141 done  | 
   143 done  | 
   142   | 
   144   | 
   143 lemmas one_flow_shm_simps = one_flow_shm_other one_flow_shm_attach one_flow_shm_detach one_flow_shm_deleteshm  | 
   145 lemmas one_flow_shm_simps = one_flow_shm_other one_flow_shm_attach one_flow_shm_detach one_flow_shm_deleteshm  | 
   144   one_flow_shm_clone one_flow_shm_execve one_flow_shm_kill one_flow_shm_exit  | 
   146   one_flow_shm_clone one_flow_shm_execve one_flow_shm_kill one_flow_shm_exit  | 
   145   | 
   147   | 
   146   | 
   148 type_synonym t_edge_shm = "t_process \<times> t_shm \<times> t_process"  | 
   147 inductive Info_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"  | 
   149 fun Fst:: "t_edge_shm \<Rightarrow> t_process" where "Fst (a, b, c) = a"  | 
         | 
   150 fun Snd:: "t_edge_shm \<Rightarrow> t_shm" where "Snd (a, b, c) = b"  | 
         | 
   151 fun Trd:: "t_edge_shm \<Rightarrow> t_process" where "Trd (a, b, c) = c"  | 
         | 
   152   | 
         | 
   153 fun edge_related:: "t_edge_shm list \<Rightarrow> t_process \<Rightarrow> t_shm \<Rightarrow> bool"  | 
   148 where  | 
   154 where  | 
   149   ifs_self: "p \<in> current_procs s \<Longrightarrow> Info_flow_shm s p p"  | 
   155   "edge_related [] p h = False"  | 
   150 | ifs_flow:"\<lbrakk>Info_flow_shm s p p'; one_flow_shm s h p' p''\<rbrakk> \<Longrightarrow> Info_flow_shm s p p''"  | 
   156 | "edge_related ((from, shm, to) # path) p h =   | 
   151   | 
   157      (if (((p = from) \<or> (p = to)) \<and> (h = shm)) then True   | 
   152 lemma Info_flow_trans_aux:  | 
   158       else edge_related path p h)"  | 
   153   "Info_flow_shm s p' p'' \<Longrightarrow> \<forall>p. Info_flow_shm s p p' \<longrightarrow> Info_flow_shm s p p''"  | 
   159            | 
   154 apply (erule Info_flow_shm.induct)  | 
   160 inductive path_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool"  | 
   155 by (auto intro:Info_flow_shm.intros)  | 
   161 where  | 
   156   | 
   162   pbs1: "p \<in> current_procs s \<Longrightarrow> path_by_shm s p [] p"  | 
   157 lemma Info_flow_trans:  | 
   163 | pbs2: "\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path)\<rbrakk>   | 
   158   "\<lbrakk>Info_flow_shm s p p'; Info_flow_shm s p' p''\<rbrakk> \<Longrightarrow> Info_flow_shm s p p''"  | 
   164          \<Longrightarrow> path_by_shm s p ((p', h, p'')# path) p''"  | 
   159 by (auto dest:Info_flow_trans_aux)  | 
   165   | 
   160   | 
   166   | 
   161 lemma one_flow_flows:  | 
   167 lemma one_step_path: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [(p, h, p')] p'"  | 
   162   "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> Info_flow_shm s p p'"  | 
   168 apply (rule_tac path = "[]" and p = p in path_by_shm.intros(2))  | 
   163 apply (rule Info_flow_shm.intros(2), simp_all)  | 
   169 apply (rule path_by_shm.intros(1))  | 
   164 apply (rule Info_flow_shm.intros(1))  | 
         | 
   165 apply (auto intro:procs_of_shm_prop2 simp:one_flow_shm_def)  | 
   170 apply (auto intro:procs_of_shm_prop2 simp:one_flow_shm_def)  | 
   166 done  | 
   171 done  | 
   167   | 
   172   | 
   168 lemma ifs_flow': "\<lbrakk>one_flow_shm s h p p'; Info_flow_shm s p' p''; valid s\<rbrakk> \<Longrightarrow> Info_flow_shm s p p''"  | 
   173 lemma pbs_prop1:  | 
   169 apply (drule one_flow_flows, simp+)  | 
   174   "path_by_shm s p path p' \<Longrightarrow> ((path = []) = (p = p')) \<and> (path \<noteq> [] \<longrightarrow> p \<in> set (map Fst path))"  | 
   170 apply (erule Info_flow_trans, simp+)  | 
   175 apply (erule path_by_shm.induct, simp)  | 
   171 done  | 
   176 apply (auto simp:one_flow_shm_def)  | 
   172   | 
   177 done  | 
   173 lemma Info_flow_shm_cases1:  | 
   178   | 
   174   "\<lbrakk>Info_flow_shm s pa pb;   | 
   179 lemma pbs_prop2:  | 
   175     \<And>p \<tau>. \<lbrakk>\<tau> = s; pa = p; pb = p; p \<in> current_procs \<tau>\<rbrakk> \<Longrightarrow> P;  | 
   180   "path_by_shm s p path p' \<Longrightarrow> (path = []) = (p = p')"  | 
   176     \<And>\<tau> p p' h p''. \<lbrakk>\<tau> = s; pa = p; pb = p''; Info_flow_shm \<tau> p p'; one_flow_shm \<tau> h p' p''\<rbrakk> \<Longrightarrow> P\<rbrakk>  | 
   181 by (simp add:pbs_prop1)  | 
   177    \<Longrightarrow> P"  | 
   182   | 
   178 by (erule Info_flow_shm.cases, auto)  | 
   183 lemma pbs_prop2':  | 
   179   | 
   184   "path_by_shm s p path p \<Longrightarrow> path = []"  | 
   180 lemma Info_flow_shm_prop1:  | 
   185 by (simp add:pbs_prop2)  | 
   181   "\<not> Info_flow_shm s p p \<Longrightarrow> p \<notin> current_procs s"   | 
   186   | 
