lm) (x, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1642
                \<Longrightarrow> inv_after_move (as, lm) (y, Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1643
apply(auto simp:inv_after_move.simps inv_after_write.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1644
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1645
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1646
lemma [simp]: "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1647
                )) (x, aaa, Bk # xs) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1648
apply(simp add: inv_after_write.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1649
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1650
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1651
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1652
 "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1653
                        (x, aaa, []) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1654
apply(simp add: inv_after_write.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1655
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1656
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1657
(*inv: from after_move to after_clear*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1658
lemma [simp]: "inv_after_move (as, lm) (s, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1659
                \<Longrightarrow> inv_after_clear (as, lm) (s', l, Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1660
apply(auto simp: inv_after_move.simps inv_after_clear.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1661
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1662
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1663
(*inv: from after_move to on_leftmoving*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1664
lemma [intro]: "Bk \<up> rn = Bk # Bk \<up> (rn - Suc 0) \<or> rn = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1665
apply(case_tac rn, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1666
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1667
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1668
lemma inv_after_move_2_inv_on_left_moving[simp]:  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1669
   "inv_after_move (as, lm) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1670
   \<Longrightarrow> (l = [] \<longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1671
         inv_on_left_moving (as, lm) (s', [], Bk # Bk # r) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1672
      (l \<noteq> [] \<longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1673
         inv_on_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1674
apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1675
apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1676
                rule disjI1, simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1677
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1678
apply(subgoal_tac "lm2 = []")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1679
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1680
    rule_tac x = m in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1681
    rule_tac x = 1 in exI,  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1682
    rule_tac x = "rn - 1" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1683
apply(auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1684
apply(case_tac [1-2] rn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1685
apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1686
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1687
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1688
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1689
lemma inv_after_move_2_inv_on_left_moving_B[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1690
    "inv_after_move (as, lm) (s, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1691
      \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1692
          (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, [hd l]) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1693
apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1694
apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI, rule disjI1,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1695
        simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1696
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1697
apply(subgoal_tac "lm2 = []")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1698
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1699
      rule_tac x = m in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1700
      rule_tac x = 1 in exI, rule_tac x = "rn - 1" in exI, simp, case_tac rn)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1701
apply(auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1702
apply(case_tac [!] lm2, auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1703
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1704
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1705
(*inv: from after_clear to on_right_moving*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1706
lemma [simp]: "Oc # r = replicate rn Bk = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1707
apply(case_tac rn, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1708
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1709
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1710
lemma inv_after_clear_2_inv_on_right_moving[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1711
     "inv_after_clear (as, lm) (x, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1712
      \<Longrightarrow> inv_on_right_moving (as, lm) (y, Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1713
apply(auto simp: inv_after_clear.simps inv_on_right_moving.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1714
apply(subgoal_tac "lm2 \<noteq> []")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1715
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1716
      rule_tac x = "hd lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1717
apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1718
apply(simp, rule conjI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1719
apply(case_tac [!] "lm2::nat list", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1720
apply(case_tac rn, auto split: if_splits simp: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1721
apply(case_tac [!] rn, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1722
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1723
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1724
lemma [simp]: "inv_after_clear (as, lm) (x, l, []) ires\<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1725
               inv_after_clear (as, lm) (y, l, [Bk]) ires" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1726
by(auto simp: inv_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1727
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1728
lemma [simp]: "inv_after_clear (as, lm) (x, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1729
             \<Longrightarrow> inv_on_right_moving (as, lm) (y, Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1730
by(insert 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1731
    inv_after_clear_2_inv_on_right_moving[of as lm n l "[]"], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1732
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1733
(*inv: from on_right_moving to on_right_movign*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1734
lemma [simp]: "inv_on_right_moving (as, lm) (x, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1735
      \<Longrightarrow> inv_on_right_moving (as, lm) (y, Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1736
apply(auto simp: inv_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1737
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1738
           rule_tac x = "ml + mr" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1739
apply(rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1740
           rule_tac x = "mr - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1741
apply(case_tac mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1742
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1743
      rule_tac x = "ml + mr" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1744
apply(rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1745
      rule_tac x = "mr - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1746
apply(case_tac mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1747
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1748
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1749
lemma inv_on_right_moving_2_inv_on_right_moving[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1750
     "inv_on_right_moving (as, lm) (x, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1751
     \<Longrightarrow> inv_after_write (as, lm) (y, l, Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1752
apply(auto simp: inv_on_right_moving.simps inv_after_write.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1753
apply(case_tac mr, auto simp: split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1754
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1755
      
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1756
lemma [simp]: "inv_on_right_moving (as, lm) (x, l, []) ires\<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1757
             inv_on_right_moving (as, lm) (y, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1758
apply(auto simp: inv_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1759
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1760
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1761
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1762
(*inv: from on_right_moving to after_write*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1763
lemma [simp]: "inv_on_right_moving (as, lm) (x, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1764
       \<Longrightarrow> inv_after_write (as, lm) (y, l, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1765
apply(rule_tac inv_on_right_moving_2_inv_on_right_moving, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1766
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1767
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1768
(*inv: from on_left_moving to on_left_moving*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1769
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1770
               (s, l, Oc # r) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1771
apply(auto simp: inv_on_left_moving_in_middle_B.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1772
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1773
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1774
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, Bk # r) ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1775
             = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1776
apply(auto simp: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1777
apply(case_tac [!] mr, auto simp: )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1778
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1779
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1780
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1781
  "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1782
    hd l = Bk; l \<noteq> []\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1783
     inv_on_left_moving_in_middle_B (as, lm) (s, tl l, Bk # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1784
apply(case_tac l, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1785
apply(simp only: inv_on_left_moving_norm.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1786
                 inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1787
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1788
apply(rule_tac x = lm1 in exI, rule_tac x = "m # lm2" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1789
apply(case_tac [!] ml, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1790
apply(auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1791
apply(rule_tac [!] x = "Suc rn" in exI, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1792
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1793
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1794
lemma [simp]: "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1795
                hd l = Oc; l \<noteq> []\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1796
            \<Longrightarrow> inv_on_left_moving_norm (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1797
                                        (s, tl l, Oc # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1798
apply(simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1799
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1800
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1801
      rule_tac x = m in exI, rule_tac x = "ml - 1" in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1802
      rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1803
apply(case_tac ml, auto simp: split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1804
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1805
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1806
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, [], Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1807
     \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1808
apply(auto simp: inv_on_left_moving_norm.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1809
                 inv_on_left_moving_in_middle_B.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1810
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1811
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1812
lemma [simp]:"inv_on_left_moving (as, lm) (s, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1813
    \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s, [], Bk # Oc # r) ires)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1814
 \<and>  (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s, tl l, hd l # Oc # r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1815
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1816
apply(case_tac "l \<noteq> []", rule conjI, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1817
apply(case_tac "hd l", simp, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1818
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1819
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1820
(*inv: from on_left_moving to check_left_moving*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1821
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1822
                                      (s, Bk # list, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1823
          \<Longrightarrow> inv_check_left_moving_on_leftmost (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1824
                                      (s', list, Bk # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1825
apply(auto simp: inv_on_left_moving_in_middle_B.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1826
                 inv_check_left_moving_on_leftmost.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1827
apply(case_tac [!] "rev lm1", simp_all)
101
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
  1828
apply(case_tac [!] lista, simp_all add: tape_of_nl_abv tape_of_nat_abv tape_of_nat_list.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1829
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1830
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1831
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1832
    "inv_check_left_moving_in_middle (as, lm) (s, l, Bk # r) ires= False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1833
by(auto simp: inv_check_left_moving_in_middle.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1834
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1835
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1836
 "inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # r) ires\<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1837
  inv_check_left_moving_on_leftmost (as, lm) (s', [], Bk # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1838
apply(auto simp: inv_on_left_moving_in_middle_B.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1839
                 inv_check_left_moving_on_leftmost.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1840
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1841
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1842
lemma [simp]: "inv_check_left_moving_on_leftmost (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1843
                                       (s, list, Oc # r) ires= False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1844
by(auto simp: inv_check_left_moving_on_leftmost.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1845
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1846
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1847
                                         (s, Oc # list, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1848
 \<Longrightarrow> inv_check_left_moving_in_middle (as, lm) (s', list, Oc # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1849
apply(auto simp: inv_on_left_moving_in_middle_B.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1850
                 inv_check_left_moving_in_middle.simps  split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1851
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1852
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1853
lemma inv_on_left_moving_2_check_left_moving[simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1854
 "inv_on_left_moving (as, lm) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1855
 \<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], Bk # Bk # r) ires)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1856
 \<and> (l \<noteq> [] \<longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1857
      inv_check_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1858
apply(simp add: inv_on_left_moving.simps inv_check_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1859
apply(case_tac l, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1860
apply(case_tac a, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1861
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1862
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1863
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, []) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1864
apply(auto simp: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1865
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1866
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1867
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires\<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1868
     inv_on_left_moving (as, lm) (6 + 2 * n, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1869
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1870
apply(auto simp: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1871
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1872
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1873
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1874
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1875
apply(simp add: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1876
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1877
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1878
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1879
 \<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1880
    (l \<noteq> [] \<longrightarrow> inv_check_left_moving (as, lm) (s', tl l, [hd l]) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1881
by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1882
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1883
lemma [intro]: "\<exists>rna. Bk # Bk \<up> rn = Bk \<up> rna"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1884
apply(rule_tac x = "Suc rn" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1885
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1886
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1887
lemma 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1888
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1889
"inv_check_left_moving_in_middle (as, lm) (s, Bk # list, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1890
  \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', list, Bk # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1891
apply(simp only: inv_check_left_moving_in_middle.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1892
                 inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1893
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1894
apply(rule_tac x = "rev (tl (rev lm1))" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1895
      rule_tac x = "[hd (rev lm1)] @ lm2" in exI, auto)
101
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
  1896
apply(case_tac [!] "rev lm1",simp_all add: tape_of_nat_abv tape_of_nl_abv tape_of_nat_list.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1897
apply(case_tac [!] a, simp_all)
101
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
  1898
apply(case_tac [1] lm2, simp_all add: tape_of_nat_list.simps tape_of_nat_abv, auto)
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
  1899
apply(case_tac [3] lm2, simp_all add: tape_of_nat_list.simps tape_of_nat_abv, auto)
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 63
diff changeset
  1900
apply(case_tac [!] lista, simp_all add: tape_of_nat_abv tape_of_nat_list.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1901
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1902
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1903
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1904
 "inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires\<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1905
     inv_check_left_moving_in_middle (as, lm) (s', [Bk], Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1906
apply(auto simp: inv_check_left_moving_in_middle.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1907
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1908
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1909
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1910
 "inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1911
   \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', [], Bk # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1912
apply(insert 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1913
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[of 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1914
                  as lm n "[]" r], simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1915
done 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1916
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1917
lemma [simp]: "inv_check_left_moving_in_middle (as, lm) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1918
                       (s, Oc # list, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1919
   \<Longrightarrow> inv_on_left_moving_norm (as, lm) (s', list, Oc # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1920
apply(auto simp: inv_check_left_moving_in_middle.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1921
                 inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1922
apply(rule_tac x = "rev (tl (rev lm1))" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1923
      rule_tac x = lm2 in exI, rule_tac x = "hd (rev lm1)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1924
apply(rule_tac conjI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1925
apply(case_tac "rev lm1", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1926
apply(rule_tac x = "hd (rev lm1) - 1" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1927
apply(rule_tac [!] x = "Suc (Suc 0)" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1928
apply(case_tac [!] "rev lm1", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1929
apply(case_tac [!] a, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1930
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1931
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1932
lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1933
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], Bk # Oc # r) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1934
   (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, hd l # Oc # r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1935
apply(case_tac l, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1936
      auto simp: inv_check_left_moving.simps inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1937
apply(case_tac a, simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1938
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1939
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1940
