Current_prop.thy
changeset 30 01274a64aece
parent 29 622516c0fe34
child 34 e7f850d1e08e
equal deleted inserted replaced
29:622516c0fe34 30:01274a64aece
    63 apply (simp, drule init_shmflag_has_proc, simp)
    63 apply (simp, drule init_shmflag_has_proc, simp)
    64 apply (frule vd_cons, frule vt_grant_os)
    64 apply (frule vd_cons, frule vt_grant_os)
    65 apply (case_tac a, auto split:if_splits option.splits dest:procs_of_shm_prop2)
    65 apply (case_tac a, auto split:if_splits option.splits dest:procs_of_shm_prop2)
    66 done
    66 done
    67 
    67 
    68 (*********** simpset for one_flow_shm **************)
       
    69 
    68 
    70 lemma one_flow_not_self:
       
    71   "one_flow_shm s h p p \<Longrightarrow> False"
       
    72 by (simp add:one_flow_shm_def)
       
    73 
       
    74 lemma one_flow_shm_attach:
       
    75   "valid (Attach p h flag # s) \<Longrightarrow> one_flow_shm (Attach p h flag # s) = (\<lambda> h' pa pb. 
       
    76      if (h' = h) 
       
    77      then (pa = p \<and> pb \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pb, flagb) \<in> procs_of_shm s h)) \<or>
       
    78           (pb = p \<and> pa \<noteq> p \<and> (pa, SHM_RDWR) \<in> procs_of_shm s h) \<or>
       
    79           (one_flow_shm s h pa pb)               
       
    80      else one_flow_shm s h' pa pb        )"
       
    81 apply (rule ext, rule ext, rule ext, frule vd_cons, frule vt_grant_os)
       
    82 by (auto simp add: one_flow_shm_def)
       
    83 
       
    84 lemma one_flow_shm_detach:
       
    85   "valid (Detach p h # s) \<Longrightarrow> one_flow_shm (Detach p h # s) = (\<lambda> h' pa pb.
       
    86      if (h' = h) 
       
    87      then (pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h' pa pb)
       
    88      else one_flow_shm s h' pa pb)"
       
    89 apply (rule ext, rule ext, rule ext, frule vt_grant_os)
       
    90 by (auto simp:one_flow_shm_def)
       
    91 
       
    92 lemma one_flow_shm_deleteshm:
       
    93   "valid (DeleteShM p h # s) \<Longrightarrow> one_flow_shm (DeleteShM p h # s) = (\<lambda> h' pa pb. 
       
    94      if (h' = h) 
       
    95      then False
       
    96      else one_flow_shm s h' pa pb)"
       
    97 apply (rule ext, rule ext, rule ext, frule vt_grant_os)
       
    98 by (auto simp: one_flow_shm_def)
       
    99 
       
   100 lemma one_flow_shm_clone:
       
   101   "valid (Clone p p' fds shms # s) \<Longrightarrow> one_flow_shm (Clone p p' fds shms # s) = (\<lambda> h pa pb. 
       
   102      if (pa = p' \<and> pb \<noteq> p' \<and> h \<in> shms)
       
   103      then (if (pb = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h p pb)
       
   104      else if (pb = p' \<and> pa \<noteq> p' \<and> h \<in> shms)
       
   105           then (if (pa = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h pa p)
       
   106           else one_flow_shm s h pa pb)"
       
   107 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp)
       
   108 apply (frule_tac p = p' in procs_of_shm_prop2', simp)
       
   109 apply (auto simp:one_flow_shm_def intro:procs_of_shm_prop4 flag_of_proc_shm_prop1)
       
   110 done
       
   111 
       
   112 lemma one_flow_shm_execve:
       
   113   "valid (Execve p f fds # s) \<Longrightarrow> one_flow_shm (Execve p f fds # s) = (\<lambda> h pa pb. 
       
   114      pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb    )"
       
   115 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   116 by (auto simp:one_flow_shm_def)
       
   117 
       
   118 lemma one_flow_shm_kill:
       
   119   "valid (Kill p p' # s) \<Longrightarrow> one_flow_shm (Kill p p' # s) = (\<lambda> h pa pb. 
       
   120      pa \<noteq> p' \<and> pb \<noteq> p' \<and> one_flow_shm s h pa pb                 )"
       
   121 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   122 by (auto simp:one_flow_shm_def)
       
   123 
       
   124 lemma one_flow_shm_exit:
       
   125   "valid (Exit p # s) \<Longrightarrow> one_flow_shm (Exit p # s) = (\<lambda> h pa pb. 
       
   126      pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb                          )"
       
   127 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   128 by (auto simp:one_flow_shm_def)
       
   129 
       
   130 lemma one_flow_shm_other:
       
   131   "\<lbrakk>valid (e # s); 
       
   132     \<forall> p h flag. e \<noteq> Attach p h flag;
       
   133     \<forall> p h. e \<noteq> Detach p h;
       
   134     \<forall> p h. e \<noteq> DeleteShM p h;
       
   135     \<forall> p p' fds shms. e \<noteq> Clone p p' fds shms;
       
   136     \<forall> p f fds. e \<noteq> Execve p f fds;
       
   137     \<forall> p p'. e \<noteq> Kill p p';
       
   138     \<forall> p. e \<noteq> Exit p
       
   139    \<rbrakk> \<Longrightarrow> one_flow_shm (e # s) = one_flow_shm s"
       
   140 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   141 apply (case_tac e, auto simp:one_flow_shm_def dest:procs_of_shm_prop2)
       
   142 apply (drule procs_of_shm_prop1, auto)
       
   143 done
       
   144 
       
   145 lemmas one_flow_shm_simps = one_flow_shm_other one_flow_shm_attach one_flow_shm_detach one_flow_shm_deleteshm
       
   146   one_flow_shm_clone one_flow_shm_execve one_flow_shm_kill one_flow_shm_exit
       
   147 
       
   148 type_synonym t_edge_shm = "t_process \<times> t_shm \<times> t_process"
       
   149 fun Fst:: "t_edge_shm \<Rightarrow> t_process" where "Fst (a, b, c) = a"
       
   150 fun Snd:: "t_edge_shm \<Rightarrow> t_shm" where "Snd (a, b, c) = b"
       
   151 fun Trd:: "t_edge_shm \<Rightarrow> t_process" where "Trd (a, b, c) = c"
       