   182 by (rule notI, drule Info_flow_shm.intros(1), simp)  | 
   187 lemma pbs_prop3:  | 
   183   | 
   188   "\<lbrakk>path_by_shm s p path p'; path \<noteq> []\<rbrakk> \<Longrightarrow> p \<in> set (map Fst path)"  | 
   184 lemma Info_flow_shm_intro3:  | 
   189 by (drule pbs_prop1, auto)  | 
   185   "\<lbrakk>Info_flow_shm s p from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h\<rbrakk>  | 
   190   | 
   186    \<Longrightarrow> Info_flow_shm s p to"  | 
   191 lemma pbs_prop4[rule_format]:  | 
   187 apply (case_tac "from = to", simp)  | 
   192   "path_by_shm s p path p'\<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<in> set (map Trd path)"  | 
   188 apply (erule_tac h = h in Info_flow_shm.intros(2), simp add:one_flow_shm_def)  | 
   193 by (erule path_by_shm.induct, auto)  | 
   189 by (rule_tac x = flag in exI, simp)  | 
   194   | 
   190   | 
   195 lemma pbs_prop5[rule_format]:  | 
   191 lemma Info_flow_shm_intro4:  | 
   196   "path_by_shm s p path p' \<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<notin> set (map Fst path)"  | 
   192   "\<lbrakk>(p, flagb) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> Info_flow_shm s p p"  | 
   197 by (erule path_by_shm.induct, auto simp:one_flow_shm_def)  | 
   193 by (drule procs_of_shm_prop2, simp, simp add:Info_flow_shm.intros)  | 
   198   | 
   194   | 
   199 lemma pbs_prop6_aux:  | 
         | 
   200   "path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Fst pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)"  | 
         | 
   201 apply (erule path_by_shm.induct)  | 
         | 
   202 apply simp  | 
         | 
   203 apply clarify  | 
         | 
   204 apply (case_tac "pb = p'", simp)  | 
         | 
   205 apply (rule_tac x = path in exI, simp)  | 
         | 
   206 apply (erule one_step_path, simp)  | 
         | 
   207 apply (erule_tac x = pb in ballE, simp_all, clarsimp)  | 
         | 
   208 apply (rule_tac x = pathab in exI, simp)  | 
         | 
   209 apply (erule pbs2, auto)  | 
         | 
   210 done  | 
         | 
   211   | 
         | 
   212 lemma pbs_prop6:  | 
         | 
   213   "\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Fst pathac); valid s\<rbrakk>  | 
         | 
   214    \<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab"  | 
         | 
   215 by (drule pbs_prop6_aux, auto)  | 
         | 
   216   | 
         | 
   217 lemma pbs_prop7_aux:  | 
         | 
   218   "path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Trd pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)"  | 
         | 
   219 apply (erule path_by_shm.induct)  | 
         | 
   220 apply simp  | 
         | 
   221 apply clarify  | 
         | 
   222 apply (case_tac "pb = p''", simp)  | 
         | 
   223 apply (rule_tac x = "(p',h,p'') # path" in exI, simp)  | 
         | 
   224 apply (rule conjI, erule pbs2, simp+)  | 
         | 
   225 apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2)  | 
         | 
   226 apply (erule_tac x = pb in ballE, simp_all, clarsimp)  | 
         | 
   227 apply (rule_tac x = pathab in exI, simp)  | 
         | 
   228 apply (erule pbs2, auto)  | 
         | 
   229 done  | 
         | 
   230   | 
         | 
   231 lemma pbs_prop7:  | 
         | 
   232   "\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Trd pathac); valid s\<rbrakk>  | 
         | 
   233    \<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab"  | 
         | 
   234 by (drule pbs_prop7_aux, drule mp, simp, erule_tac x = pb in ballE, auto)  | 
         | 
   235   | 
         | 
   236 lemma pbs_prop8:  | 
         | 
   237   "path_by_shm s p path p' \<Longrightarrow> (set (map Fst path) - {p}) = (set (map Trd path) - {p'})" | 
         | 
   238 proof (induct rule:path_by_shm.induct)  | 
         | 
   239   case (pbs1 p s)  | 
         | 
   240   thus ?case by simp  | 
         | 
   241 next  | 
         | 
   242   case (pbs2 s p path p' h p'')  | 
         | 
   243   assume p1:"path_by_shm s p path p'" and p2: "set (map Fst path) - {p} = set (map Trd path) - {p'}" | 
         | 
   244     and p3: "one_flow_shm s h p' p''" and p4: "p'' \<notin> set (map Fst path)"   | 
         | 
   245   show "set (map Fst ((p', h, p'') # path)) - {p} = set (map Trd ((p', h, p'') # path)) - {p''}" | 
         | 
   246     (is "?left = ?right")  | 
         | 
   247   proof (cases "path = []")  | 
         | 
   248     case True  | 
         | 
   249     with p1 have "p = p'" by (drule_tac pbs_prop2, simp)  | 
         | 
   250     thus ?thesis using True  | 
         | 
   251       using p2 by (simp)  | 
         | 