(*inv: check_left_moving to after_left_moving*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1941
lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1942
                \<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1943
apply(auto simp: inv_check_left_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1944
 inv_check_left_moving_on_leftmost.simps inv_after_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1945
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1946
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1947
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1948
lemma [simp]:"inv_check_left_moving (as, lm) (s, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1949
      \<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1950
by(simp add: inv_check_left_moving.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1951
inv_check_left_moving_in_middle.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1952
inv_check_left_moving_on_leftmost.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1953
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1954
(*inv: after_left_moving to inv_stop*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1955
lemma [simp]: "inv_after_left_moving (as, lm) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1956
       \<Longrightarrow> inv_stop (as, lm) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1957
apply(auto simp: inv_after_left_moving.simps inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1958
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1959
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1960
lemma [simp]: "inv_after_left_moving (as, lm) (s, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1961
             \<Longrightarrow> inv_stop (as, lm) (s', Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1962
by(auto simp: inv_after_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1963
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1964
(*inv: stop to stop*)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1965
lemma [simp]: "inv_stop (as, lm) (x, l, r) ires \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1966
               inv_stop (as, lm) (y, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1967
apply(simp add: inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1968
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1969
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1970
lemma [simp]: "inv_after_clear (as, lm) (s, aaa, Oc # xs) ires= False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1971
apply(auto simp: inv_after_clear.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1972
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1973
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1974
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1975
  "inv_after_left_moving (as, lm) (s, aaa, Oc # xs) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1976
by(auto simp: inv_after_left_moving.simps  )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1977
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1978
lemma [simp]: "inv_after_clear (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) (s, b, []) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1979
apply(auto simp: inv_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1980
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1981
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1982
lemma [simp]: "inv_on_left_moving (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1983
           (s, b, Oc # list) ires \<Longrightarrow> b \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1984
apply(auto simp: inv_on_left_moving.simps inv_on_left_moving_norm.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1985
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1986
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1987
lemma [simp]: "inv_check_left_moving (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) (s, b, Oc # list) ires \<Longrightarrow> b \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1988
apply(auto simp: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1989
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1990
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  1991
lemma numeral_4_eq_4: "4 =  Suc (Suc (Suc (Suc 0)))"
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  1992
by arith
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  1993
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1994
lemma tinc_correct_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1995
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1996
  and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1997
  and lm': "lm' = abc_lm_s lm n (Suc (abc_lm_v lm n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1998
  and f: "f = steps (Suc 0, l, r) (tinc_b, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  1999
  and P: "P = (\<lambda> (s, l, r). s = 10)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2000
  and Q: "Q = (\<lambda> (s, l, r). inc_inv n (as, lm) (s, l, r) ires)" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2001
  shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2002
proof(rule_tac LE = inc_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2003
  show "wf inc_LE" by(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2004
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2005
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2006
    using inv_start
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2007
    apply(simp add: f P Q steps.simps inc_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2008
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2009
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2010
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2011
    apply(simp add: f P steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2012
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2013
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2014
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2015
        \<in> inc_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2016
  proof(rule_tac allI, rule_tac impI, simp add: f, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2017
      case_tac "steps (Suc 0, l, r) (tinc_b, 0) n", simp add: P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2018
    fix n a b c
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2019
    assume "a \<noteq> 10 \<and> Q (a, b, c)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2020
    thus  "Q (step (a, b, c) (tinc_b, 0)) \<and> (step (a, b, c) (tinc_b, 0), a, b, c) \<in> inc_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2021
      apply(simp add:Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2022
      apply(simp add: inc_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2023
      apply(case_tac c, case_tac [2] aa)
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  2024
      apply(auto simp: Let_def step.simps tinc_b_def split: if_splits)
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  2025
      apply(simp_all add: inc_inv.simps inc_LE_def lex_triple_def lex_pair_def inc_measure_def numeral_5_eq_5 numeral_2_eq_2 numeral_3_eq_3
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  2026
                          numeral_4_eq_4 numeral_6_eq_6 numeral_7_eq_7 numeral_8_eq_8 numeral_9_eq_9)         
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2027
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2028
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2029
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2030
         
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2031
lemma tinc_correct: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2032
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2033
  and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2034
  and lm': "lm' = abc_lm_s lm n (Suc (abc_lm_v lm n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2035
  shows "\<exists> stp l' r'. steps (Suc 0, l, r) (tinc_b, 0) stp = (10, l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2036
              \<and> inv_stop (as, lm') (10, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2037
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2038
  apply(drule_tac tinc_correct_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2039
  apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2040
  apply(simp add: inc_inv.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2041
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2042
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2043
declare inv_locate_a.simps[simp del] abc_lm_s.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2044
        abc_lm_v.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2045
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2046
lemma [simp]: "(4::nat) * n mod 2 = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2047
apply(arith)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2048
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2049
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2050
lemma crsp_step_inc_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2051
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2052
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2053
  and aexec: "abc_step_l (as, lm) (Some (Inc n)) = (asa, lma)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2054
  shows "\<exists> stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2055
        = (2*n + 10, Bk # Bk # ires, <lma> @ Bk\<up>k) \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2056
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2057
  have "\<exists> stp l' r'. steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2058
    \<and> inv_locate_a (as, lm) (n, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2059
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2060
    apply(rule_tac findnth_correct, simp_all add: crsp layout)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2061
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2062
  from this obtain stp l' r' where a:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2063
    "steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2064
    \<and> inv_locate_a (as, lm) (n, l', r') ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2065
  moreover have
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2066
    "\<exists> stp la ra. steps (Suc 0, l', r') (tinc_b, 0) stp = (10, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2067
                        \<and> inv_stop (as, lma) (10, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2068
    using assms a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2069
  proof(rule_tac lm' = lma and n = n and lm = lm and ly = ly and ap = ap in tinc_correct,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2070
      simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2071
    show "lma = abc_lm_s lm n (Suc (abc_lm_v lm n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2072
      using aexec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2073
      apply(simp add: abc_step_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2074
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2075
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2076
  from this obtain stpa la ra where b:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2077
    "steps (Suc 0, l', r') (tinc_b, 0) stpa = (10, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2078
    \<and> inv_stop (as, lma) (10, la, ra) ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2079
  from a b show "\<exists>stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2080
    = (2 * n + 10, Bk # Bk # ires, <lma> @ Bk \<up> k) \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2081
    apply(rule_tac x = "stp + stpa" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2082
    using tm_append_steps[of "Suc 0" l r "findnth n" stp l' r' tinc_b stpa 10 la ra "length (findnth n) div 2"]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2083
    apply(simp add: length_findnth inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2084
    apply(case_tac stpa, simp_all add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2085
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2086
qed 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2087
     
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2088
lemma crsp_step_inc:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2089
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2090
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2091
  and fetch: "abc_fetch as ap = Some (Inc n)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2092
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Inc n)))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2093
  (steps (s, l, r) (ci ly (start_of ly as) (Inc n), start_of ly as - Suc 0) stp) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2094
proof(case_tac "(abc_step_l (as, lm) (Some (Inc n)))")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2095
  fix a b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2096
  assume aexec: "abc_step_l (as, lm) (Some (Inc n)) = (a, b)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2097
  then have "\<exists> stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2098
        = (2*n + 10, Bk # Bk # ires, <b> @ Bk\<up>k) \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2099
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2100
    apply(rule_tac crsp_step_inc_pre, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2101
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2102
  thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2103
    using assms aexec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2104
    apply(erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2105
    apply(erule_tac exE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2106
    apply(erule_tac conjE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2107
    apply(rule_tac x = stp in exI, simp add: ci.simps tm_shift_eq_steps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2108
    apply(drule_tac off = "(start_of (layout_of ap) as - Suc 0)" in tm_shift_eq_steps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2109
    apply(auto simp: crsp.simps abc_step_l.simps fetch start_of_Suc1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2110
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2111
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2112
    
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2113
subsection{* Crsp of Dec n e*}
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2114
declare adjust.simps[simp del]
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2115
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2116
type_synonym dec_inv_t = "(nat * nat list) \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow>  bool"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2117
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2118
fun dec_first_on_right_moving :: "nat \<Rightarrow> dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2119
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2120
  "dec_first_on_right_moving n (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2121
               (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2122
         ml + mr = Suc m \<and> length lm1 = n \<and> ml > 0 \<and> m > 0 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2123
             (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2124
                          else  l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2125
    ((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> (r = Oc\<up>mr \<and> lm2 = [])))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2126
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2127
fun dec_on_right_moving :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2128
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2129
  "dec_on_right_moving (as, lm) (s, l, r) ires =  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2130
   (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2131
                             ml + mr = Suc (Suc m) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2132
   (if lm1 = [] then l = Oc\<up>ml@ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2133
                else  l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2134
   ((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> (r = Oc\<up>mr \<and> lm2 = [])))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2135
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2136
fun dec_after_clear :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2137
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2138
  "dec_after_clear (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2139
              (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2140
                ml + mr = Suc m \<and> ml = Suc m \<and> r \<noteq> [] \<and> r \<noteq> [] \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2141
               (if lm1 = [] then l = Oc\<up>ml@ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2142
                            else l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2143
               (tl r = Bk # <lm2> @ Bk\<up>rn \<or> tl r = [] \<and> lm2 = []))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2144
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2145
fun dec_after_write :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2146
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2147
  "dec_after_write (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2148
         (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2149
       ml + mr = Suc m \<and> ml = Suc m \<and> lm2 \<noteq> [] \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2150
       (if lm1 = [] then l = Bk # Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2151
                    else l = Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2152
       tl r = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2153
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2154
fun dec_right_move :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2155
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2156
  "dec_right_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2157
        (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2158
            \<and> ml = Suc m \<and> mr = (0::nat) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2159
              (if lm1 = [] then l = Bk # Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2160
                          else l = Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2161
           \<and> (r = Bk # <lm2> @ Bk\<up>rn \<or> r = [] \<and> lm2 = []))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2162
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2163
fun dec_check_right_move :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2164
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2165
  "dec_check_right_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2166
        (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2167
           ml = Suc m \<and> mr = (0::nat) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2168
           (if lm1 = [] then l = Bk # Bk # Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2169
                       else l = Bk # Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2170
           r = <lm2> @ Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2171
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2172
fun dec_left_move :: "dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2173
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2174
  "dec_left_move (as, lm) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2175
    (\<exists> lm1 m rn. (lm::nat list) = lm1 @ [m::nat] \<and>   
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2176
    rn > 0 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2177
   (if lm1 = [] then l = Bk # Oc\<up>Suc m @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2178
    else l = Bk # Oc\<up>Suc m @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> r = Bk\<up>rn)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2179
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2180
declare
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2181
  dec_on_right_moving.simps[simp del] dec_after_clear.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2182
  dec_after_write.simps[simp del] dec_left_move.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2183
  dec_check_right_move.simps[simp del] dec_right_move.simps[simp del] 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2184
  dec_first_on_right_moving.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2185
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2186
fun inv_locate_n_b :: "inc_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2187
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2188
  "inv_locate_n_b (as, lm) (s, l, r) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2189
    (\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<up>tn = lm1 @ [m] @ lm2 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2190
     length lm1 = s \<and> m + 1 = ml + mr \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2191
     ml = 1 \<and> tn = s + 1 - length lm \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2192
     (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2193
      else l = Oc\<up>ml @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2194
     (r = Oc\<up>mr @ [Bk] @ <lm2>@ Bk\<up>rn \<or> (lm2 = [] \<and> r = Oc\<up>mr))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2195
  )"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2196
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2197
fun dec_inv_1 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2198
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2199
  "dec_inv_1 ly n e (as, am) (s, l, r) ires = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2200
           (let ss = start_of ly as in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2201
            let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2202
            let am'' = abc_lm_s am n (abc_lm_v am n) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2203
              if s = start_of ly e then inv_stop (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2204
              else if s = ss then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2205
              else if s = ss + 2 * n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2206
                  inv_locate_b (as, am) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2207
              else if s = ss + 2 * n + 13 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2208
                  inv_on_left_moving (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2209
              else if s = ss + 2 * n + 14 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2210
                  inv_check_left_moving (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2211
              else if s = ss + 2 * n + 15 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2212
                  inv_after_left_moving (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2213
              else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2214
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2215
declare fetch.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2216
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2217
  "fetch (ci ly (start_of ly as) (Dec n e)) (Suc (2 * n)) Bk = (W1,  start_of ly as + 2 *n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2218
apply(auto simp: fetch.simps length_ci_dec)
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2219
apply(auto simp: ci.simps nth_append length_findnth adjust.simps shift.simps tdec_b_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2220
using startof_not0[of ly as] by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2221
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2222
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2223
  "fetch (ci ly (start_of ly as) (Dec n e)) (Suc (2 * n)) Oc = (R,  Suc (start_of ly as) + 2 *n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2224
apply(auto simp: fetch.simps length_ci_dec)
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2225
apply(auto simp: ci.simps nth_append length_findnth adjust.simps shift.simps tdec_b_def)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2226
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2227
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2228
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2229
  "\<lbrakk>r = [] \<or> hd r = Bk; inv_locate_a (as, lm) (n, l, r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2230
    \<Longrightarrow> \<exists>stp la ra.