   152 
       
   153 fun edge_related:: "t_edge_shm list \<Rightarrow> t_process \<Rightarrow> t_shm \<Rightarrow> bool"
       
   154 where
       
   155   "edge_related [] p h = False"
       
   156 | "edge_related ((from, shm, to) # path) p h = 
       
   157      (if (((p = from) \<or> (p = to)) \<and> (h = shm)) then True 
       
   158       else edge_related path p h)"
       
   159          
       
   160 inductive path_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool"
       
   161 where
       
   162   pbs1: "p \<in> current_procs s \<Longrightarrow> path_by_shm s p [] p"
       
   163 | pbs2: "\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path)\<rbrakk> 
       
   164          \<Longrightarrow> path_by_shm s p ((p', h, p'')# path) p''"
       
   165 
       
   166 
       
   167 lemma one_step_path: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [(p, h, p')] p'"
       
   168 apply (rule_tac path = "[]" and p = p in path_by_shm.intros(2))
       
   169 apply (rule path_by_shm.intros(1))
       
   170 apply (auto intro:procs_of_shm_prop2 simp:one_flow_shm_def)
       
   171 done
       
   172 
       
   173 lemma pbs_prop1:
       
   174   "path_by_shm s p path p' \<Longrightarrow> ((path = []) = (p = p')) \<and> (path \<noteq> [] \<longrightarrow> p \<in> set (map Fst path))"
       
   175 apply (erule path_by_shm.induct, simp)
       
   176 apply (auto simp:one_flow_shm_def)
       
   177 done
       
   178 
       
   179 lemma pbs_prop2:
       
   180   "path_by_shm s p path p' \<Longrightarrow> (path = []) = (p = p')"
       
   181 by (simp add:pbs_prop1)
       
   182 
       
   183 lemma pbs_prop2':
       
   184   "path_by_shm s p path p \<Longrightarrow> path = []"
       
   185 by (simp add:pbs_prop2)
       
   186 
       
   187 lemma pbs_prop3:
       
   188   "\<lbrakk>path_by_shm s p path p'; path \<noteq> []\<rbrakk> \<Longrightarrow> p \<in> set (map Fst path)"
       
   189 by (drule pbs_prop1, auto)
       
   190 
       
   191 lemma pbs_prop4[rule_format]:
       
   192   "path_by_shm s p path p'\<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<in> set (map Trd path)"
       
   193 by (erule path_by_shm.induct, auto)
       
   194 
       
   195 lemma pbs_prop5[rule_format]:
       
   196   "path_by_shm s p path p' \<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<notin> set (map Fst path)"
       
   197 by (erule path_by_shm.induct, auto simp:one_flow_shm_def)
       
   198 
       
   199 lemma pbs_prop6_aux:
       
   200   "path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Fst pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)"
       
   201 apply (erule path_by_shm.induct)
       
   202 apply simp
       
   203 apply clarify
       
   204 apply (case_tac "pb = p'", simp)
       
   205 apply (rule_tac x = path in exI, simp)
       
   206 apply (erule one_step_path, simp)
       
   207 apply (erule_tac x = pb in ballE, simp_all, clarsimp)
       
   208 apply (rule_tac x = pathab in exI, simp)
       
   209 apply (erule pbs2, auto)
       
   210 done
       
   211 
       
   212 lemma pbs_prop6:
       
   213   "\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Fst pathac); valid s\<rbrakk>
       
   214    \<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab"
       
   215 by (drule pbs_prop6_aux, auto)
       
   216 
       
   217 lemma pbs_prop7_aux:
       
   218   "path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Trd pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)"
       
   219 apply (erule path_by_shm.induct)
       
   220 apply simp
       
   221 apply clarify
       
   222 apply (case_tac "pb = p''", simp)
       
   223 apply (rule_tac x = "(p',h,p'') # path" in exI, simp)
       
   224 apply (rule conjI, erule pbs2, simp+)
       
   225 apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2)
       
   226 apply (erule_tac x = pb in ballE, simp_all, clarsimp)
       
   227 apply (rule_tac x = pathab in exI, simp)
       
   228 apply (erule pbs2, auto)
       
   229 done
       
   230 
       
   231 lemma pbs_prop7:
       
   232   "\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Trd pathac); valid s\<rbrakk>
       
   233    \<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab"
       
   234 by (drule pbs_prop7_aux, drule mp, simp, erule_tac x = pb in ballE, auto)
       
   235 
       
   236 lemma pbs_prop8:
       
   237   "path_by_shm s p path p' \<Longrightarrow> (set (map Fst path) - {p}) = (set (map Trd path) - {p'})"
       
   238 proof (induct rule:path_by_shm.induct)
       
   239   case (pbs1 p s)
       
   240   thus ?case by simp
       
   241 next
       
   242   case (pbs2 s p path p' h p'')
       
   243   assume p1:"path_by_shm s p path p'" and p2: "set (map Fst path) - {p} = set (map Trd path) - {p'}"
       
   244     and p3: "one_flow_shm s h p' p''" and p4: "p'' \<notin> set (map Fst path)" 
       
   245   show "set (map Fst ((p', h, p'') # path)) - {p} = set (map Trd ((p', h, p'') # path)) - {p''}"
       
   246     (is "?left = ?right")
       
   247   proof (cases "path = []")
       
   248     case True
       
   249     with p1 have "p = p'" by (drule_tac pbs_prop2, simp)
       
   250     thus ?thesis using True
       
   251       using p2 by (simp)
       
   252   next
       
   253     case False
       
   254     with p1 have a1: "p \<noteq> p'" by (drule_tac pbs_prop2, simp)
       
   255     from p3 have a2: "p' \<noteq> p''" by (simp add:one_flow_shm_def)
       
   256     from p1 False have a3: "p' \<in> set (map Trd path)" by (drule_tac pbs_prop4, simp+)
       
   257     from p4 p1 False have a4: "p \<noteq> p''" by (drule_tac pbs_prop3, auto)
       
   258     with p2 a2 p4 have a5: "p'' \<notin> set (map Trd path)" by auto
       
   259     
       
   260     have "?left = (set (map Fst path) - {p}) \<union> {p'}" using a1 by auto
       
   261     moreover have "... = (set (map Trd path) - {p'}) \<union> {p'}"  
       