   252   next  | 
         | 
   253     case False  | 
         | 
   254     with p1 have a1: "p \<noteq> p'" by (drule_tac pbs_prop2, simp)  | 
         | 
   255     from p3 have a2: "p' \<noteq> p''" by (simp add:one_flow_shm_def)  | 
         | 
   256     from p1 False have a3: "p' \<in> set (map Trd path)" by (drule_tac pbs_prop4, simp+)  | 
         | 
   257     from p4 p1 False have a4: "p \<noteq> p''" by (drule_tac pbs_prop3, auto)  | 
         | 
   258     with p2 a2 p4 have a5: "p'' \<notin> set (map Trd path)" by auto  | 
         | 
   259       | 
         | 
   260     have "?left = (set (map Fst path) - {p}) \<union> {p'}" using a1 by auto | 
         | 
   261     moreover have "... = (set (map Trd path) - {p'}) \<union> {p'}"   | 
         | 
   262       using p2 by auto  | 
         | 
   263     moreover have "... = set (map Trd path)" using a3 by auto  | 
         | 
   264     moreover have "... = set (map Trd path) - {p''}" using a5 by simp | 
         | 
   265     moreover have "... = ?right" by simp  | 
         | 
   266     ultimately show ?thesis by simp  | 
         | 
   267   qed  | 
         | 
   268 qed  | 
         | 
   269   | 
         | 
   270 lemma pbs_prop9_aux[rule_format]:  | 
         | 
   271   "path_by_shm s p path p' \<Longrightarrow> h \<in> set (map Snd path) \<and> valid s \<longrightarrow> (\<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and> one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha))"  | 
         | 
   272 apply (erule path_by_shm.induct, simp)  | 
         | 
   273 apply (rule impI, case_tac "h \<in> set (map Snd path)", simp_all)  | 
         | 
   274 apply (erule exE|erule conjE)+  | 
         | 
   275 apply (rule_tac x = pa in exI, rule_tac x = pb in exI, rule_tac x = patha in exI, simp)  | 
         | 
   276 apply (rule pbs2, auto)  | 
         | 
   277 apply (rule_tac x = p' in exI, rule_tac x = p'' in exI, rule_tac x = path in exI, simp)  | 
         | 
   278 apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2)  | 
         | 
   279 done  | 
         | 
   280   | 
         | 
   281 lemma pbs_prop9:  | 
         | 
   282   "\<lbrakk>h \<in> set (map Snd path); path_by_shm s p path p'; valid s\<rbrakk>  | 
         | 
   283    \<Longrightarrow> \<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and>   | 
         | 
   284         one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha)"  | 
         | 
   285 by (rule pbs_prop9_aux, auto)  | 
         | 
   286   | 
         | 
   287 lemma path_by_shm_trans_aux[rule_format]:  | 
         | 
   288   "path_by_shm s p' path' p'' \<Longrightarrow> valid s \<longrightarrow> (\<forall> p path. path_by_shm s p path p' \<longrightarrow> (\<exists> path''. path_by_shm s p path'' p''))"  | 
         | 
   289 proof (induct rule:path_by_shm.induct)  | 
         | 
   290   case (pbs1 p s)  | 
         | 
   291   thus ?case  | 
         | 
   292     by (clarify, rule_tac x = path in exI, simp)  | 
         | 
   293 next  | 
         | 
   294   case (pbs2 s p path p' h p'')  | 
         | 
   295   hence p1: "path_by_shm s p path p'" and p2: "one_flow_shm s h p' p''"   | 
         | 
   296     and p3: "valid s \<longrightarrow> (\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p'))"  | 
         | 
   297     and p4: "p'' \<notin> set (map Fst path)" by auto  | 
         | 
   298   show ?case  | 
         | 
   299   proof clarify  | 
         | 
   300     fix pa path'  | 
         | 
   301     assume p5: "path_by_shm s pa path' p" and p6: "valid s"  | 
         | 
   302     with p3 obtain path'' where a1: "path_by_shm s pa path'' p'" by auto  | 
         | 
   303     have p3': "\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p')"   | 
         | 
   304       using p3 p6 by simp  | 
         | 
   305     show "\<exists>path''. path_by_shm s pa path'' p''"  | 
         | 
   306     proof (cases "p'' \<in> set (map Fst path'')")  | 
         | 
   307       case True  | 
         | 
   308       then obtain res where "path_by_shm s pa res p''" using a1 pbs_prop6 p6 by blast  | 
         | 
   309       thus ?thesis by auto  | 
         | 
   310     next  | 
         | 
   311       case False  | 
         | 
   312       with p2 a1 show ?thesis   | 
         | 
   313         apply (rule_tac x = "(p', h, p'') # path''" in exI)  | 
         | 
   314         apply (rule path_by_shm.intros(2), auto)  | 
         | 
   315         done  | 
         | 
   316     qed  | 
         | 
   317   qed  | 
         | 
   318 qed  | 
         | 
   319   | 
         | 