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2231
  steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2232
  start_of ly as - Suc 0) stp = (Suc (start_of ly as + 2 * n), la, ra) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2233
  inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2234
apply(rule_tac x = "Suc (Suc 0)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2235
apply(auto simp: steps.simps step.simps length_ci_dec)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2236
apply(case_tac r, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2237
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2238
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2239
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2240
  "\<lbrakk>inv_locate_a (as, lm) (n, l, r) ires; r \<noteq> [] \<and> hd r \<noteq> Bk\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2241
    \<Longrightarrow> \<exists>stp la ra.
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2242
  steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2243
  start_of ly as - Suc 0) stp = (Suc (start_of ly as + 2 * n), la, ra) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2244
  inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2245
apply(rule_tac x = "(Suc 0)" in exI, case_tac "hd r", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2246
apply(auto simp: steps.simps step.simps length_ci_dec)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2247
apply(case_tac r, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2248
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2249
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2250
fun abc_dec_1_stage1:: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2251
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2252
  "abc_dec_1_stage1 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2253
       (if s > ss \<and> s \<le> ss + 2*n + 1 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2254
        else if s = ss + 2 * n + 13 \<or> s = ss + 2*n + 14 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2255
        else if s = ss + 2*n + 15 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2256
        else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2257
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2258
fun abc_dec_1_stage2:: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2259
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2260
  "abc_dec_1_stage2 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2261
       (if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2262
        else if s = ss + 2*n + 13 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2263
        else if s = ss + 2*n + 14 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2264
        else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2265
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2266
fun abc_dec_1_stage3 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2267
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2268
  "abc_dec_1_stage3 (s, l, r) ss n  = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2269
        (if s \<le> ss + 2*n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2270
             if (s - ss) mod 2 = 0 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2271
                         if r \<noteq> [] \<and> hd r = Oc then 0 else 1  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2272
                         else length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2273
         else if s = ss + 2 * n + 13 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2274
             if r \<noteq> [] \<and> hd r = Oc then 2 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2275
             else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2276
         else if s = ss + 2 * n + 14 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2277
             if r \<noteq> [] \<and> hd r = Oc then 3 else 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2278
         else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2279
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2280
fun abc_dec_1_measure :: "(config \<times> nat \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2281
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2282
  "abc_dec_1_measure (c, ss, n) = (abc_dec_1_stage1 c ss n, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2283
                   abc_dec_1_stage2 c ss n, abc_dec_1_stage3 c ss n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2284
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2285
definition abc_dec_1_LE ::
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2286
  "((config \<times> nat \<times>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2287
  nat) \<times> (config \<times> nat \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2288
  where "abc_dec_1_LE \<equiv> (inv_image lex_triple abc_dec_1_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2289
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2290
lemma wf_dec_le: "wf abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2291
by(auto intro:wf_inv_image simp:abc_dec_1_LE_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2292
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2293
lemma startof_Suc2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2294
  "abc_fetch as ap = Some (Dec n e) \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2295
        start_of (layout_of ap) (Suc as) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2296
            start_of (layout_of ap) as + 2 * n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2297
apply(auto simp: start_of.simps layout_of.simps  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2298
                 length_of.simps abc_fetch.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2299
                 take_Suc_conv_app_nth split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2300
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2301
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2302
lemma start_of_less_2: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2303
  "start_of ly e \<le> start_of ly (Suc e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2304
apply(case_tac "e < length ly")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2305
apply(auto simp: start_of.simps take_Suc take_Suc_conv_app_nth)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2306
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2307
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2308
lemma start_of_less_1: "start_of ly e \<le> start_of ly (e + d)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2309
proof(induct d)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2310
  case 0 thus "?case" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2311
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2312
  case (Suc d)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2313
  have "start_of ly e \<le> start_of ly (e + d)"  by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2314
  moreover have "start_of ly (e + d) \<le> start_of ly (Suc (e + d))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2315
    by(rule_tac start_of_less_2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2316
  ultimately show"?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2317
    by(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2318
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2319
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2320
lemma start_of_less: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2321
  assumes "e < as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2322
  shows "start_of ly e \<le> start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2323
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2324
  obtain d where " as = e + d"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2325
    using assms by (metis less_imp_add_positive)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2326
  thus "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2327
    by(simp add: start_of_less_1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2328
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2329
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2330
lemma start_of_ge: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2331
  assumes fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2332
  and layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2333
  and great: "e > as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2334
  shows "start_of ly e \<ge> start_of ly as + 2*n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2335
proof(cases "e = Suc as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2336
  case True
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2337
  have "e = Suc as" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2338
  moreover hence "start_of ly (Suc as) = start_of ly as + 2*n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2339
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2340
    by(simp add: startof_Suc2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2341
  ultimately show "?thesis" by (simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2342
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2343
  case False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2344
  have "e \<noteq> Suc as" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2345
  then have "e > Suc as" using great by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2346
  then have "start_of ly (Suc as) \<le> start_of ly e"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2347
    by(simp add: start_of_less)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2348
  moreover have "start_of ly (Suc as) = start_of ly as + 2*n + 16"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2349
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2350
    by(simp add: startof_Suc2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2351
  ultimately show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2352
    by arith
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2353
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2354
    
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2355
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e); as < e; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2356
  Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2357
apply(drule_tac start_of_ge, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2358
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2359
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2360
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2361
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e); as > e;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2362
  Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2363
apply(drule_tac ly = "layout_of ap" in start_of_less[of])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2364
apply(arith)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2365
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2366
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2367
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e);
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2368
  Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2369
apply(subgoal_tac "as = e \<or> as < e \<or> as > e", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2370
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2371
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2372
lemma [simp]:"fetch (ci (ly) (start_of ly as) (Dec n e)) (Suc (2 * n))  Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2373
  = (R, start_of ly as + 2*n + 1)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2374
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2375
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2376
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2377
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2378
lemma [simp]: "(start_of ly as = 0) = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2379
apply(simp add: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2380
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2381
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2382
lemma [simp]: "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2383
  (start_of ly as) (Dec n e)) (Suc (2 * n))  Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2384
  = (W1, start_of ly as + 2*n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2385
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2386
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2387
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2388
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2389
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2390
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2391
                (start_of ly as) (Dec n e)) (Suc (Suc (2 * n)))  Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2392
      = (R, start_of ly as + 2*n + 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2393
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2394
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2395
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2396
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2397
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2398
lemma [simp]: "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2399
                  (start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2400
      = (L, start_of ly as + 2*n + 13)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2401
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2402
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2403
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2404
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2405
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2406
lemma [simp]: "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2407
             (start_of ly as) (Dec n e)) (Suc (Suc (Suc (2 * n))))  Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2408
     = (R, start_of ly as + 2*n + 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2409
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2410
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2411
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2412
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2413
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2414
lemma [simp]: "fetch (ci (ly) (start_of ly as) (Dec n e)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2415
                             (Suc (Suc (Suc (2 * n))))  Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2416
     = (L, start_of ly as + 2*n + 3)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2417
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2418
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2419
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2420
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2421
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2422
     "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2423
                      (start_of ly as) (Dec n e)) (2 * n + 4) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2424
    = (W0, start_of ly as + 2*n + 3)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2425
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2426
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2427
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2428
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2429
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2430
lemma [simp]: "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2431
                   (start_of ly as) (Dec n e)) (2 * n + 4) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2432
    = (R, start_of ly as + 2*n + 4)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2433
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2434
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2435
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2436
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2437
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2438
lemma [simp]:"fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2439
                          (start_of ly as) (Dec n e)) (2 * n + 5) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2440
    = (R, start_of ly as + 2*n + 5)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2441
apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2442
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2443
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2444
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2445
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2446
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2447
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2448
  "fetch (ci (ly)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2449
                (start_of ly as) (Dec n e)) (2 * n + 6) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2450
    = (L, start_of ly as + 2*n + 6)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2451
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2452
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2453
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2454
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2455
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2456
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2457
  "fetch (ci (ly) (start_of ly as) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2458
                      (Dec n e)) (2 * n + 6) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2459
    = (L, start_of ly as + 2*n + 7)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2460
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2461
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2462
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2463
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2464
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2465
lemma [simp]:"fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2466
             (start_of ly as) (Dec n e)) (2 * n + 7) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2467
    = (L, start_of ly as + 2*n + 10)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2468
apply(subgoal_tac "2*n + 7 = Suc (2*n + 6)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2469
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2470
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2471
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2472
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2473
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2474
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2475
                   (start_of ly as) (Dec n e)) (2 * n + 8) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2476
    = (W1, start_of ly as + 2*n + 7)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2477
apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2478
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2479
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2480
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2481
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2482
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2483
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2484
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2485
                   (start_of ly as) (Dec n e)) (2 * n + 8) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2486
    = (R, start_of ly as + 2*n + 8)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2487
apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2488
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2489
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2490
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2491
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2492
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2493
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2494
  (start_of ly as) (Dec n e)) (2 * n + 9) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2495
  = (L, start_of ly as + 2*n + 9)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2496
apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2497
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2498
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2499
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2500
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2501
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2502
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2503
  (start_of ly as) (Dec n e)) (2 * n + 9) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2504
  = (R, start_of ly as + 2*n + 8)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2505
apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2506
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2507
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2508
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2509
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2510
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2511
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2512
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2513
  (start_of ly as) (Dec n e)) (2 * n + 10) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2514
  = (R, start_of ly as + 2*n + 4)" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2515
apply(subgoal_tac "2*n + 10 = Suc (2*n + 9)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2516
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2517
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2518
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2519
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2520
lemma [simp]: "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2521
             (start_of ly as) (Dec n e)) (2 * n + 10) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2522
    = (W0, start_of ly as + 2*n + 9)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2523
apply(subgoal_tac "2*n + 10 = Suc (2*n + 9)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2524
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2525
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2526
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2527
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2528
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2529
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2530
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2531
  (start_of ly as) (Dec n e)) (2 * n + 11) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2532
  = (L, start_of ly as + 2*n + 10)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2533
apply(subgoal_tac "2*n + 11 = Suc (2*n + 10)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2534
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2535
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2536
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2537
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2538
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2539
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2540
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2541
  (start_of ly as) (Dec n e)) (2 * n + 11) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2542
  = (L, start_of ly as + 2*n + 11)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2543
apply(subgoal_tac "2*n + 11 = Suc (2*n + 10)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2544
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2545
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2546
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2547
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2548
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2549
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2550
  (start_of ly as) (Dec n e)) (2 * n + 12) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2551
  = (L, start_of ly as + 2*n + 10)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2552
apply(subgoal_tac "2*n + 12 = Suc (2*n + 11)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2553