   262       using p2 by auto
       
   263     moreover have "... = set (map Trd path)" using a3 by auto
       
   264     moreover have "... = set (map Trd path) - {p''}" using a5 by simp
       
   265     moreover have "... = ?right" by simp
       
   266     ultimately show ?thesis by simp
       
   267   qed
       
   268 qed
       
   269 
       
   270 lemma pbs_prop9_aux[rule_format]:
       
   271   "path_by_shm s p path p' \<Longrightarrow> h \<in> set (map Snd path) \<and> valid s \<longrightarrow> (\<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and> one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha))"
       
   272 apply (erule path_by_shm.induct, simp)
       
   273 apply (rule impI, case_tac "h \<in> set (map Snd path)", simp_all)
       
   274 apply (erule exE|erule conjE)+
       
   275 apply (rule_tac x = pa in exI, rule_tac x = pb in exI, rule_tac x = patha in exI, simp)
       
   276 apply (rule pbs2, auto)
       
   277 apply (rule_tac x = p' in exI, rule_tac x = p'' in exI, rule_tac x = path in exI, simp)
       
   278 apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2)
       
   279 done
       
   280 
       
   281 lemma pbs_prop9:
       
   282   "\<lbrakk>h \<in> set (map Snd path); path_by_shm s p path p'; valid s\<rbrakk>
       
   283    \<Longrightarrow> \<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and> 
       
   284         one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha)"
       
   285 by (rule pbs_prop9_aux, auto)
       
   286 
       
   287 lemma path_by_shm_trans_aux[rule_format]:
       
   288   "path_by_shm s p' path' p'' \<Longrightarrow> valid s \<longrightarrow> (\<forall> p path. path_by_shm s p path p' \<longrightarrow> (\<exists> path''. path_by_shm s p path'' p''))"
       
   289 proof (induct rule:path_by_shm.induct)
       
   290   case (pbs1 p s)
       
   291   thus ?case
       
   292     by (clarify, rule_tac x = path in exI, simp)
       
   293 next
       
   294   case (pbs2 s p path p' h p'')
       
   295   hence p1: "path_by_shm s p path p'" and p2: "one_flow_shm s h p' p''" 
       
   296     and p3: "valid s \<longrightarrow> (\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p'))"
       
   297     and p4: "p'' \<notin> set (map Fst path)" by auto
       
   298   show ?case
       
   299   proof clarify
       
   300     fix pa path'
       
   301     assume p5: "path_by_shm s pa path' p" and p6: "valid s"
       
   302     with p3 obtain path'' where a1: "path_by_shm s pa path'' p'" by auto
       
   303     have p3': "\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p')" 
       
   304       using p3 p6 by simp
       
   305     show "\<exists>path''. path_by_shm s pa path'' p''"
       
   306     proof (cases "p'' \<in> set (map Fst path'')")
       
   307       case True
       
   308       then obtain res where "path_by_shm s pa res p''" using a1 pbs_prop6 p6 by blast
       
   309       thus ?thesis by auto
       
   310     next
       
   311       case False
       
   312       with p2 a1 show ?thesis 
       
   313         apply (rule_tac x = "(p', h, p'') # path''" in exI)
       
   314         apply (rule path_by_shm.intros(2), auto)
       
   315         done
       
   316     qed
       
   317   qed
       
   318 qed
       
   319 
       
   320 lemma path_by_shm_trans:
       
   321   "\<lbrakk>path_by_shm s p path p'; path_by_shm s p' path' p''; valid s\<rbrakk> \<Longrightarrow> \<exists> path''. path_by_shm s p path'' p''"
       
   322 by (drule_tac p' = p' and p'' = p'' in path_by_shm_trans_aux, auto)
       
   323 
       
   324 lemma path_by_shm_intro1_prop:
       
   325   "\<not> path_by_shm s p [] p \<Longrightarrow> p \<notin> current_procs s"
       
   326 by (auto dest:path_by_shm.intros(1))
       
   327 
       
   328 lemma path_by_shm_intro3:
       
   329   "\<lbrakk>path_by_shm s p path from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h; 
       
   330     to \<notin> set (map Fst path); from \<noteq> to\<rbrakk>
       
   331    \<Longrightarrow> path_by_shm s p ((from, h, to)#path) to"
       
   332 apply (rule path_by_shm.intros(2), simp_all)
       
   333 by (auto simp:one_flow_shm_def)
       
   334 
       
   335 lemma path_by_shm_intro4:
       
   336   "\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [] p"
       
   337 by (drule procs_of_shm_prop2, simp, simp add:path_by_shm.intros(1))
       
   338 
       
   339 lemma path_by_shm_intro5:
       
   340   "\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk>
       
   341    \<Longrightarrow> path_by_shm s from [(from, h, to)] to"
       
   342 apply (rule_tac p' = "from" and h = h in path_by_shm.intros(2))
       
   343 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)
       
   344 apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto)
       
   345 done
       
   346 
       
   347 (* p'' \<notin> set (map Fst path): not duplicated target process;
       
   348  * p1 - ha \<rightarrow> p2; p2 - hb \<rightarrow> p3; p3 - ha \<rightarrow> p4; so path_by_shm p1 [(p3,ha,p4), (p2,hb,p3),(p1,ha,p2)] p4,
       
   349  * but this could be also path_by_shm p1 [(p1,ha,p4)] p4, so the former one is redundant!  *)
       
   350 
       
   351 inductive path_by_shm':: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool"
       
   352 where
       
   353   pbs1': "p \<in> current_procs s \<Longrightarrow> path_by_shm' s p [] p"
       
   354 | pbs2': "\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path); 
       
   355            h \<notin> set (map Snd path)\<rbrakk> 
       
   356           \<Longrightarrow> path_by_shm' s p ((p', h, p'')# path) p''"
       
   357 
       
   358 lemma pbs_imp_pbs'[rule_format]:
       
   359   "path_by_shm s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm' s p path' p')"
       
   360 apply (erule path_by_shm.induct)
       
   361 apply (rule impI, rule_tac x = "[]" in exI, erule pbs1')
       
   362 apply (rule impI, simp,  erule exE, case_tac "h \<in> set (map Snd path)")
       
   363 apply (drule_tac s = s and p = p and p' = p' in pbs_prop9, simp+) defer
       
   364 apply (rule_tac x = "(p', h, p'') # path" in exI, erule pbs2', simp+) 
       