   320 lemma path_by_shm_trans:  | 
         | 
   321   "\<lbrakk>path_by_shm s p path p'; path_by_shm s p' path' p''; valid s\<rbrakk> \<Longrightarrow> \<exists> path''. path_by_shm s p path'' p''"  | 
         | 
   322 by (drule_tac p' = p' and p'' = p'' in path_by_shm_trans_aux, auto)  | 
         | 
   323   | 
         | 
   324 lemma path_by_shm_intro1_prop:  | 
         | 
   325   "\<not> path_by_shm s p [] p \<Longrightarrow> p \<notin> current_procs s"  | 
         | 
   326 by (auto dest:path_by_shm.intros(1))  | 
         | 
   327   | 
         | 
   328 lemma path_by_shm_intro3:  | 
         | 
   329   "\<lbrakk>path_by_shm s p path from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h;   | 
         | 
   330     to \<notin> set (map Fst path); from \<noteq> to\<rbrakk>  | 
         | 
   331    \<Longrightarrow> path_by_shm s p ((from, h, to)#path) to"  | 
         | 
   332 apply (rule path_by_shm.intros(2), simp_all)  | 
         | 
   333 by (auto simp:one_flow_shm_def)  | 
         | 
   334   | 
         | 
   335 lemma path_by_shm_intro4:  | 
         | 
   336   "\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [] p"  | 
         | 
   337 by (drule procs_of_shm_prop2, simp, simp add:path_by_shm.intros(1))  | 
         | 
   338   | 
         | 
   339 lemma path_by_shm_intro5:  | 
         | 
   340   "\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk>  | 
         | 
   341    \<Longrightarrow> path_by_shm s from [(from, h, to)] to"  | 
         | 
   342 apply (rule_tac p' = "from" and h = h in path_by_shm.intros(2))  | 
         | 
   343 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)  | 
         | 
   344 apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto)  | 
         | 
   345 done  | 
         | 
   346   | 
         | 
   347 (* p'' \<notin> set (map Fst path): not duplicated target process;  | 
         | 
   348  * p1 - ha \<rightarrow> p2; p2 - hb \<rightarrow> p3; p3 - ha \<rightarrow> p4; so path_by_shm p1 [(p3,ha,p4), (p2,hb,p3),(p1,ha,p2)] p4,  | 
         | 
   349  * but this could be also path_by_shm p1 [(p1,ha,p4)] p4, so the former one is redundant!  *)  | 
         | 
   350   | 
         | 
   351 inductive path_by_shm':: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool"  | 
         | 
   352 where  | 
         | 
   353   pbs1': "p \<in> current_procs s \<Longrightarrow> path_by_shm' s p [] p"  | 
         | 
   354 | pbs2': "\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path);   | 
         | 
   355            h \<notin> set (map Snd path)\<rbrakk>   | 
         | 
   356           \<Longrightarrow> path_by_shm' s p ((p', h, p'')# path) p''"  | 
         | 
   357   | 
         | 
   358 lemma pbs_imp_pbs'[rule_format]:  | 
         | 
   359   "path_by_shm s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm' s p path' p')"  | 
         | 
   360 apply (erule path_by_shm.induct)  | 
         | 
   361 apply (rule impI, rule_tac x = "[]" in exI, erule pbs1')  | 
         | 
   362 apply (rule impI, simp,  erule exE, case_tac "h \<in> set (map Snd path)")  | 
         | 
   363 apply (drule_tac s = s and p = p and p' = p' in pbs_prop9, simp+) defer  | 
         | 
   364 apply (rule_tac x = "(p', h, p'') # path" in exI, erule pbs2', simp+)   | 
         | 
   365 apply ((erule exE|erule conjE)+)  | 
         | 
   366 apply (rule_tac x = "(pa, h, p'') # patha" in exI)  | 
         | 
   367 apply (erule pbs2', auto simp:one_flow_shm_def)  | 
         | 
   368 done  | 
         | 
   369   | 
         | 
   370 lemma pbs'_imp_pbs[rule_format]:  | 
         | 
   371   "path_by_shm' s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm s p path' p')"  | 
         | 
   372 apply (erule path_by_shm'.induct)  | 
         | 
   373 apply (rule impI, rule_tac x = "[]" in exI, simp add:pbs1)  | 
         | 
   374 apply (rule impI, rule_tac x = "(p', h, p'') # path" in exI, simp add:pbs2)  | 
         | 
   375 done  | 
         | 
   376   | 
         | 
   377 definition flow_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"  | 
         | 
   378 where  | 
         | 
   379   "flow_by_shm s p p' \<equiv> \<exists> path. path_by_shm s p path p'"  | 
         | 
   380   | 
         | 
   381 lemma flow_by_shm_intro':  | 
         | 
   382   "valid s \<Longrightarrow> flow_by_shm s p p' = (\<exists> path. path_by_shm' s p path p')"  | 
         | 
   383 by (auto simp:flow_by_shm_def intro: pbs_imp_pbs' pbs'_imp_pbs)  | 
         | 
   384   | 
         | 
   385 lemma one_step_flows: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p'"  | 