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2554
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2555
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2556
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2557
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2558
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2559
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2560
  (start_of ly as) (Dec n e)) (2 * n + 12) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2561
  = (R, start_of ly as + 2*n + 12)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2562
apply(subgoal_tac "2*n + 12 = Suc (2*n + 11)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2563
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2564
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2565
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2566
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2567
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2568
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2569
  (start_of ly as) (Dec n e)) (2 * n + 13) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2570
  = (R, start_of ly as + 2*n + 16)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2571
apply(subgoal_tac "2*n + 13 = Suc (2*n + 12)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2572
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2573
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2574
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2575
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2576
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2577
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2578
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2579
  (start_of ly as) (Dec n e)) (14 + 2 * n) Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2580
  = (L, start_of ly as + 2*n + 13)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2581
apply(subgoal_tac "14 + 2*n = Suc (2*n + 13)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2582
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2583
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2584
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2585
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2586
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2587
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2588
  (start_of ly as) (Dec n e)) (14 + 2 * n) Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2589
  = (L, start_of ly as + 2*n + 14)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2590
apply(subgoal_tac "14 + 2*n = Suc (2*n + 13)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2591
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2592
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2593
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2594
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2595
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2596
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2597
  (start_of ly as) (Dec n e)) (15 + 2 * n)  Oc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2598
  = (L, start_of ly as + 2*n + 13)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2599
apply(subgoal_tac "15 + 2*n = Suc (2*n + 14)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2600
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2601
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2602
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2603
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2604
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2605
  "fetch (ci (ly) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2606
  (start_of ly as) (Dec n e)) (15 + 2 * n)  Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2607
 = (R, start_of ly as + 2*n + 15)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2608
apply(subgoal_tac "15 + 2*n = Suc (2*n + 14)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2609
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2610
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2611
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2612
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2613
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2614
  "abc_fetch as aprog = Some (Dec n e) \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2615
     fetch (ci (ly) (start_of (ly) as) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2616
              (Dec n e)) (16 + 2 * n)  Bk
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2617
 = (R, start_of (ly) e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2618
apply(subgoal_tac "16 + 2*n = Suc (2*n + 15)", simp only: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2619
apply(auto simp: ci.simps findnth.simps fetch.simps
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  2620
                  nth_of.simps shift.simps nth_append tdec_b_def length_findnth adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2621
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2622
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2623
declare dec_inv_1.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2624
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2625
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2626
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2627
 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2628
   \<Longrightarrow> (start_of ly e \<noteq> Suc (start_of ly as + 2 * n) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2629
        start_of ly e \<noteq> Suc (Suc (start_of ly as + 2 * n)) \<and>  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2630
        start_of ly e \<noteq> start_of ly as + 2 * n + 3 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2631
        start_of ly e \<noteq> start_of ly as + 2 * n + 4 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2632
        start_of ly e \<noteq> start_of ly as + 2 * n + 5 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2633
        start_of ly e \<noteq> start_of ly as + 2 * n + 6 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2634
        start_of ly e \<noteq> start_of ly as + 2 * n + 7 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2635
        start_of ly e \<noteq> start_of ly as + 2 * n + 8 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2636
        start_of ly e \<noteq> start_of ly as + 2 * n + 9 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2637
        start_of ly e \<noteq> start_of ly as + 2 * n + 10 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2638
        start_of ly e \<noteq> start_of ly as + 2 * n + 11 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2639
        start_of ly e \<noteq> start_of ly as + 2 * n + 12 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2640
        start_of ly e \<noteq> start_of ly as + 2 * n + 13 \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2641
        start_of ly e \<noteq> start_of ly as + 2 * n + 14 \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2642
        start_of ly e \<noteq> start_of ly as + 2 * n + 15)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2643
using start_of_ge[of as aprog n e ly] start_of_less[of e as ly]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2644
apply(case_tac "e < as", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2645
apply(case_tac "e = as", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2646
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2647
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2648
lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2649
      \<Longrightarrow> (Suc (start_of ly as + 2 * n) \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2650
          Suc (Suc (start_of ly as + 2 * n)) \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2651
          start_of ly as + 2 * n + 3 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2652
          start_of ly as + 2 * n + 4 \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2653
          start_of ly as + 2 * n + 5 \<noteq>start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2654
          start_of ly as + 2 * n + 6 \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2655
          start_of ly as + 2 * n + 7 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2656
          start_of ly as + 2 * n + 8 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2657
          start_of ly as + 2 * n + 9 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2658
          start_of ly as + 2 * n + 10 \<noteq> start_of ly e \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2659
          start_of ly as + 2 * n + 11 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2660
          start_of ly as + 2 * n + 12 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2661
          start_of ly as + 2 * n + 13 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2662
          start_of ly as + 2 * n + 14 \<noteq> start_of ly e \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2663
          start_of ly as + 2 * n + 15 \<noteq> start_of ly e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2664
using start_of_ge[of as aprog n e ly] start_of_less[of e as ly]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2665
apply(case_tac "e < as", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2666
apply(case_tac "e = as", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2667
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2668
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2669
lemma [simp]: "inv_locate_b (as, lm) (n, [], []) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2670
apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2671
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2672
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2673
lemma [simp]: "inv_locate_b (as, lm) (n, [], Bk # list) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2674
apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2675
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2676
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2677
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2678
 "\<lbrakk>dec_first_on_right_moving n (as, am) (s, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2679
   \<Longrightarrow> dec_first_on_right_moving n (as, am) (s', Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2680
apply(simp only: dec_first_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2681
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2682
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2683
      rule_tac x = m in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2684
apply(rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2685
      rule_tac x = "mr - 1" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2686
apply(case_tac [!] mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2687
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2688
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2689
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2690
  "dec_first_on_right_moving n (as, am) (s, l, Bk # xs) ires \<Longrightarrow> l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2691
apply(auto simp: dec_first_on_right_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2692
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2693
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2694
lemma [elim]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2695
  "\<lbrakk>\<not> length lm1 < length am; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2696
    am @ replicate (length lm1 - length am) 0 @ [0::nat] = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2697
                                                lm1 @ m # lm2;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2698
    0 < m\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2699
   \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2700
apply(subgoal_tac "lm2 = []", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2701
apply(drule_tac length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2702
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2703
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2704
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2705
 "\<lbrakk>dec_first_on_right_moving n (as, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2706
                   abc_lm_s am n (abc_lm_v am n)) (s, l, Bk # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2707
\<Longrightarrow> dec_after_clear (as, abc_lm_s am n 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2708
                 (abc_lm_v am n - Suc 0)) (s', tl l, hd l # Bk # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2709
apply(simp only: dec_first_on_right_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2710
                 dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2711
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2712
apply(case_tac "n < length am")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2713
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2714
      rule_tac x = "m - 1" in exI, auto simp: )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2715
apply(case_tac [!] mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2716
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2717
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2718
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2719
 "\<lbrakk>dec_first_on_right_moving n (as, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2720
                   abc_lm_s am n (abc_lm_v am n)) (s, l, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2721
\<Longrightarrow> (l = [] \<longrightarrow> dec_after_clear (as, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2722
             abc_lm_s am n (abc_lm_v am n - Suc 0)) (s', [], [Bk]) ires) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2723
    (l \<noteq> [] \<longrightarrow> dec_after_clear (as, abc_lm_s am n 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2724
                      (abc_lm_v am n - Suc 0)) (s', tl l, [hd l]) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2725
apply(subgoal_tac "l \<noteq> []", 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2726
      simp only: dec_first_on_right_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2727
                 dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2728
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2729
apply(case_tac "n < length am", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2730
apply(rule_tac x = lm1 in exI, rule_tac x = "m - 1" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2731
apply(case_tac [1-2] m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2732
apply(auto simp: dec_first_on_right_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2733
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2734
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2735
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Oc # r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2736
                \<Longrightarrow> dec_after_clear (as, am) (s', l, Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2737
apply(auto simp: dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2738
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2739
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2740
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Bk # r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2741
                \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2742
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2743
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2744
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2745
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2746
             \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2747
apply(auto simp: dec_after_clear.simps dec_right_move.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2748
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2749
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2750
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2751
             \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2752
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2753
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2754
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2755
lemma [simp]:"dec_right_move (as, am) (s, l, Oc # r) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2756
apply(auto simp: dec_right_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2757
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2758
              
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2759
lemma dec_right_move_2_check_right_move[simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2760
     "\<lbrakk>dec_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2761
      \<Longrightarrow> dec_check_right_move (as, am) (s', Bk # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2762
apply(auto simp: dec_right_move.simps dec_check_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2763
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2764
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2765
lemma [simp]: "(<lm::nat list> = []) = (lm = [])"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2766
apply(case_tac lm, simp_all add: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2767
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2768
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2769
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2770
 "dec_right_move (as, am) (s, l, []) ires= 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2771
  dec_right_move (as, am) (s, l, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2772
apply(simp add: dec_right_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2773
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2774
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2775
lemma [simp]: "\<lbrakk>dec_right_move (as, am) (s, l, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2776
             \<Longrightarrow> dec_check_right_move (as, am) (s, Bk # l, []) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2777
apply(insert dec_right_move_2_check_right_move[of as am s l "[]" s'], 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2778
      simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2779
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2780
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2781
lemma [simp]: "dec_check_right_move (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2782
apply(auto simp: dec_check_right_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2783
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2784
 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2785
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Oc # r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2786
             \<Longrightarrow> dec_after_write (as, am) (s', tl l, hd l # Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2787
apply(auto simp: dec_check_right_move.simps dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2788
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2789
      rule_tac x = m in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2790
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2791
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2792
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2793
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2794
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2795
                \<Longrightarrow> dec_left_move (as, am) (s', tl l, hd l # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2796
apply(auto simp: dec_check_right_move.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2797
                 dec_left_move.simps inv_after_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2798
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2799
apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2800
apply(rule_tac [!] x = "(Suc rn)" in exI, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2801
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2802
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2803
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2804
             \<Longrightarrow> dec_left_move (as, am) (s', tl l, [hd l]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2805
apply(auto simp: dec_check_right_move.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2806
                 dec_left_move.simps inv_after_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2807
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2808
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2809
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2810
lemma [simp]: "dec_left_move (as, am) (s, aaa, Oc # xs) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2811
apply(auto simp: dec_left_move.simps inv_after_move.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2812
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2813
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2814
lemma [simp]: "dec_left_move (as, am) (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2815
             \<Longrightarrow> l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2816
apply(auto simp: dec_left_move.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2817
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2818
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2819
lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2820
  (s', Oc # Oc\<up>m @ Bk # Bk # ires, Bk # Bk\<up>rn) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2821
apply(simp add: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2822
apply(rule_tac x = "[m]" in exI, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2823
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2824
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2825
lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m])
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2826
  (s', Oc # Oc\<up>m @ Bk # Bk # ires, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2827
apply(simp add: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2828
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2829
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2830
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2831
lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2832
  inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s', 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2833
  Oc # Oc\<up>m @ Bk # <rev lm1> @ Bk # Bk # ires, Bk # Bk\<up>rn) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2834
apply(simp only: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2835
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2836
apply(simp add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2837
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2838
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2839
lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2840
  inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s', 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2841
  Oc # Oc\<up> m @ Bk # <rev lm1> @ Bk # Bk # ires, [Bk]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2842
apply(simp only: inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2843
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2844
apply(simp add: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2845
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2846
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2847
lemma [simp]: "dec_left_move (as, am) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2848
       \<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, hd l # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2849
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2850
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2851
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2852
lemma [simp]: "dec_left_move (as, am) (s, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2853
             \<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, [hd l]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2854