   365 apply ((erule exE|erule conjE)+)
       
   366 apply (rule_tac x = "(pa, h, p'') # patha" in exI)
       
   367 apply (erule pbs2', auto simp:one_flow_shm_def)
       
   368 done
       
   369 
       
   370 lemma pbs'_imp_pbs[rule_format]:
       
   371   "path_by_shm' s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm s p path' p')"
       
   372 apply (erule path_by_shm'.induct)
       
   373 apply (rule impI, rule_tac x = "[]" in exI, simp add:pbs1)
       
   374 apply (rule impI, rule_tac x = "(p', h, p'') # path" in exI, simp add:pbs2)
       
   375 done
       
   376 
       
   377 definition flow_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"
       
   378 where
       
   379   "flow_by_shm s p p' \<equiv> \<exists> path. path_by_shm s p path p'"
       
   380 
       
   381 lemma flow_by_shm_intro':
       
   382   "valid s \<Longrightarrow> flow_by_shm s p p' = (\<exists> path. path_by_shm' s p path p')"
       
   383 by (auto simp:flow_by_shm_def intro: pbs_imp_pbs' pbs'_imp_pbs)
       
   384 
       
   385 lemma one_step_flows: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p'"
       
   386 by (drule one_step_path, auto simp:flow_by_shm_def)
       
   387 
       
   388 lemma flow_by_shm_trans:
       
   389   "\<lbrakk>flow_by_shm s p p'; flow_by_shm s p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''"
       
   390 by (auto simp:flow_by_shm_def intro!:path_by_shm_trans)
       
   391 
       
   392 lemma flow_by_shm_intro1_prop:
       
   393   "\<not> flow_by_shm s p p \<Longrightarrow> p \<notin> current_procs s"
       
   394 by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def)
       
   395 
       
   396 lemma flow_by_shm_intro1:
       
   397   "p \<in> current_procs s \<Longrightarrow> flow_by_shm s p p"
       
   398 by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def)
       
   399 
       
   400 lemma flow_by_shm_intro2:
       
   401   "\<lbrakk>flow_by_shm s p p'; one_flow_shm s h p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''"
       
   402 by (auto intro:flow_by_shm_trans dest:one_step_flows)
       
   403 
       
   404 lemma flow_by_shm_intro3:
       
   405   "\<lbrakk>flow_by_shm s p from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h; from \<noteq> to; valid s\<rbrakk>
       
   406    \<Longrightarrow> flow_by_shm s p to"
       
   407 apply (rule flow_by_shm_intro2)
       
   408 by (auto simp:one_flow_shm_def)
       
   409 
       
   410 lemma flow_by_shm_intro4:
       
   411   "\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p"
       
   412 by (drule procs_of_shm_prop2, simp, simp add:flow_by_shm_intro1)
       
   413 
       
   414 lemma flow_by_shm_intro5:
       
   415   "\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk>
       
   416    \<Longrightarrow> flow_by_shm s from  to"
       
   417 apply (rule_tac p' = "from" and h = h in flow_by_shm_intro2)
       
   418 apply (rule flow_by_shm_intro1, simp add:procs_of_shm_prop2)
       
   419 apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto)
       
   420 done
       
   421 
       
   422 lemma flow_by_shm_intro6:
       
   423   "path_by_shm s p path p' \<Longrightarrow> flow_by_shm s p p'"
       
   424 by (auto simp:flow_by_shm_def)
       
   425 (********* simpset for inductive Info_flow_shm **********)
       
   426 term edge_related
       
   427 lemma path_by_shm_detach1_aux:
       
   428   "path_by_shm s' pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> (s' = Detach p h # s) 
       
   429      \<longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb"
       
   430 apply (erule path_by_shm.induct, simp)
       
   431 apply (rule impI, rule path_by_shm.intros(1), simp+)
       
   432 by (auto simp:one_flow_shm_def split:if_splits intro:path_by_shm_intro3)
       
   433 
       
   434 lemma path_by_shm_detach1:
       
   435   "\<lbrakk>path_by_shm (Detach p h # s) pa path pb; valid (Detach p h # s)\<rbrakk> 
       
   436    \<Longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb"
       
   437 by (auto dest:path_by_shm_detach1_aux)
       
   438 
       
   439 lemma path_by_shm_detach2_aux[rule_format]:
       
   440   "path_by_shm s pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> \<not> edge_related path p h 
       
   441    \<longrightarrow> path_by_shm (Detach p h # s) pa path pb"
       
   442 apply (induct rule:path_by_shm.induct)
       
   443 apply (rule impI, rule path_by_shm.intros(1), simp)
       
   444 apply (rule impI, erule conjE, simp split:if_splits)
       
   445 apply (rule path_by_shm.intros(2), simp)
       
   446 apply (simp add:one_flow_shm_detach)
       
   447 apply (rule impI, simp+)
       
   448 done
       
   449 
       
   450 lemma path_by_shm_detach2:
       
   451   "\<lbrakk>valid (Detach p h # s); \<not> edge_related path p h; path_by_shm s pa path pb\<rbrakk> 
       
   452    \<Longrightarrow> path_by_shm (Detach p h # s) pa path pb"
       
   453 by (auto intro!:path_by_shm_detach2_aux)
       
   454 
       
   455 lemma path_by_shm_detach:
       
   456   "valid (Detach p h # s) \<Longrightarrow>
       
   457    path_by_shm (Detach p h # s) pa path pb = (\<not> edge_related path p h  \<and> path_by_shm s pa path pb)"
       
   458 by (auto dest:path_by_shm_detach1 path_by_shm_detach2)
       
   459 
       
   460 lemma flow_by_shm_detach:
       
   461   "valid (Detach p h # s) \<Longrightarrow> 
       
   462    flow_by_shm (Detach p h # s) pa pb = (\<exists> path. \<not> edge_related path p h \<and> path_by_shm s pa path pb)"
       
   463 by (auto dest:path_by_shm_detach simp:flow_by_shm_def)
       
   464 
       
   465 lemma path_by_shm_attach1_aux:
       
   466   "path_by_shm s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow>
       
   467      (path_by_shm s pa path pb) \<or>
       
   468      (\<exists> path1 path2 p'. path_by_shm s pa path1 p' \<and> path_by_shm s p path2 pb \<and> 
       
   469          (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path = path2 @ [(p', h, p)] @ path1 ) \<or>
       