         | 
   386 by (drule one_step_path, auto simp:flow_by_shm_def)  | 
         | 
   387   | 
         | 
   388 lemma flow_by_shm_trans:  | 
         | 
   389   "\<lbrakk>flow_by_shm s p p'; flow_by_shm s p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''"  | 
         | 
   390 by (auto simp:flow_by_shm_def intro!:path_by_shm_trans)  | 
         | 
   391   | 
         | 
   392 lemma flow_by_shm_intro1_prop:  | 
         | 
   393   "\<not> flow_by_shm s p p \<Longrightarrow> p \<notin> current_procs s"  | 
         | 
   394 by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def)  | 
         | 
   395   | 
         | 
   396 lemma flow_by_shm_intro1:  | 
         | 
   397   "p \<in> current_procs s \<Longrightarrow> flow_by_shm s p p"  | 
         | 
   398 by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def)  | 
         | 
   399   | 
         | 
   400 lemma flow_by_shm_intro2:  | 
         | 
   401   "\<lbrakk>flow_by_shm s p p'; one_flow_shm s h p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''"  | 
         | 
   402 by (auto intro:flow_by_shm_trans dest:one_step_flows)  | 
         | 
   403   | 
         | 
   404 lemma flow_by_shm_intro3:  | 
         | 
   405   "\<lbrakk>flow_by_shm s p from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h; from \<noteq> to; valid s\<rbrakk>  | 
         | 
   406    \<Longrightarrow> flow_by_shm s p to"  | 
         | 
   407 apply (rule flow_by_shm_intro2)  | 
         | 
   408 by (auto simp:one_flow_shm_def)  | 
         | 
   409   | 
         | 
   410 lemma flow_by_shm_intro4:  | 
         | 
   411   "\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p"  | 
         | 
   412 by (drule procs_of_shm_prop2, simp, simp add:flow_by_shm_intro1)  | 
         | 
   413   | 
         | 
   414 lemma flow_by_shm_intro5:  | 
         | 
   415   "\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk>  | 
         | 
   416    \<Longrightarrow> flow_by_shm s from  to"  | 
         | 
   417 apply (rule_tac p' = "from" and h = h in flow_by_shm_intro2)  | 
         | 
   418 apply (rule flow_by_shm_intro1, simp add:procs_of_shm_prop2)  | 
         | 
   419 apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto)  | 
         | 
   420 done  | 
         | 
   421   | 
         | 
   422 lemma flow_by_shm_intro6:  | 
         | 
   423   "path_by_shm s p path p' \<Longrightarrow> flow_by_shm s p p'"  | 
         | 
   424 by (auto simp:flow_by_shm_def)  | 
   195 (********* simpset for inductive Info_flow_shm **********)  | 
   425 (********* simpset for inductive Info_flow_shm **********)  | 
   196   | 
   426 term edge_related  | 
   197 lemma Info_flow_shm_attach1_aux:  | 
   427 lemma path_by_shm_detach1_aux:  | 
   198   "Info_flow_shm s' pa pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow>   | 
   428   "path_by_shm s' pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> (s' = Detach p h # s)   | 
   199      (if Info_flow_shm s pa pb then True else  | 
   429      \<longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb"  | 
   200      (if (pa = p \<and> flag = SHM_RDWR)   | 
   430 apply (erule path_by_shm.induct, simp)  | 
   201       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)  | 
   431 apply (rule impI, rule path_by_shm.intros(1), simp+)  | 
   202       else if (pb = p)   | 
   432 by (auto simp:one_flow_shm_def split:if_splits intro:path_by_shm_intro3)  | 
   203            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p')  | 
   433   | 
   204            else (\<exists> p' flag'. Info_flow_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>   | 
   434 lemma path_by_shm_detach1:  | 
   205                              Info_flow_shm s p' pb) \<or>  | 
   435   "\<lbrakk>path_by_shm (Detach p h # s) pa path pb; valid (Detach p h # s)\<rbrakk>   | 
   206                 (\<exists> p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb)  | 
   436    \<Longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb"  | 
   207      )  )"  | 
   437 by (auto dest:path_by_shm_detach1_aux)  | 
   208 proof (induct rule:Info_flow_shm.induct)  | 
   438   | 
   209   case (ifs_self proc \<tau>)  | 
   439 lemma path_by_shm_detach2_aux[rule_format]:  | 
         | 
   440   "path_by_shm s pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> \<not> edge_related path p h   | 
         | 
   441    \<longrightarrow> path_by_shm (Detach p h # s) pa path pb"  | 
         | 
   442 apply (induct rule:path_by_shm.induct)  | 
         | 
   443 apply (rule impI, rule path_by_shm.intros(1), simp)  | 
         | 