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2855
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2856
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2857
lemma [simp]: "dec_after_write (as, am) (s, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2858
       \<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2859
apply(auto simp: dec_after_write.simps dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2860
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2861
      rule_tac x = "hd lm2" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2862
apply(rule_tac x = "Suc 0" in exI,rule_tac x =  "Suc (hd lm2)" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2863
apply(case_tac lm2, auto split: if_splits simp: tape_of_nl_cons)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2864
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2865
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2866
lemma [simp]: "dec_after_write (as, am) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2867
       \<Longrightarrow> dec_after_write (as, am) (s', l, Oc # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2868
apply(auto simp: dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2869
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2870
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2871
lemma [simp]: "dec_after_write (as, am) (s, aaa, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2872
             \<Longrightarrow> dec_after_write (as, am) (s', aaa, [Oc]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2873
apply(auto simp: dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2874
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2875
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2876
lemma [simp]: "dec_on_right_moving (as, am) (s, l, Oc # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2877
       \<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2878
apply(simp only: dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2879
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2880
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2881
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2882
      rule_tac x = "m" in exI, rule_tac x = "Suc ml" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2883
      rule_tac x = "mr - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2884
apply(case_tac mr, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2885
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2886
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2887
lemma [simp]: "dec_on_right_moving (as, am) (s, l, r) ires\<Longrightarrow>  l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2888
apply(auto simp: dec_on_right_moving.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2889
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2890
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2891
lemma [simp]: "dec_on_right_moving (as, am) (s, l, Bk # r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2892
      \<Longrightarrow>  dec_after_clear (as, am) (s', tl l, hd l # Bk # r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2893
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2894
apply(case_tac [!] mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2895
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2896
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2897
lemma [simp]: "dec_on_right_moving (as, am) (s, l, []) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2898
             \<Longrightarrow> dec_after_clear (as, am) (s', tl l, [hd l]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2899
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2900
apply(simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2901
apply(rule_tac x = lm1 in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2902
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2903
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2904
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2905
 "inv_stop (as, abc_lm_s am n (abc_lm_v am n)) (s, l, r) ires \<Longrightarrow> l \<noteq> []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2906
apply(auto simp: inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2907
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2908
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2909
lemma dec_false_1[simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2910
 "\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2911
  \<Longrightarrow> False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2912
apply(auto simp: inv_locate_b.simps in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2913
apply(case_tac "length lm1 \<ge> length am", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2914
apply(subgoal_tac "lm2 = []", simp, subgoal_tac "m = 0", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2915
apply(case_tac mr, auto simp: )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2916
apply(subgoal_tac "Suc (length lm1) - length am = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2917
                   Suc (length lm1 - length am)", 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2918
      simp add: exp_ind del: replicate.simps, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2919
apply(drule_tac xs = "am @ replicate (Suc (length lm1) - length am) 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2920
                and ys = "lm1 @ m # lm2" in length_equal, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2921
apply(case_tac mr, auto simp: abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2922
apply(case_tac "mr = 0", simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2923
apply(subgoal_tac "Suc (length lm1) - length am = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2924
                       Suc (length lm1 - length am)", 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2925
      simp add: exp_ind del: replicate.simps, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2926
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2927
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2928
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2929
 "\<lbrakk>inv_locate_b (as, am) (n, aaa, Bk # xs) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2930
   abc_lm_v am n = 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2931
   \<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2932
                         (s, tl aaa, hd aaa # Bk # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2933
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2934
apply(simp only: inv_locate_b.simps in_middle.simps) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2935
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2936
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2937
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2938
         (as, abc_lm_s am n 0) (s, tl aaa, hd aaa # Bk # xs) ires", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2939
apply(simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2940
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2941
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2942
      rule_tac x =  m in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2943
      rule_tac x = "Suc 0" in exI, simp add: abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2944
apply(case_tac mr, simp_all, auto simp: abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2945
apply(simp only: exp_ind[THEN sym] replicate_Suc Nat.Suc_diff_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2946
apply(auto simp: inv_on_left_moving_in_middle_B.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2947
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2948
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2949
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2950
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2951
 "\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2952
   \<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2953
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2954
apply(simp only: inv_locate_b.simps in_middle.simps) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2955
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2956
apply(simp add: inv_on_left_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2957
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2958
         (as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2959
apply(simp only: inv_on_left_moving_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2960
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2961
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2962
      rule_tac x =  m in exI, rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2963
      rule_tac x = "Suc 0" in exI, simp add: abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2964
apply(case_tac mr, simp_all, auto simp: abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2965
apply(simp_all only: exp_ind Nat.Suc_diff_le del: replicate_Suc, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2966
apply(auto simp: inv_on_left_moving_in_middle_B.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2967
apply(case_tac [!] m, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2968
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2969
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2970
lemma [simp]: "\<lbrakk>am ! n = (0::nat); n < length am\<rbrakk> \<Longrightarrow> am[n := 0] = am"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2971
apply(simp add: list_update_same_conv)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2972
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2973
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2974
lemma  [intro]: "\<lbrakk>abc_lm_v (a # list) 0 = 0\<rbrakk> \<Longrightarrow> a = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2975
apply(simp add: abc_lm_v.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2976
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2977
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2978
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2979
 "inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2980
          (start_of (layout_of aprog) e, aaa, Oc # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2981
  \<Longrightarrow> inv_locate_a (as, abc_lm_s am n 0) (0, aaa, Oc # xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2982
apply(simp add: inv_locate_a.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2983
apply(rule disjI1)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2984
apply(auto simp: inv_stop.simps at_begin_norm.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2985
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2986
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2987
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2988
 "\<lbrakk>inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2989
          (start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2990
  \<Longrightarrow> inv_locate_b (as, am) (0, Oc # aaa, xs) ires \<or> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2991
      inv_locate_b (as, abc_lm_s am n 0) (0, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2992
apply(simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2993
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2994
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2995
lemma dec_false2: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2996
 "inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2997
  (start_of (layout_of aprog) e, aaa, Bk # xs) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2998
apply(auto simp: inv_stop.simps abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  2999
apply(case_tac [!] am, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3000
apply(case_tac [!] n, auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3001
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3002
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3003
lemma dec_false3:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3004
   "inv_stop (as, abc_lm_s am n 0) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3005
              (start_of (layout_of aprog) e, aaa, []) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3006
apply(auto simp: inv_stop.simps abc_lm_s.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3007
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3008
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3009
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3010
  "fetch (ci (layout_of aprog) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3011
       (start_of (layout_of aprog) as) (Dec n e)) 0 b = (Nop, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3012
by(simp add: fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3013
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3014
declare dec_inv_1.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3015
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3016
declare inv_locate_n_b.simps [simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3017
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3018
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3019
  "\<lbrakk>0 < abc_lm_v am n; 0 < n; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3020
    at_begin_fst_bwtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3021
 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3022
apply(simp add: at_begin_fst_bwtn.simps inv_locate_n_b.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3023
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3024
 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3025
lemma Suc_minus:"length am + tn = n
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3026
       \<Longrightarrow> Suc tn = Suc n - length am "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3027
apply(arith)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3028
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3029
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3030
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3031
 "\<lbrakk>0 < abc_lm_v am n; 0 < n; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3032
   at_begin_fst_awtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3033
 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3034
apply(simp only: at_begin_fst_awtn.simps inv_locate_n_b.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3035
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3036
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3037
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3038
      rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3039
apply(simp add: exp_ind del: replicate.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3040
apply(rule conjI)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3041
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3042
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3043
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3044
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3045
 "\<lbrakk>inv_locate_n_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3046
 \<Longrightarrow> dec_first_on_right_moving n (as, abc_lm_s am n (abc_lm_v am n))  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3047
                                      (s, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3048
apply(auto simp: inv_locate_n_b.simps dec_first_on_right_moving.simps 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3049
                 abc_lm_s.simps abc_lm_v.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3050
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3051
      rule_tac x = m in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3052
apply(rule_tac x = "Suc (Suc 0)" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3053
      rule_tac x = "m - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3054
apply(case_tac m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3055
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3056
      rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3057
      simp add: Suc_diff_le exp_ind del: replicate.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3058
apply(rule_tac x = "Suc (Suc 0)" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3059
      rule_tac x = "m - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3060
apply(case_tac m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3061
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3062
      rule_tac x = m in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3063
apply(rule_tac x = "Suc (Suc 0)" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3064
      rule_tac x = "m - 1" in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3065
apply(case_tac m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3066
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3067
      rule_tac x = m in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3068
      simp add: Suc_diff_le exp_ind del: replicate.simps, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3069
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3070
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3071
lemma [simp]: "inv_on_left_moving (as, am) (s, [], r) ires 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3072
  = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3073
apply(simp add: inv_on_left_moving.simps inv_on_left_moving_norm.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3074
                inv_on_left_moving_in_middle_B.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3075
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3076
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3077
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3078
  "inv_check_left_moving (as, abc_lm_s am n 0)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3079
  (start_of (layout_of aprog) as + 2 * n + 14, [], Oc # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3080
 = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3081
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3082
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3083
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3084
lemma [simp]: "inv_check_left_moving (as, abc_lm_s lm n (abc_lm_v lm n)) (s, [], Oc # list) ires = False"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3085
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3086
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3087
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3088
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e);
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3089
                start_of (layout_of ap) as < start_of (layout_of ap) e; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3090
                start_of (layout_of ap) e \<le> Suc (start_of (layout_of ap) as + 2 * n)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3091
       \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3092
  using start_of_less[of e as "layout_of ap"] start_of_ge[of as ap n e "layout_of ap"]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3093
apply(case_tac "as < e", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3094
apply(case_tac "as = e", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3095
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3096
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3097
lemma crsp_step_dec_b_e_pre':
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3098
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3099
  and inv_start: "inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3100
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3101
  and dec_0: "abc_lm_v lm n = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3102
  and f: "f = (\<lambda> stp. (steps (Suc (start_of ly as) + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3103
            start_of ly as - Suc 0) stp, start_of ly as, n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3104
  and P: "P = (\<lambda> ((s, l, r), ss, x). s = start_of ly e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3105
  and Q: "Q = (\<lambda> ((s, l, r), ss, x). dec_inv_1 ly x e (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3106
  shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3107
proof(rule_tac LE = abc_dec_1_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3108
  show "wf abc_dec_1_LE" by(intro wf_dec_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3109
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3110
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3111
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3112
    apply(simp add: f steps.simps Q dec_inv_1.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3113
    apply(subgoal_tac "e > as \<or> e = as \<or> e < as")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3114
    apply(auto simp: Let_def start_of_ge start_of_less inv_start)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3115
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3116
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3117
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3118
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3119
    apply(simp add: f steps.simps P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3120
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3121
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3122
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3123
    using fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3124
  proof(rule_tac allI, rule_tac impI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3125
    fix na
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3126
    assume "\<not> P (f na) \<and> Q (f na)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3127
    thus "Q (f (Suc na)) \<and> (f (Suc na), f na) \<in> abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3128
      apply(simp add: f)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3129
      apply(case_tac "steps (Suc (start_of ly as + 2 * n), la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3130
        (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) na", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3131
    proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3132
      fix a b c 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3133
      assume "\<not> P ((a, b, c), start_of ly as, n) \<and> Q ((a, b, c), start_of ly as, n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3134
      thus "Q (step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3135
               ((step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3136
                   (a, b, c), start_of ly as, n) \<in> abc_dec_1_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3137
        apply(simp add: Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3138
        apply(case_tac c, case_tac [2] aa)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3139
        apply(simp_all add: dec_inv_1.simps Let_def split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3140
        using fetch layout dec_0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3141
        apply(auto simp: step.simps P dec_inv_1.simps Let_def abc_dec_1_LE_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3142
        using dec_0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3143
        apply(drule_tac dec_false_1, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3144
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3145
    qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3146
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3147
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3148
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3149
lemma crsp_step_dec_b_e_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3150
  assumes "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3151
  and inv_start: "inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3152
  and dec_0: "abc_lm_v lm n  = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3153
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3154
  shows "\<exists>stp lb rb.