   470      (\<exists> path1 path2 p' flag'. path_by_shm s pa path1 p \<and> path_by_shm s p' path2 pb \<and> 
       
   471          (p', flag') \<in> procs_of_shm s h \<and> path = path2 @ [(p, h, p')] @ path1 \<and> flag = SHM_RDWR)"
       
   472 apply (erule path_by_shm.induct)
       
   473 apply (simp, rule impI, rule pbs1, simp)
       
   474 apply (rule impI, erule impE, clarsimp)
       
   475 apply (erule disjE)
       
   476 apply (clarsimp simp:one_flow_shm_attach split:if_splits)
       
   477 apply (erule disjE, clarsimp)
       
   478 apply (erule_tac x = path in allE, clarsimp)
       
   479 apply (erule impE, rule pbs1, erule procs_of_shm_prop2, erule vd_cons, simp)
       
   480 apply (erule disjE, clarsimp)
       
   481 apply (rule_tac x = path in exI, rule_tac x = "[]" in exI, rule_tac x = p' in exI, simp)
       
   482 apply (rule pbs1, drule vt_grant_os, clarsimp)
       
   483 apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2, simp+)
       
   484 apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2, simp+)
       
   485 
       
   486 apply (erule disjE)
       
   487 apply ((erule exE|erule conjE)+, simp split:if_splits add:one_flow_shm_attach)
       
   488 apply (clarsimp simp:one_flow_shm_attach split:if_splits)
       
   489 apply (erule disjE, clarsimp)
       
   490 apply (clarsimp)
       
   491 
       
   492 
       
   493 apply (erule conjE)+
       
   494 
       
   495 
       
   496 
       
   497 apply (erule conjE, clarsimp simp only:one_flow_shm_attach split:if_splits)
       
   498 apply simp
       
   499 
       
   500 
       
   501 
       
   502 lemma path_by_shm_attach1_aux:
       
   503   "path_by_shm s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow> 
       
   504      path_by_shm s pa path pb \<or>
       
   505       (if (pa = p \<and> flag = SHM_RDWR)
       
   506        then \<exists> p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> 
       
   507                path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]
       
   508        else if (pb = p)
       
   509             then \<exists> p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> 
       
   510                    (p', SHM_RDWR) \<in> procs_of_shm s h
       
   511             else (\<exists> p' flag' patha pathb. path_by_shm s pa patha p \<and> flag = SHM_RDWR \<and> 
       
   512                    (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and> 
       
   513                    path = pathb @ [(p, h, p')] @ patha) \<or>
       
   514                  (\<exists> p' patha pathb. path_by_shm s pa patha p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> 
       
   515                    path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ patha))"
       
   516 proof (induct rule:path_by_shm.induct)
       
   517   case (pbs1 proc \<tau>)
       
   518   show ?case
       
   519   proof (rule impI)
       
   520     assume pre: "valid \<tau> \<and> \<tau> = Attach p h flag # s"
       
   521     from pbs1 pre have "proc \<in> current_procs s" by simp 
       
   522     thus "path_by_shm s proc [] proc \<or>
       
   523          (if proc = p \<and> flag = SHM_RDWR
       
   524           then \<exists>p' flagb path'.
       
   525                   (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' proc \<and> [] = path' @ [(p, h, p')]
       
   526           else if proc = p
       
   527                then \<exists>p' path'.
       
   528                        path_by_shm s proc path' p' \<and> [] = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
       
   529                else (\<exists>p' flag' patha pathb.
       
   530                         path_by_shm s proc patha p \<and>
       
   531                         flag = SHM_RDWR \<and>
       
   532                         (p', flag') \<in> procs_of_shm s h \<and>
       
   533                         path_by_shm s p' pathb proc \<and> [] = pathb @ [(p, h, p')] @ patha) \<or>
       
   534                     (\<exists>p' patha pathb.
       
   535                         path_by_shm s proc patha p' \<and>
       
   536                         (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
       
   537                         path_by_shm s p pathb proc \<and> [] = pathb @ [(p', h, p)] @ patha))"
       
   538       by (auto intro:path_by_shm.intros)
       
   539   qed
       
   540 next
       
   541   case (pbs2 \<tau> pa path pb h' pc)
       
   542   thus ?case
       
   543   proof (rule_tac impI)
       
   544     assume p1:"path_by_shm \<tau> pa path pb" and p2: "valid \<tau> \<and> \<tau> = Attach p h flag # s \<longrightarrow>
       
   545      path_by_shm s pa path pb \<or>
       
   546      (if pa = p \<and> flag = SHM_RDWR
       
   547       then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]
       
   548       else if pb = p
       
   549            then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
       
   550            else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> 
       
   551                     (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and> 
       
   552                     path = pathb @ [(p, h, p')] @ pathaa) \<or>
       
   553                 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
       
   554                     path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))"
       
   555       and p3: "one_flow_shm \<tau> h' pb pc" and p4: "valid \<tau> \<and> \<tau> = Attach p h flag # s"
       
   556     
       
   557     from p2 and p4 have p2': "
       
   558       path_by_shm s pa path pb \<or>
       
   559      (if pa = p \<and> flag = SHM_RDWR
       
   560       then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]
       
   561       else if pb = p
       
   562            then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
       
   563            else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> 
       
   564                     (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and> 
       
   565                     path = pathb @ [(p, h, p')] @ pathaa) \<or>
       
   566                 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
       
   567                     path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))"
       
   568       by (erule_tac impE, simp)
       
   569     from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os)
       
   570     from p6 have "p \<in> current_procs s" by simp hence p7:"path_by_shm s p [] p" by (erule_tac path_by_shm.intros)
       
   571     from p3 p4 have p8: "if (h' = h) 
       
   572      then (pb = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pc, flagb) \<in> procs_of_shm s h)) \<or>
       
   573           (pc = p \<and> pb \<noteq> p \<and> (pb, SHM_RDWR) \<in> procs_of_shm s h) \<or>
       
   574           (one_flow_shm s h pb pc)               
       
   575      else one_flow_shm s h' pb pc" by (auto simp add:one_flow_shm_attach) 
       
   576     
       
   577     
       
   578 (*
       
   579     have "\<And> flagb. (pc, flagb) \<in> procs_of_shm s h 
       
   580       \<Longrightarrow> \<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' [] pc"
       