   444 apply (rule impI, erule conjE, simp split:if_splits)  | 
         | 
   445 apply (rule path_by_shm.intros(2), simp)  | 
         | 
   446 apply (simp add:one_flow_shm_detach)  | 
         | 
   447 apply (rule impI, simp+)  | 
         | 
   448 done  | 
         | 
   449   | 
         | 
   450 lemma path_by_shm_detach2:  | 
         | 
   451   "\<lbrakk>valid (Detach p h # s); \<not> edge_related path p h; path_by_shm s pa path pb\<rbrakk>   | 
         | 
   452    \<Longrightarrow> path_by_shm (Detach p h # s) pa path pb"  | 
         | 
   453 by (auto intro!:path_by_shm_detach2_aux)  | 
         | 
   454   | 
         | 
   455 lemma path_by_shm_detach:  | 
         | 
   456   "valid (Detach p h # s) \<Longrightarrow>  | 
         | 
   457    path_by_shm (Detach p h # s) pa path pb = (\<not> edge_related path p h  \<and> path_by_shm s pa path pb)"  | 
         | 
   458 by (auto dest:path_by_shm_detach1 path_by_shm_detach2)  | 
         | 
   459   | 
         | 
   460 lemma flow_by_shm_detach:  | 
         | 
   461   "valid (Detach p h # s) \<Longrightarrow>   | 
         | 
   462    flow_by_shm (Detach p h # s) pa pb = (\<exists> path. \<not> edge_related path p h \<and> path_by_shm s pa path pb)"  | 
         | 
   463 by (auto dest:path_by_shm_detach simp:flow_by_shm_def)  | 
         | 
   464   | 
         | 
   465 lemma path_by_shm_attach1_aux:  | 
         | 
   466   "path_by_shm s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow>  | 
         | 
   467      (path_by_shm s pa path pb) \<or>  | 
         | 
   468      (\<exists> path1 path2 p'. path_by_shm s pa path1 p' \<and> path_by_shm s p path2 pb \<and>   | 
         | 
   469          (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path = path2 @ [(p', h, p)] @ path1 ) \<or>  | 
         | 
   470      (\<exists> path1 path2 p' flag'. path_by_shm s pa path1 p \<and> path_by_shm s p' path2 pb \<and>   | 
         | 
   471          (p', flag') \<in> procs_of_shm s h \<and> path = path2 @ [(p, h, p')] @ path1 \<and> flag = SHM_RDWR)"  | 
         | 
   472 apply (erule path_by_shm.induct)  | 
         | 
   473 apply (simp, rule impI, rule pbs1, simp)  | 
         | 
   474 apply (rule impI, erule impE, clarsimp)  | 
         | 
   475 apply (erule disjE)  | 
         | 
   476 apply (clarsimp simp:one_flow_shm_attach split:if_splits)  | 
         | 
   477 apply (erule disjE, clarsimp)  | 
         | 
   478 apply (erule_tac x = path in allE, clarsimp)  | 
         | 
   479 apply (erule impE, rule pbs1, erule procs_of_shm_prop2, erule vd_cons, simp)  | 
         | 
   480 apply (erule disjE, clarsimp)  | 
         | 
   481 apply (rule_tac x = path in exI, rule_tac x = "[]" in exI, rule_tac x = p' in exI, simp)  | 
         | 
   482 apply (rule pbs1, drule vt_grant_os, clarsimp)  | 
         | 
   483 apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2, simp+)  | 
         | 
   484 apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2, simp+)  | 
         | 
   485   | 
         | 
   486 apply (erule disjE)  | 
         | 
   487 apply ((erule exE|erule conjE)+, simp split:if_splits add:one_flow_shm_attach)  | 
         | 
   488 apply (clarsimp simp:one_flow_shm_attach split:if_splits)  | 
         | 
   489 apply (erule disjE, clarsimp)  | 
         | 
   490 apply (clarsimp)  | 
         | 
   491   | 
         | 
   492   | 
         | 
   493 apply (erule conjE)+  | 
         | 
   494   | 
         | 
   495   | 
         | 
   496   | 
         | 
   497 apply (erule conjE, clarsimp simp only:one_flow_shm_attach split:if_splits)  | 
         | 
   498 apply simp  | 
         | 
   499   | 
         | 
   500   | 
         | 
   501   | 
         | 
   502 lemma path_by_shm_attach1_aux:  | 
         | 
   503   "path_by_shm s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow>   | 
         | 
   504      path_by_shm s pa path pb \<or>  | 
         | 
   505       (if (pa = p \<and> flag = SHM_RDWR)  | 
         | 
   506        then \<exists> p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and>   | 
         | 
   507                path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]  | 
         | 
   508        else if (pb = p)  | 
         | 
   509             then \<exists> p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and>   | 
         | 
   510                    (p', SHM_RDWR) \<in> procs_of_shm s h  | 
         | 
   511             else (\<exists> p' flag' patha pathb. path_by_shm s pa patha p \<and> flag = SHM_RDWR \<and>   | 
         | 