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3155
       steps (Suc (start_of ly as) + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3156
       start_of ly as - Suc 0) stp = (start_of ly e, lb, rb) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3157
       dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3158
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3159
  apply(drule_tac crsp_step_dec_b_e_pre', auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3160
  apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3161
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3162
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3163
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3164
  "\<lbrakk>abc_lm_v lm n = 0;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3165
  inv_stop (as, abc_lm_s lm n (abc_lm_v lm n)) (start_of ly e, lb, rb) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3166
  \<Longrightarrow> crsp ly (abc_step_l (as, lm) (Some (Dec n e))) (start_of ly e, lb, rb) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3167
apply(auto simp: crsp.simps abc_step_l.simps inv_stop.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3168
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3169
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3170
lemma crsp_step_dec_b_e:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3171
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3172
  and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3173
  and dec_0: "abc_lm_v lm n = 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3174
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3175
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3176
  (steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3177
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3178
  let ?P = "ci ly (start_of ly as) (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3179
  let ?off = "start_of ly as - Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3180
  have "\<exists> stp la ra. steps (start_of ly as + 2 * n, l, r) (?P, ?off) stp = (Suc (start_of ly as) + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3181
             \<and>  inv_locate_b (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3182
    using inv_start
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3183
    apply(case_tac "r = [] \<or> hd r = Bk", simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3184
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3185
  from this obtain stpa la ra where a:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3186
    "steps (start_of ly as + 2 * n, l, r) (?P, ?off) stpa = (Suc (start_of ly as) + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3187
             \<and>  inv_locate_b (as, lm) (n, la, ra) ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3188
  have "\<exists> stp lb rb. steps (Suc (start_of ly as) + 2 * n, la, ra) (?P, ?off) stp = (start_of ly e, lb, rb)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3189
             \<and>  dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3190
    using assms a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3191
    apply(rule_tac crsp_step_dec_b_e_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3192
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3193
  from this obtain stpb lb rb where b:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3194
    "steps (Suc (start_of ly as) + 2 * n, la, ra) (?P, ?off) stpb = (start_of ly e, lb, rb)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3195
             \<and>  dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"  by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3196
  from a b show "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3197
    (steps (start_of ly as + 2 * n, l, r) (?P, ?off) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3198
    apply(rule_tac x = "stpa + stpb" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3199
    apply(simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3200
    using dec_0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3201
    apply(simp add: dec_inv_1.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3202
    apply(case_tac stpa, simp_all add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3203
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3204
qed    
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3205
  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3206
fun dec_inv_2 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3207
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3208
  "dec_inv_2 ly n e (as, am) (s, l, r) ires =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3209
           (let ss = start_of ly as in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3210
            let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3211
            let am'' = abc_lm_s am n (abc_lm_v am n) in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3212
              if s = 0 then False
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3213
              else if s = ss + 2 * n then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3214
                      inv_locate_a (as, am) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3215
              else if s = ss + 2 * n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3216
                      inv_locate_n_b (as, am) (n, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3217
              else if s = ss + 2 * n + 2 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3218
                      dec_first_on_right_moving n (as, am'') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3219
              else if s = ss + 2 * n + 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3220
                      dec_after_clear (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3221
              else if s = ss + 2 * n + 4 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3222
                      dec_right_move (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3223
              else if s = ss + 2 * n + 5 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3224
                      dec_check_right_move (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3225
              else if s = ss + 2 * n + 6 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3226
                      dec_left_move (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3227
              else if s = ss + 2 * n + 7 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3228
                      dec_after_write (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3229
              else if s = ss + 2 * n + 8 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3230
                      dec_on_right_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3231
              else if s = ss + 2 * n + 9 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3232
                      dec_after_clear (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3233
              else if s = ss + 2 * n + 10 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3234
                      inv_on_left_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3235
              else if s = ss + 2 * n + 11 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3236
                      inv_check_left_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3237
              else if s = ss + 2 * n + 12 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3238
                      inv_after_left_moving (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3239
              else if s = ss + 2 * n + 16 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3240
                      inv_stop (as, am') (s, l, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3241
              else False)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3242
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3243
declare dec_inv_2.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3244
fun abc_dec_2_stage1 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3245
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3246
  "abc_dec_2_stage1 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3247
              (if s \<le> ss + 2*n + 1 then 7
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3248
               else if s = ss + 2*n + 2 then 6 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3249
               else if s = ss + 2*n + 3 then 5
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3250
               else if s \<ge> ss + 2*n + 4 \<and> s \<le> ss + 2*n + 9 then 4
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3251
               else if s = ss + 2*n + 6 then 3
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3252
               else if s = ss + 2*n + 10 \<or> s = ss + 2*n + 11 then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3253
               else if s = ss + 2*n + 12 then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3254
               else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3255
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3256
fun abc_dec_2_stage2 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3257
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3258
  "abc_dec_2_stage2 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3259
       (if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3260
        else if s = ss + 2*n + 10 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3261
        else if s = ss + 2*n + 11 then length l
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3262
        else if s = ss + 2*n + 4 then length r - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3263
        else if s = ss + 2*n + 5 then length r 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3264
        else if s = ss + 2*n + 7 then length r - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3265
        else if s = ss + 2*n + 8 then  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3266
              length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3267
        else if s = ss + 2*n + 9 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3268
              length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3269
        else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3270
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3271
fun abc_dec_2_stage3 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3272
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3273
  "abc_dec_2_stage3 (s, l, r) ss n  =
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3274
        (if s \<le> ss + 2*n + 1 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3275
            if (s - ss) mod 2 = 0 then if r \<noteq> [] \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3276
                                          hd r = Oc then 0 else 1  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3277
            else length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3278
         else if s = ss + 2 * n + 10 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3279
             if  r \<noteq> [] \<and> hd r = Oc then 2
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3280
             else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3281
         else if s = ss + 2 * n + 11 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3282
             if r \<noteq> [] \<and> hd r = Oc then 3 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3283
             else 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3284
         else (ss + 2 * n + 16 - s))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3285
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3286
fun abc_dec_2_stage4 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3287
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3288
  "abc_dec_2_stage4 (s, l, r) ss n = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3289
          (if s = ss + 2*n + 2 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3290
           else if s = ss + 2*n + 8 then length r
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3291
           else if s = ss + 2*n + 3 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3292
               if r \<noteq> [] \<and> hd r = Oc then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3293
               else 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3294
           else if s = ss + 2*n + 7 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3295
               if r \<noteq> [] \<and> hd r = Oc then 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3296
               else 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3297
           else if s = ss + 2*n + 9 then 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3298
               if r \<noteq> [] \<and> hd r = Oc then 1
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3299
               else 0 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3300
           else 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3301
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3302
fun abc_dec_2_measure :: "(config \<times> nat \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat \<times> nat)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3303
  where
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3304
  "abc_dec_2_measure (c, ss, n) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3305
  (abc_dec_2_stage1 c ss n, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3306
  abc_dec_2_stage2 c ss n, abc_dec_2_stage3 c ss n,  abc_dec_2_stage4 c ss n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3307
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3308
definition lex_square:: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3309
   "((nat \<times> nat \<times> nat \<times> nat) \<times> (nat \<times> nat \<times> nat \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3310
  where "lex_square \<equiv> less_than <*lex*> lex_triple"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3311
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3312
definition abc_dec_2_LE ::
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3313
  "((config \<times> nat \<times>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3314
  nat) \<times> (config \<times> nat \<times> nat)) set"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3315
  where "abc_dec_2_LE \<equiv> (inv_image lex_square abc_dec_2_measure)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3316
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3317
lemma wf_dec2_le: "wf abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3318
by(auto intro:wf_inv_image simp:abc_dec_2_LE_def lex_square_def lex_triple_def lex_pair_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3319
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3320
lemma fix_add: "fetch ap ((x::nat) + 2*n) b = fetch ap (2*n + x) b"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3321
by (metis Suc_1 mult_2 nat_add_commute)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3322
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3323
lemma [elim]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3324
 "\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) (n, aaa, Bk # xs) ires\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3325
 \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3326
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3327
apply(case_tac [!] m, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3328
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3329
 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3330
lemma [elim]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3331
 "\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3332
                                (n, aaa, []) ires\<rbrakk> \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3333
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3334
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3335
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3336
lemma [simp]: "dec_after_write (as, am) (s, aa, r) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3337
           \<Longrightarrow> takeWhile (\<lambda>a. a = Oc) aa = []"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3338
apply(simp only : dec_after_write.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3339
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3340
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3341
apply(case_tac aa, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3342
apply(case_tac a, simp only: takeWhile.simps , simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3343
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3344
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3345
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3346
     "\<lbrakk>dec_on_right_moving (as, lm) (s, aa, []) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3347
       length (takeWhile (\<lambda>a. a = Oc) (tl aa)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3348
           \<noteq> length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3349
    \<Longrightarrow> length (takeWhile (\<lambda>a. a = Oc) (tl aa)) < 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3350
                       length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3351
apply(simp only: dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3352
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3353
apply(erule_tac conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3354
apply(case_tac mr, auto split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3355
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3356
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3357
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3358
  "dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3359
             (start_of (layout_of aprog) as + 2 * n + 9, aa, Bk # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3360
 \<Longrightarrow> length xs - Suc 0 < length xs + 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3361
                             length (takeWhile (\<lambda>a. a = Oc) aa)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3362
apply(simp only: dec_after_clear.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3363
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3364
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3365
apply(simp split: if_splits )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3366
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3367
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3368
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3369
 "\<lbrakk>dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3370
       (start_of (layout_of aprog) as + 2 * n + 9, aa, []) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3371
    \<Longrightarrow> Suc 0 < length (takeWhile (\<lambda>a. a = Oc) aa)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3372
apply(simp add: dec_after_clear.simps split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3373
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3374
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3375
lemma [elim]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3376
  "inv_check_left_moving (as, lm)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3377
  (s, [], Oc # xs) ires
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3378
 \<Longrightarrow> RR"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3379
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3380
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3381
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3382