   581       apply (rule_tac x= pc in exI, rule_tac x = flagb in exI, frule procs_of_shm_prop2)
       
   582       by (simp add:p5, simp add:path_by_shm.intros(1))
       
   583     hence p10: "\<not> path_by_shm s p path pc \<Longrightarrow> (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p'  pc) \<or>
       
   584       path_by_shm s pa pc"
       
   585       using p2' p7 p8 p5
       
   586       by (auto split:if_splits dest:path_by_shm.intros(2))      
       
   587   (*     apply (rule_tac x = pb in exI, simp add:one_flow_flows, rule_tac x = flagb in exI, simp)+  *) *)
       
   588 
       
   589     from p1 have a0: "(path = []) = (pa = pb)" using pbs_prop2 by simp
       
   590     have a1:"\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pb\<rbrakk> \<Longrightarrow> 
       
   591       \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]"
       
   592       using p2' by auto
       
   593     have b1: "\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pc\<rbrakk> \<Longrightarrow> 
       
   594       \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pc \<and>
       
   595         (pb, h', pc) # path = path' @ [(p, h, p')]"
       
   596       
       
   597       
       
   598       using p8 a1 p7 p5 a0 
       
   599       apply (auto split:if_splits elim:path_by_shm_intro4)
       
   600       apply (rule_tac x = pb in exI, rule conjI, rule_tac x = SHM_RDWR in exI, simp)
       
   601       apply (rule_tac x = pc in exI, rule conjI, rule_tac x = flagb in exI, simp)
       
   602       apply (rule_tac x = "[]" in exI, rule conjI)
       
   603 apply (erule path_by_shm_intro4, simp)
       
   604 
       
   605       apply (case_tac "path_by_shm s pa path pb", simp) defer
       
   606       apply (drule a1, simp+, clarsimp)
       
   607       apply (rule conjI, rule_tac x = flagb in exI, simp)
       
   608       apply (rule path_by_shm_
       
   609       using p2' p8 p5
       
   610       apply (auto split:if_splits dest!:pbs_prop2' simp:path_by_shm_intro4)
       
   611       apply (drule pbs_prop2', simp)
       
   612       apply (erule_tac x = pc in allE, simp add:path_by_shm_intro4)
       
   613      
       
   614       apply (drule_tac x = "pc" in allE)
       
   615       
       
   616       apply simp
       
   617 
       
   618       sorry
       
   619     moreover have "pc = p \<Longrightarrow> (\<exists>p' path'. path_by_shm s pa path' p' \<and>
       
   620              (pb, h', pc) # path = path' @ [(p', h, p)] \<and> (p', SHM_RDWR) \<in> procs_of_shm s h) \<or>
       
   621       (path_by_shm s pa path pc \<and> \<not> edge_related path p h)"
       
   622       using p2' p7 p8 p5
       
   623       sorry (*
       
   624       apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def) *)
       
   625     moreover have "\<lbrakk>pc \<noteq> p; pa \<noteq> p \<or> flag \<noteq> SHM_RDWR\<rbrakk> \<Longrightarrow> 
       
   626       (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>
       
   627            path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p, h, p')] @ pathb) \<or>
       
   628       (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
       
   629            path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p', h, p)] @ pathb) \<or>
       
   630       (path_by_shm s pa path pc \<and> \<not> edge_related path p h)"
       
   631       using p2' p7 p8 p5 (*
       
   632       apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def)
       
   633       apply (rule_tac x = pc in exI, simp add:path_by_shm_intro4)
       
   634       apply (rule_tac x = flagb in exI, simp)      
       
   635       done *)
       
   636       sorry
       
   637     ultimately  
       
   638     show "if (pb, h', pc) # path = [] then pa = pc \<and> pa \<in> current_procs s
       
   639        else path_by_shm s pa ((pb, h', pc) # path) pc \<and> \<not> edge_related ((pb, h', pc) # path) p h \<or>
       
   640        (if pa = p \<and> flag = SHM_RDWR
       
   641         then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and>
       
   642                 path_by_shm s p' path' pc \<and> (pb, h', pc) # path = path' @ [(p, h, p')]
       
   643         else if pc = p
       
   644              then \<exists>p' path'. path_by_shm s pa path' p' \<and>
       
   645                      (pb, h', pc) # path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
       
   646              else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and>
       
   647                       (p', flag') \<in> procs_of_shm s h \<and>
       
   648                       path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathb @ [(p, h, p')] @ pathaa) \<or>
       
   649                   (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
       
   650                       path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathb @ [(p', h, p)] @ pathaa))"
       
   651         apply (auto split:if_splits)
       
   652         using p7 by auto
       
   653   qed
       
   654 qed
       
   655 
       
   656 lemma path_by_shm_attach1:
       
   657   "\<lbrakk>valid (Attach p h flag # s); path_by_shm (Attach p h flag # s) pa pb\<rbrakk>
       
   658    \<Longrightarrow> (if path_by_shm s pa pb then True else
       
   659      (if (pa = p \<and> flag = SHM_RDWR) 
       
   660       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)
       
   661       else if (pb = p) 
       
   662            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')
       
   663            else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> 
       
   664                              path_by_shm s p' pb) \<or>
       
   665                 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb)
       
   666      )  )"
       
   667 apply (drule_tac p = p and h = h and flag = flag in path_by_shm_attach1_aux)
       
   668 by auto
       
   669 
       
   670 lemma path_by_shm_attach_aux[rule_format]:
       
   671   "path_by_shm s pa pb \<Longrightarrow> valid (Attach p h flag # s) \<longrightarrow> path_by_shm (Attach p h flag # s) pa pb"
       
   672 apply (erule path_by_shm.induct)
       
   673 apply (rule impI, rule path_by_shm.intros(1), simp)
       
   674 apply (rule impI, simp, rule_tac h = ha in path_by_shm.intros(2), simp)
       
   675 apply (auto simp add:one_flow_shm_simps)
       
   676 done
       
   677 
       
   678 lemma path_by_shm_attach2:
       
   679   "\<lbrakk>valid (Attach p h flag # s); if path_by_shm s pa pb then True else
       
   680      (if (pa = p \<and> flag = SHM_RDWR) 
       
   681       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)
       
   682       else if (pb = p) 
       
   683            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')
       
   684            else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> 
       
   685                              path_by_shm s p' pb) \<or>
       
   686                 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb))\<rbrakk>
       