   512                    (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and>   | 
         | 
   513                    path = pathb @ [(p, h, p')] @ patha) \<or>  | 
         | 
   514                  (\<exists> p' patha pathb. path_by_shm s pa patha p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>   | 
         | 
   515                    path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ patha))"  | 
         | 
   516 proof (induct rule:path_by_shm.induct)  | 
         | 
   517   case (pbs1 proc \<tau>)  | 
   210   show ?case  | 
   518   show ?case  | 
   211   proof (rule impI)  | 
   519   proof (rule impI)  | 
   212     assume pre: "valid \<tau> \<and> \<tau> = Attach p h flag # s"  | 
   520     assume pre: "valid \<tau> \<and> \<tau> = Attach p h flag # s"  | 
   213     hence p1: "p \<in> current_procs s" and p2: "valid s" by (auto intro:vd_cons dest:vt_grant_os)  | 
   521     from pbs1 pre have "proc \<in> current_procs s" by simp   | 
   214     hence p3: "Info_flow_shm s p p" by (auto intro:Info_flow_shm.intros)  | 
   522     thus "path_by_shm s proc [] proc \<or>  | 
   215     from ifs_self pre have "proc \<in> current_procs s" by simp   | 
   523          (if proc = p \<and> flag = SHM_RDWR  | 
   216     hence p4: "Info_flow_shm s proc proc" by (auto intro:Info_flow_shm.intros)  | 
   524           then \<exists>p' flagb path'.  | 
   217     show "if Info_flow_shm s proc proc then True  | 
   525                   (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' proc \<and> [] = path' @ [(p, h, p')]  | 
   218     else if proc = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' proc  | 
   526           else if proc = p  | 
   219          else if proc = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s proc p'  | 
   527                then \<exists>p' path'.  | 
   220               else (\<exists>p' flag'. Info_flow_shm s proc p \<and>  | 
   528                        path_by_shm s proc path' p' \<and> [] = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h  | 
   221                        flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' proc) \<or>  | 
   529                else (\<exists>p' flag' patha pathb.  | 
   222                    (\<exists>p'. Info_flow_shm s proc p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p proc)"      using p4 p3 by auto  | 
   530                         path_by_shm s proc patha p \<and>  | 
         | 
   531                         flag = SHM_RDWR \<and>  | 
         | 
   532                         (p', flag') \<in> procs_of_shm s h \<and>  | 
         | 
   533                         path_by_shm s p' pathb proc \<and> [] = pathb @ [(p, h, p')] @ patha) \<or>  | 
         | 
   534                     (\<exists>p' patha pathb.  | 
         | 
   535                         path_by_shm s proc patha p' \<and>  | 
         | 
   536                         (p', SHM_RDWR) \<in> procs_of_shm s h \<and>  | 
         | 
   537                         path_by_shm s p pathb proc \<and> [] = pathb @ [(p', h, p)] @ patha))"  | 
         | 
   538       by (auto intro:path_by_shm.intros)  | 
   223   qed  | 
   539   qed  | 
   224 next  | 
   540 next  | 
   225   case (ifs_flow \<tau> pa pb h' pc)  | 
   541   case (pbs2 \<tau> pa path pb h' pc)  | 
   226   thus ?case  | 
   542   thus ?case  | 
   227   proof (rule_tac impI)  | 
   543   proof (rule_tac impI)  | 
   228     assume p1:"Info_flow_shm \<tau> pa pb" and p2: "valid \<tau> \<and> \<tau> = Attach p h flag # s \<longrightarrow>  | 
   544     assume p1:"path_by_shm \<tau> pa path pb" and p2: "valid \<tau> \<and> \<tau> = Attach p h flag # s \<longrightarrow>  | 
   229      (if Info_flow_shm s pa pb then True  | 
   545      path_by_shm s pa path pb \<or>  | 
   230       else if pa = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb  | 
   546      (if pa = p \<and> flag = SHM_RDWR  | 
   231            else if pb = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p'  | 
   547       then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]  | 
   232                 else (\<exists>p' flag'. Info_flow_shm s pa p \<and>  | 
   548       else if pb = p  | 
   233                          flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb) \<or>  | 
   549            then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h  | 
   234                      (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb))"  | 
   550            else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and>   | 
         | 
   551                     (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and>   | 