lemma [simp]:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3383
"\<lbrakk>0 < abc_lm_v am n; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3384
  at_begin_norm (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3385
  \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3386
apply(simp only: at_begin_norm.simps inv_locate_n_b.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3387
apply(erule_tac exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3388
apply(rule_tac x = lm1 in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3389
apply(case_tac "length lm2", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3390
apply(case_tac "lm2", simp, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3391
apply(case_tac "lm2", auto simp: tape_of_nl_cons split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3392
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3393
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3394
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3395
 "\<lbrakk>0 < abc_lm_v am n; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3396
   at_begin_fst_awtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3397
 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3398
apply(simp only: at_begin_fst_awtn.simps inv_locate_n_b.simps )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3399
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3400
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3401
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3402
      rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3403
apply(simp add: exp_ind del: replicate.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3404
apply(rule conjI)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3405
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3406
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3407
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3408
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3409
 "\<lbrakk>0 < abc_lm_v am n; inv_locate_a (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3410
 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc#aaa, xs) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3411
apply(auto simp: inv_locate_a.simps at_begin_fst_bwtn.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3412
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3413
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3414
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3415
 "\<lbrakk>dec_on_right_moving (as, am) (s, aa, Bk # xs) ires; 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3416
   Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3417
   \<noteq> length (takeWhile (\<lambda>a. a = Oc) aa)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3418
  \<Longrightarrow> Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3419
    < length (takeWhile (\<lambda>a. a = Oc) aa)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3420
apply(simp only: dec_on_right_moving.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3421
apply(erule exE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3422
apply(erule conjE)+
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3423
apply(case_tac ml, auto split: if_splits )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3424
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3425
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3426
lemma crsp_step_dec_b_suc_pre:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3427
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3428
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3429
  and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3430
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3431
  and dec_suc: "0 < abc_lm_v lm n"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3432
  and f: "f = (\<lambda> stp. (steps (start_of ly as + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3433
            start_of ly as - Suc 0) stp, start_of ly as, n))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3434
  and P: "P = (\<lambda> ((s, l, r), ss, x). s = start_of ly as + 2*n + 16)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3435
  and Q: "Q = (\<lambda> ((s, l, r), ss, x). dec_inv_2 ly x e (as, lm) (s, l, r) ires)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3436
  shows "\<exists> stp. P (f stp) \<and> Q(f stp)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3437
  proof(rule_tac LE = abc_dec_2_LE in halt_lemma2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3438
  show "wf abc_dec_2_LE" by(intro wf_dec2_le)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3439
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3440
  show "Q (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3441
    using layout fetch inv_start
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3442
    apply(simp add: f steps.simps Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3443
    apply(simp only: dec_inv_2.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3444
    apply(auto simp: Let_def start_of_ge start_of_less inv_start dec_inv_2.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3445
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3446
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3447
  show "\<not> P (f 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3448
    using layout fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3449
    apply(simp add: f steps.simps P)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3450
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3451
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3452
  show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3453
    using fetch
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3454
  proof(rule_tac allI, rule_tac impI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3455
    fix na
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3456
    assume "\<not> P (f na) \<and> Q (f na)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3457
    thus "Q (f (Suc na)) \<and> (f (Suc na), f na) \<in> abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3458
      apply(simp add: f)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3459
      apply(case_tac "steps ((start_of ly as + 2 * n), la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3460
        (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) na", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3461
    proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3462
      fix a b c 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3463
      assume "\<not> P ((a, b, c), start_of ly as, n) \<and> Q ((a, b, c), start_of ly as, n)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3464
      thus "Q (step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n) \<and>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3465
               ((step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n), 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3466
                   (a, b, c), start_of ly as, n) \<in> abc_dec_2_LE"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3467
        apply(simp add: Q)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3468
        apply(erule_tac conjE)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3469
        apply(case_tac c, case_tac [2] aa)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3470
        apply(simp_all add: dec_inv_2.simps Let_def)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3471
        apply(simp_all split: if_splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3472
        using fetch layout dec_suc
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3473
        apply(auto simp: step.simps P dec_inv_2.simps Let_def abc_dec_2_LE_def lex_triple_def lex_pair_def lex_square_def
115
653426ed4b38 started with abacus section
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
  3474
                         fix_add numeral_3_eq_3) 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3475
        done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3476
    qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3477
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3478
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3479
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3480
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3481
  "\<lbrakk>inv_stop (as, abc_lm_s lm n (abc_lm_v lm n - Suc 0)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3482
  (start_of (layout_of ap) as + 2 * n + 16, a, b) ires;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3483
   abc_lm_v lm n > 0;
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3484
   abc_fetch as ap = Some (Dec n e)\<rbrakk>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3485
  \<Longrightarrow> crsp (layout_of ap) (abc_step_l (as, lm) (Some (Dec n e))) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3486
  (start_of (layout_of ap) as + 2 * n + 16, a, b) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3487
apply(auto simp: inv_stop.simps crsp.simps  abc_step_l.simps startof_Suc2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3488
apply(drule_tac startof_Suc2, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3489
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3490
  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3491
lemma crsp_step_dec_b_suc:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3492
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3493
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3494
  and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3495
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3496
  and dec_suc: "0 < abc_lm_v lm n"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3497
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3498
              (steps (start_of ly as + 2 * n, la, ra) (ci (layout_of ap) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3499
                  (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3500
  using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3501
  apply(drule_tac crsp_step_dec_b_suc_pre, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3502
  apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3503
  apply(simp add: dec_inv_2.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3504
  apply(case_tac stp, simp_all add: steps.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3505
  done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3506
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3507
lemma crsp_step_dec_b:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3508
  assumes layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3509
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3510
  and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3511
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3512
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3513
  (steps (start_of ly as + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3514
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3515
apply(case_tac "abc_lm_v lm n = 0")
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3516
apply(rule_tac crsp_step_dec_b_e, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3517
apply(rule_tac crsp_step_dec_b_suc, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3518
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3519
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3520
lemma crsp_step_dec: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3521
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3522
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3523
  and fetch: "abc_fetch as ap = Some (Dec n e)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3524
  shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3525
  (steps (s, l, r) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3526
proof(simp add: ci.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3527
  let ?off = "start_of ly as - Suc 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3528
  let ?A = "findnth n"
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  3529
  let ?B = "adjust (shift (shift tdec_b (2 * n)) ?off) (start_of ly e)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3530
  have "\<exists> stp la ra. steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp = (start_of ly as + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3531
                    \<and> inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3532
  proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3533
    have "\<exists>stp l' r'. steps (Suc 0, l, r) (?A, 0) stp = (Suc (2 * n), l', r') \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3534
                     inv_locate_a (as, lm) (n, l', r') ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3535
      using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3536
      apply(rule_tac findnth_correct, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3537
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3538
    then obtain stp l' r' where a: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3539
      "steps (Suc 0, l, r) (?A, 0) stp = (Suc (2 * n), l', r') \<and> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3540
      inv_locate_a (as, lm) (n, l', r') ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3541
    then have "steps (Suc 0 + ?off, l, r) (shift ?A ?off, ?off) stp = (Suc (2 * n) + ?off, l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3542
      apply(rule_tac tm_shift_eq_steps, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3543
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3544
    moreover have "s = start_of ly as"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3545
      using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3546
      apply(auto simp: crsp.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3547
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3548
    ultimately show "\<exists> stp la ra. steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp = (start_of ly as + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3549
                    \<and> inv_locate_a (as, lm) (n, la, ra) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3550
      using a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3551
      apply(drule_tac B = ?B in tm_append_first_steps_eq, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3552
      apply(rule_tac x = stp in exI, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3553
      done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3554
  qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3555
  from this obtain stpa la ra where a: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3556
    "steps (s, l, r) (shift ?A ?off @ ?B, ?off) stpa = (start_of ly as + 2*n, la, ra)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3557
                    \<and> inv_locate_a (as, lm) (n, la, ra) ires" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3558
  have "\<exists>stp. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3559
           (steps (start_of ly as + 2*n, la, ra) (shift ?A ?off @ ?B, ?off) stp) ires \<and> stp > 0"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3560
    using assms a
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3561
    apply(drule_tac crsp_step_dec_b, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3562
    apply(rule_tac x = stp in exI, simp add: ci.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3563
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3564
  then obtain stpb where b: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3565
    "crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3566
    (steps (start_of ly as + 2*n, la, ra) (shift ?A ?off @ ?B, ?off) stpb) ires \<and> stpb > 0" ..
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3567
  from a b show "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3568
    (steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3569
    apply(rule_tac x = "stpa + stpb" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3570
    apply(simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3571
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3572
qed    
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3573
  
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3574
subsection{*Crsp of Goto*}
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3575
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3576
lemma crsp_step_goto:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3577
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3578
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3579
  shows "\<exists>stp>0. crsp ly (abc_step_l (as, lm) (Some (Goto n)))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3580
  (steps (s, l, r) (ci ly (start_of ly as) (Goto n), 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3581
            start_of ly as - Suc 0) stp) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3582
using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3583
apply(rule_tac x = "Suc 0" in exI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3584
apply(case_tac r, case_tac [2] a)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3585
apply(simp_all add: ci.simps steps.simps step.simps crsp.simps fetch.simps
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3586
  crsp.simps abc_step_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3587
done
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3588
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3589
lemma crsp_step_in:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3590
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3591
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3592
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3593
  and fetch: "abc_fetch as ap = Some ins"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3594
  shows "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3595
                      (steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3596
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3597
  apply(case_tac ins, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3598
  apply(rule crsp_step_inc, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3599
  apply(rule crsp_step_dec, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3600
  apply(rule_tac crsp_step_goto, simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3601
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3602
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3603
lemma crsp_step:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3604
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3605
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3606
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3607
  and fetch: "abc_fetch as ap = Some ins"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3608
  shows "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3609
                      (steps (s, l, r) (tp, 0) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3610
proof -
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3611
  have "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3612
                      (steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3613
    using assms
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3614
    apply(rule_tac crsp_step_in, simp_all)
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3615
    done
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3616
  from this obtain stp where d: "stp > 0 \<and> crsp ly (abc_step_l (as, lm) (Some ins))
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3617
                      (steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires" ..