   687    \<Longrightarrow> path_by_shm (Attach p h flag # s) pa pb"
       
   688 apply (frule vt_grant_os, frule vd_cons)
       
   689 apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def intro:path_by_shm_attach_aux)
       
   690 apply (rule_tac p' = p' in Info_flow_trans)
       
   691 apply (rule_tac p' = p and h = h in path_by_shm.intros(2))
       
   692 apply (rule path_by_shm.intros(1), simp)
       
   693 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
       
   694 apply (rule conjI, rule notI, simp, rule_tac x = flagb in exI, simp)
       
   695 apply (simp add:path_by_shm_attach_aux)
       
   696 
       
   697 apply (rule_tac p' = p' in Info_flow_trans)
       
   698 apply (rule_tac p' = p in Info_flow_trans)
       
   699 apply (simp add:path_by_shm_attach_aux)
       
   700 apply (rule_tac p' = p and h = h in path_by_shm.intros(2))
       
   701 apply (rule path_by_shm.intros(1), simp)
       
   702 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
       
   703 apply (rule conjI, rule notI, simp, rule_tac x = flag' in exI, simp)
       
   704 apply (simp add:path_by_shm_attach_aux)
       
   705 
       
   706 apply (rule_tac p' = p in Info_flow_trans)
       
   707 apply (rule_tac p' = p' in Info_flow_trans)
       
   708 apply (simp add:path_by_shm_attach_aux)
       
   709 apply (rule_tac p' = p' and h = h in path_by_shm.intros(2))
       
   710 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)
       
   711 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
       
   712 apply (rule notI, simp)
       
   713 apply (simp add:path_by_shm_attach_aux)
       
   714 
       
   715 apply (rule_tac p' = p in Info_flow_trans)
       
   716 apply (rule_tac p' = p' in Info_flow_trans)
       
   717 apply (simp add:path_by_shm_attach_aux)
       
   718 apply (rule_tac p' = p' and h = h in path_by_shm.intros(2))
       
   719 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)
       
   720 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
       
   721 apply (rule notI, simp)
       
   722 apply (simp add:path_by_shm_attach_aux)
       
   723 done
       
   724 
       
   725 lemma path_by_shm_attach:
       
   726   "valid (Attach p h flag # s) \<Longrightarrow> path_by_shm (Attach p h flag # s) = (\<lambda> pa pb. 
       
   727      path_by_shm s pa pb \<or>
       
   728      (if (pa = p \<and> flag = SHM_RDWR) 
       
   729       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)
       
   730       else if (pb = p) 
       
   731            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')
       
   732            else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> 
       
   733                              path_by_shm s p' pb) \<or>
       
   734                 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb)
       
   735      )  )"
       
   736 apply (rule ext, rule ext, rule iffI)
       
   737 apply (drule_tac pa = pa and pb = pb in path_by_shm_attach1, simp)
       
   738 apply (auto split:if_splits)[1]
       
   739 apply (drule_tac pa = pa and pb = pb in path_by_shm_attach2)
       
   740 apply (auto split:if_splits)
       
   741 done
       
   742 
       
   743 
       
   744 
       
   745 
       
   746 
       
   747 
       
   748 
       
   749 
       
   750 
       
   751 
       
   752 
       
   753 
       
   754 
       
   755 
       
   756 
       
   757 
       
   758 
       
   759 
       
   760 
       
   761 
       
   762 
       
   763 
       
   764 
       
   765 
       
   766 lemma info_flow_shm_detach:
       
   767   "valid (Detach p h # s) \<Longrightarrow> info_flow_shm (Detach p h # s) = (\<lambda> pa pb. 
       
   768      self_shm s pa pb \<or> ((p = pa \<or> p = pb) \<and> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)) \<or>
       
   769      (pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb) )"
       
   770 apply (rule ext, rule ext, frule vt_grant_os)
       
   771 by (auto simp:info_flow_shm_def one_flow_shm_def)
       
   772 
       
   773 lemma info_flow_shm_deleteshm:
       
   774   "valid (DeleteShM p h # s) \<Longrightarrow> info_flow_shm (DeleteShM p h # s) = (\<lambda> pa pb. 
       
   775      self_shm s pa pb \<or> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)     )"
       
   776 apply (rule ext, rule ext, frule vt_grant_os)
       
   777 by (auto simp:info_flow_shm_def one_flow_shm_def)
       
   778 
       
   779 lemma info_flow_shm_clone:
       
   780   "valid (Clone p p' fds shms # s) \<Longrightarrow> info_flow_shm (Clone p p' fds shms # s) = (\<lambda> pa pb. 
       
   781      (pa = p' \<and> pb = p') \<or> (pa = p' \<and> pb \<noteq> p' \<and> (\<exists> h \<in> shms. one_flow_shm s h p pb)) \<or> 
       
   782      (pb = p' \<and> pa \<noteq> p' \<and> (\<exists> h \<in> shms. one_flow_shm s h pa p)) \<or> 
       
   783      (pa \<noteq> p' \<and> pb \<noteq> p' \<and> info_flow_shm s pa pb))"
       
   784 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp)
       
   785 apply (frule_tac p = p' in procs_of_shm_prop2', simp)
       
   786 sorry (*
       
   787 apply (auto simp:info_flow_shm_def one_flow_shm_def)
       
   788 done *)
       
   789 
       
   790 lemma info_flow_shm_execve:
       
   791   "valid (Execve p f fds # s) \<Longrightarrow> info_flow_shm (Execve p f fds # s) = (\<lambda> pa pb. 
       
   792      (pa = p \<and> pb = p) \<or> (pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb)    )"
       
   793 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   794 by (auto simp:info_flow_shm_def one_flow_shm_def)
       
   795 
       
   796 lemma info_flow_shm_kill:
       
   797   "valid (Kill p p' # s) \<Longrightarrow> info_flow_shm (Kill p p' # s) = (\<lambda> pa pb. 
       
   798      pa \<noteq> p' \<and> pb \<noteq> p' \<and> info_flow_shm s pa pb                 )"
       
   799 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   800 by (auto simp:info_flow_shm_def one_flow_shm_def)
       
   801 
       
   802 lemma info_flow_shm_exit:
       
   803   "valid (Exit p # s) \<Longrightarrow> info_flow_shm (Exit p # s) = (\<lambda> pa pb. 
       
   804      pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb                          )"
       
   805 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   806 by (auto simp:info_flow_shm_def one_flow_shm_def)
       
   807 
       
   808 lemma info_flow_shm_other:
       
   809   "\<lbrakk>valid (e # s); 
       
   810     \<forall> p h flag. e \<noteq> Attach p h flag;
       
   811     \<forall> p h. e \<noteq> Detach p h;
       
   812     \<forall> p h. e \<noteq> DeleteShM p h;
       
   813     \<forall> p p' fds shms. e \<noteq> Clone p p' fds shms;
       
   814     \<forall> p f fds. e \<noteq> Execve p f fds;
       
   815     \<forall> p p'. e \<noteq> Kill p p';
       
   816     \<forall> p. e \<noteq> Exit p
       
   817    \<rbrakk> \<Longrightarrow> info_flow_shm (e # s) = info_flow_shm s"
       
   818 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
       
   819 apply (case_tac e, auto simp:info_flow_shm_def one_flow_shm_def dest:procs_of_shm_prop2)
       
   820 apply (erule_tac x = h in allE, simp)
       
   821 apply (drule procs_of_shm_prop1, auto)
       
   822 done
       
   823 
       
   824 
       
   825 (*
       
   826 lemma info_flow_shm_prop1: 
       
   827   "\<lbrakk>info_flow_shm s p p'; p \<noteq> p'; valid s\<rbrakk> 
       
   828    \<Longrightarrow> \<exists> h h' flag. (p, SHM_RDWR) \<in> procs_of_shm s h \<and> (p', flag) \<in> procs_of_shm s h'"
       
   829 by (induct rule: info_flow_shm.induct, auto)
       
   830 
       
   831 lemma info_flow_shm_cases:
       
   832   "\<lbrakk>info_flow_shm \<tau> pa pb; \<And>p s. \<lbrakk>s = \<tau> ; pa = p; pb = p; p \<in> current_procs s\<rbrakk> \<Longrightarrow> P;
       
   833   \<And>s p p' h p'' flag. \<lbrakk>s = \<tau>; pa = p; pb = p''; info_flow_shm s p p'; (p', SHM_RDWR) \<in> procs_of_shm s h;
       
   834                        (p'', flag) \<in> procs_of_shm s h\<rbrakk>\<Longrightarrow> P\<rbrakk>
       
   835   \<Longrightarrow> P"
       
   836 by (erule info_flow_shm.cases, auto)
       
   837 
       
   838 definition one_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"
       
   839 where
       
   840   "one_flow_shm s p p' \<equiv> p \<noteq> p' \<and> (\<exists> h flag. (p, SHM_RDWR) \<in> procs_of_shm s h \<and> (p', flag) \<in> procs_of_shm s h)"
       
   841 
       
   842 inductive flows_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"
       
   843 where
       
   844   "p \<in> current_procs s \<Longrightarrow> flows_shm s p p"
       
   845 | "\<lbrakk>flows_shm s p p'; one_flow_shm s p' p''\<rbrakk> \<Longrightarrow> flows_shm s p p''"
       
   846 
       
   847 definition attached_procs :: "t_state \<Rightarrow> t_shm \<Rightarrow> t_process set"
       
   848 where
       
   849   "attached_procs s h \<equiv> {p. \<exists> flag. (p, flag) \<in> procs_of_shm s h}"
       
   850 
       
   851 definition flowed_procs:: "t_state \<Rightarrow> t_shm \<Rightarrow> t_process set"
       
   852 where
       
   853   "flowed_procs s h \<equiv> {p'. \<exists> p \<in> attached_procs s h. flows_shm s p p'}"
       
   854 
       
   855 inductive flowed_shm:: "t_state \<Rightarrow> t_process \<Rightarrow> t_shm set"
       
   856 
       
   857 fun Info_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process set"
       
   858 where
       
   859   "Info_flow_shm [] = (\<lambda> p. {p'. flows_shm [] p p'})"
       
   860 | "Info_flow_shm (Attach p h flag # s) = (\<lambda> p'. 
       
   861      if (p' = p) then flowed_procs s h 
       
   862      else if ()
       
   863     "
       
   864 
       
   865 
       
   866 lemma info_flow_shm_attach:
       
   867   "valid (Attach p h flag # s) \<Longrightarrow> info_flow_shm (Attach p h flag # s) = (\<lambda> pa pb. (info_flow_shm s pa pb) \<or> 
       
   868      (if (pa = p) 
       
   869       then (if (flag = SHM_RDWR) 
       
   870             then (\<exists> flag. (pb, flag) \<in> procs_of_shm s h)
       
   871             else (pb = p)) 
       
   872       else (if (pb = p) 
       
   873             then (pa, SHM_RDWR) \<in> procs_of_shm s h
       
   874             else info_flow_shm s pa pb)) )"
       
   875 apply (frule vd_cons, frule vt_grant_os, rule ext, rule ext)
       
   876 apply (case_tac "info_flow_shm s pa pb", simp)
       
   877 
       
   878 thm info_flow_shm.cases
       
   879 apply (auto split:if_splits intro:info_flow_shm.intros elim:info_flow_shm_cases)
       
   880 apply (erule info_flow_shm_cases, simp, simp split:if_splits)
       
   881 apply (rule_tac p = pa and p' = p' in info_flow_shm.intros(2), simp+)
       
   882 apply (rule notI, erule info_flow_shm.cases, simp+)
       
   883 pr 5
       
   884 *)
       
   885 lemmas info_flow_shm_simps = info_flow_shm_other (* info_flow_shm_attach *) info_flow_shm_detach info_flow_shm_deleteshm
       
   886   info_flow_shm_clone info_flow_shm_execve info_flow_shm_kill info_flow_shm_exit
       
   887 
    69 
   888 lemma has_same_inode_in_current:
    70 lemma has_same_inode_in_current:
   889   "\<lbrakk>has_same_inode s f f'; valid s\<rbrakk> \<Longrightarrow> f \<in> current_files s \<and> f' \<in> current_files s"
    71   "\<lbrakk>has_same_inode s f f'; valid s\<rbrakk> \<Longrightarrow> f \<in> current_files s \<and> f' \<in> current_files s"
   890 by (auto simp add:has_same_inode_def current_files_def)
    72 by (auto simp add:has_same_inode_def current_files_def)
   891 
    73