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3618
  obtain s' l' r' where e:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3619
    "(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3620
    apply(case_tac "(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp)")
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3621
    by blast
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3622
  then have "steps (s, l, r) (tp, 0) stp = (s', l', r')"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3623
    using assms d
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3624
    apply(rule_tac steps_eq_in)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3625
    apply(simp_all)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3626
    apply(case_tac "(abc_step_l (as, lm) (Some ins))", simp add: crsp.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3627
    done    
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3628
  thus " \<exists>stp>0. crsp ly (abc_step_l (as, lm) (Some ins)) (steps (s, l, r) (tp, 0) stp) ires"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3629
    using d e
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3630
    apply(rule_tac x = stp in exI, simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3631
    done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3632
qed
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3633
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3634
lemma crsp_steps:
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3635
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3636
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3637
  and crsp: "crsp ly (as, lm) (s, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3638
  shows "\<exists> stp. crsp ly (abc_steps_l (as, lm) ap n)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3639
                      (steps (s, l, r) (tp, 0) stp) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3640
  using crsp
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3641
  apply(induct n)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3642
  apply(rule_tac x = 0 in exI) 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3643
  apply(simp add: steps.simps abc_steps_l.simps, simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3644
  apply(case_tac "(abc_steps_l (as, lm) ap n)", auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3645
  apply(frule_tac abc_step_red, simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3646
  apply(case_tac "abc_fetch a ap", simp add: abc_step_l.simps, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3647
  apply(case_tac "steps (s, l, r) (tp, 0) stp", simp)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3648
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3649
  apply(drule_tac s = ab and l = ba and r = c in crsp_step, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3650
  apply(rule_tac x = "stp + stpa" in exI, simp add: steps_add)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3651
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3652
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3653
lemma tp_correct': 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3654
  assumes layout: "ly = layout_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3655
  and compile: "tp = tm_of ap"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3656
  and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3657
  and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3658
  shows "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp = (start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3659
  using assms
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3660
  apply(drule_tac n = stp in crsp_steps, auto)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3661
  apply(rule_tac x = stpa in exI)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3662
  apply(case_tac "steps (Suc 0, l, r) (tm_of ap, 0) stpa", simp add: crsp.simps)
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3663
  done
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3664
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3665
text{*The tp @ [(Nop, 0), (Nop, 0)] is nomoral turing machines, so we can use Hoare_plus when composing with Mop machine*}
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3666
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3667
lemma layout_id_cons: "layout_of (ap @ [p]) = layout_of ap @ [length_of p]"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3668
apply(simp add: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3669
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3670
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3671
lemma [simp]: "length (layout_of xs) = length xs"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3672
by(simp add: layout_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3673
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3674
lemma [simp]:  
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3675
  "map (start_of (layout_of xs @ [length_of x])) [0..<length xs] =  (map (start_of (layout_of xs)) [0..<length xs])"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3676
apply(auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3677
apply(simp add: layout_of.simps start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3678
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3679
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3680
lemma tpairs_id_cons: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3681
  "tpairs_of (xs @ [x]) = tpairs_of xs @ [(start_of (layout_of (xs @ [x])) (length xs), x)]"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3682
apply(auto simp: tpairs_of.simps layout_id_cons )
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3683
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3684
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3685
lemma map_length_ci:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3686
  "(map (length \<circ> (\<lambda>(xa, y). ci (layout_of xs @ [length_of x]) xa y)) (tpairs_of xs)) = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3687
  (map (length \<circ> (\<lambda>(x, y). ci (layout_of xs) x y)) (tpairs_of xs)) "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3688
apply(auto)
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  3689
apply(case_tac b, auto simp: ci.simps adjust.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3690
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3691
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3692
lemma length_tp'[simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3693
  "\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3694
       length tp = 2 * listsum (take (length ap) (layout_of ap))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3695
proof(induct ap arbitrary: ly tp rule: rev_induct)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3696
  case Nil
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3697
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3698
    by(simp add: tms_of.simps tm_of.simps tpairs_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3699
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3700
  fix x xs ly tp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3701
  assume ind: "\<And>ly tp. \<lbrakk>ly = layout_of xs; tp = tm_of xs\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3702
    length tp = 2 * listsum (take (length xs) (layout_of xs))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3703
  and layout: "ly = layout_of (xs @ [x])"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3704
  and tp: "tp = tm_of (xs @ [x])"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3705
  obtain ly' where a: "ly' = layout_of xs"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3706
    by metis
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3707
  obtain tp' where b: "tp' = tm_of xs"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3708
    by metis
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3709
  have c: "length tp' = 2 * listsum (take (length xs) (layout_of xs))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3710
    using a b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3711
    by(erule_tac ind, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3712
  thus "length tp = 2 * 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3713
    listsum (take (length (xs @ [x])) (layout_of (xs @ [x])))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3714
    using tp b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3715
    apply(auto simp: layout_id_cons tm_of.simps tms_of.simps length_concat tpairs_id_cons map_length_ci)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3716
    apply(case_tac x)
190
f1ecb4a68a54 renamed sete definition to adjust and old special case of adjust to adjust0
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 181
diff changeset
  3717
    apply(auto simp: ci.simps tinc_b_def tdec_b_def length_findnth adjust.simps length_of.simps
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3718
                 split: abc_inst.splits)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3719
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3720
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3721
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3722
lemma [simp]: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3723
  "\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow>
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3724
        fetch (tp @ [(Nop, 0), (Nop, 0)]) (start_of ly (length ap)) b = 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3725
       (Nop, 0)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3726
apply(case_tac b)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3727
apply(simp_all add: start_of.simps fetch.simps nth_append)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3728
done
165
582916f289ea took out all deadcode from abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 163
diff changeset
  3729
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3730
lemma length_tp:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3731
  "\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3732
  start_of ly (length ap) = Suc (length tp div 2)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3733
apply(frule_tac length_tp', simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3734
apply(simp add: start_of.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3735
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3736
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3737
lemma compile_correct_halt: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3738
  assumes layout: "ly = layout_of ap"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3739
  and compile: "tp = tm_of ap"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3740
  and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3741
  and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3742
  and rs_loc: "n < length am"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3743
  and rs: "abc_lm_v am n = rs"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3744
  and off: "off = length tp div 2"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3745
  shows "\<exists> stp i j. steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stp = (0, Bk\<up>i @ Bk # Bk # ires, Oc\<up>Suc rs @ Bk\<up>j)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3746
proof -
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3747
  have "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3748
    using assms tp_correct'[of ly ap tp lm l r ires stp am]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3749
    by(simp add: length_tp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3750
  then obtain stp k where "steps (Suc 0, l, r) (tp, 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3751
    by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3752
  then have a: "steps (Suc 0, l, r) (tp@shift (mopup n) off , 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3753
    using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3754
    by(auto intro: tm_append_first_steps_eq)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3755
  have "\<exists> stp i j. (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3756
    = (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3757
    using assms
173
b51cb9aef3ae split Mopup TM into a separate file
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 170
diff changeset
  3758
    by(rule_tac mopup_correct, auto simp: abc_lm_v.simps)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3759
  then obtain stpb i j where 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3760
    "steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stpb
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3761
    = (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)" by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3762
  then have b: "steps (Suc 0 + off, Bk # Bk # ires, <am> @ Bk \<up> k) (tp @ shift (mopup n) off, 0) stpb
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3763
    = (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3764
    using assms wf_mopup
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3765
    apply(drule_tac tm_append_second_halt_eq, auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3766
    done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3767
  from a b show "?thesis"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3768
    by(rule_tac x = "stp + stpb" in exI, simp add: steps_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3769
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3770
 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3771
declare mopup.simps[simp del]
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3772
lemma abc_step_red2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3773
  "abc_steps_l (s, lm) p (Suc n) = (let (as', am') = abc_steps_l (s, lm) p n in
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3774
                                    abc_step_l (as', am') (abc_fetch as' p))"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3775
apply(case_tac "abc_steps_l (s, lm) p n", simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3776
apply(drule_tac abc_step_red, simp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3777
done
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3778
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3779
lemma crsp_steps2:
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3780
  assumes 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3781
  layout: "ly = layout_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3782
  and compile: "tp = tm_of ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3783
  and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3784
  and nothalt: "as < length ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3785
  and aexec: "abc_steps_l (0, lm) ap stp = (as, am)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3786
  shows "\<exists>stpa\<ge>stp. crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3787
using nothalt aexec
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3788
proof(induct stp arbitrary: as am)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3789
  case 0
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3790
  thus "?case"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3791
    using crsp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3792
    by(rule_tac x = 0 in exI, auto simp: abc_steps_l.simps steps.simps crsp)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3793
next
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3794
  case (Suc stp as am)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3795
  have ind: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3796
    "\<And> as am.  \<lbrakk>as < length ap; abc_steps_l (0, lm) ap stp = (as, am)\<rbrakk> 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3797
    \<Longrightarrow> \<exists>stpa\<ge>stp. crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3798
  have a: "as < length ap" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3799
  have b: "abc_steps_l (0, lm) ap (Suc stp) = (as, am)" by fact
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3800
  obtain as' am' where c: "abc_steps_l (0, lm) ap stp = (as', am')" 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3801
    by(case_tac "abc_steps_l (0, lm) ap stp", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3802
  then have d: "as' < length ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3803
    using a b
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3804
    by(simp add: abc_step_red2, case_tac "as' < length ap", simp,
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3805
      simp add: abc_fetch.simps abc_steps_l.simps abc_step_l.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3806
  have "\<exists>stpa\<ge>stp. crsp ly (as', am') (steps (Suc 0, l, r) (tp, 0) stpa) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3807
    using d c ind by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3808
  from this obtain stpa where e: 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3809
    "stpa \<ge> stp \<and>  crsp ly (as', am') (steps (Suc 0, l, r) (tp, 0) stpa) ires"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3810
    by blast
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3811
  obtain s' l' r' where f: "steps (Suc 0, l, r) (tp, 0) stpa = (s', l', r')"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3812
    by(case_tac "steps (Suc 0, l, r) (tp, 0) stpa", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3813
  obtain ins where g: "abc_fetch as' ap = Some ins" using d 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3814
    by(case_tac "abc_fetch as' ap",auto simp: abc_fetch.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3815
  then have "\<exists>stp> (0::nat). crsp ly (abc_step_l (as', am') (Some ins)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3816
    (steps (s', l', r') (tp, 0) stp) ires "
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3817
    using layout compile e f 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3818
    by(rule_tac crsp_step, simp_all)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3819
  then obtain stpb where "stpb > 0 \<and> crsp ly (abc_step_l (as', am') (Some ins)) 
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3820
    (steps (s', l', r') (tp, 0) stpb) ires" ..
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3821
  from this show "?case" using b e g f c
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3822
    by(rule_tac x = "stpa + stpb" in exI, simp add: steps_add abc_step_red2)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3823
qed
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3824
    
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3825
lemma compile_correct_unhalt: 
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3826
  assumes layout: "ly = layout_of ap"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3827
  and compile: "tp = tm_of ap"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3828
  and crsp: "crsp ly (0, lm) (1, l, r) ires"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3829
  and off: "off = length tp div 2"
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3830
  and abc_unhalt: "\<forall> stp. (\<lambda> (as, am). as < length ap) (abc_steps_l (0, lm) ap stp)"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3831
  shows "\<forall> stp.\<not> is_final (steps (1, l, r) (tp @ shift (mopup n) off, 0) stp)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3832
using assms
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3833
proof(rule_tac allI, rule_tac notI)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3834
  fix stp
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3835
  assume h: "is_final (steps (1, l, r) (tp @ shift (mopup n) off, 0) stp)"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3836
  obtain as am where a: "abc_steps_l (0, lm) ap stp = (as, am)"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3837
    by(case_tac "abc_steps_l (0, lm) ap stp", auto)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3838
  then have b: "as < length ap"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3839
    using abc_unhalt
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3840
    by(erule_tac x = stp in allE, simp)
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3841
  have "\<exists> stpa\<ge>stp. crsp ly (as, am) (steps (1, l, r) (tp, 0) stpa) ires "
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3842
    using assms b a
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3843
    apply(simp add: numeral)
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3844
    apply(rule_tac crsp_steps2)
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3845
    apply(simp_all)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3846
    done
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3847
  then obtain stpa where 
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3848
    "stpa\<ge>stp \<and> crsp ly (as, am) (steps (1, l, r) (tp, 0) stpa) ires" ..
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3849
  then obtain s' l' r' where b: "(steps (1, l, r) (tp, 0) stpa) = (s', l', r') \<and> 
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3850
       stpa\<ge>stp \<and> crsp ly (as, am) (s', l', r') ires"
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3851
    by(case_tac "steps (1, l, r) (tp, 0) stpa", auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3852
  hence c:
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3853
    "(steps (1, l, r) (tp @ shift (mopup n) off, 0) stpa) = (s', l', r')"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3854
    by(rule_tac tm_append_first_steps_eq, simp_all add: crsp.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3855
  from b have d: "s' > 0 \<and> stpa \<ge> stp"
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3856
    by(simp add: crsp.simps)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3857
  then obtain diff where e: "stpa = stp + diff"   by (metis le_iff_add)
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3858
  obtain s'' l'' r'' where f:
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3859
    "steps (1, l, r) (tp @ shift (mopup n) off, 0) stp = (s'', l'', r'') \<and> is_final (s'', l'', r'')"
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3860
    using h
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3861
    by(case_tac "steps (1, l, r) (tp @ shift (mopup n) off, 0) stp", auto)
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3862
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3863
  then have "is_final (steps (s'', l'', r'') (tp @ shift (mopup n) off, 0) diff)"
61
7edbd5657702 updated files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 60
diff changeset
  3864
    by(auto intro: after_is_final)
170
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3865
  then have "is_final (steps (1, l, r) (tp @ shift (mopup n) off, 0) stpa)"
eccd79a974ae updated some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
  3866
    using e f by simp
60
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3867
  from this and c d show "False" by simp
c8ff97d9f8da new version of abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 48
diff changeset
  3868
qed
47
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3869
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3870
end
251e192339b7 added abacus
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3871