         | 
   552                     path = pathb @ [(p, h, p')] @ pathaa) \<or>  | 
         | 
   553                 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>  | 
         | 
   554                     path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))"  | 
   235       and p3: "one_flow_shm \<tau> h' pb pc" and p4: "valid \<tau> \<and> \<tau> = Attach p h flag # s"  | 
   555       and p3: "one_flow_shm \<tau> h' pb pc" and p4: "valid \<tau> \<and> \<tau> = Attach p h flag # s"  | 
   236   | 
   556       | 
   237     from p2 and p4 have p2': "(if Info_flow_shm s pa pb then True  | 
   557     from p2 and p4 have p2': "  | 
   238       else if pa = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb  | 
   558       path_by_shm s pa path pb \<or>  | 
   239            else if pb = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p'  | 
   559      (if pa = p \<and> flag = SHM_RDWR  | 
   240                 else (\<exists>p' flag'. Info_flow_shm s pa p \<and>  | 
   560       then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]  | 
   241                          flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb) \<or>  | 
   561       else if pb = p  | 
   242                      (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb))"  | 
   562            then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h  | 
         | 
   563            else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and>   | 
         | 
   564                     (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and>   | 
         | 
   565                     path = pathb @ [(p, h, p')] @ pathaa) \<or>  | 
         | 
   566                 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>  | 
         | 
   567                     path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))"  | 
   243       by (erule_tac impE, simp)  | 
   568       by (erule_tac impE, simp)  | 
   244     from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os)  | 
   569     from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os)  | 
   245     from p6 have "p \<in> current_procs s" by simp hence p7:"Info_flow_shm s p p" by (erule_tac Info_flow_shm.intros)  | 
   570     from p6 have "p \<in> current_procs s" by simp hence p7:"path_by_shm s p [] p" by (erule_tac path_by_shm.intros)  | 
   246     from p3 p4 have p8: "if (h' = h)   | 
   571     from p3 p4 have p8: "if (h' = h)   | 
   247      then (pb = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pc, flagb) \<in> procs_of_shm s h)) \<or>  | 
   572      then (pb = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pc, flagb) \<in> procs_of_shm s h)) \<or>  | 
   248           (pc = p \<and> pb \<noteq> p \<and> (pb, SHM_RDWR) \<in> procs_of_shm s h) \<or>  | 
   573           (pc = p \<and> pb \<noteq> p \<and> (pb, SHM_RDWR) \<in> procs_of_shm s h) \<or>  | 
   249           (one_flow_shm s h pb pc)                 | 
   574           (one_flow_shm s h pb pc)                 | 
   250      else one_flow_shm s h' pb pc        " by (auto simp add:one_flow_shm_attach)   | 
   575      else one_flow_shm s h' pb pc" by (auto simp add:one_flow_shm_attach)   | 
   251   | 
   576       | 
         | 
   577       | 
         | 
   578 (*  | 
   252     have "\<And> flagb. (pc, flagb) \<in> procs_of_shm s h   | 
   579     have "\<And> flagb. (pc, flagb) \<in> procs_of_shm s h   | 
   253       \<Longrightarrow> \<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc"  | 
   580       \<Longrightarrow> \<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' [] pc"  | 
   254       apply (rule_tac x= pc in exI, rule_tac x = flagb in exI, frule procs_of_shm_prop2)  | 
   581       apply (rule_tac x= pc in exI, rule_tac x = flagb in exI, frule procs_of_shm_prop2)  | 
   255       by (simp add:p5, simp add:Info_flow_shm.intros(1))  | 
   582       by (simp add:p5, simp add:path_by_shm.intros(1))  | 
   256     hence p10: "\<not> Info_flow_shm s p pc \<Longrightarrow> (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc) \<or>  | 
   583     hence p10: "\<not> path_by_shm s p path pc \<Longrightarrow> (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p'  pc) \<or>  | 
   257       Info_flow_shm s pa pc"  | 
   584       path_by_shm s pa pc"  | 
   258       using p2' p7 p8 p5  | 
   585       using p2' p7 p8 p5  | 
   259       by (auto split:if_splits dest:Info_flow_shm.intros(2))        | 
   586       by (auto split:if_splits dest:path_by_shm.intros(2))        | 
   260   (*     apply (rule_tac x = pb in exI, simp add:one_flow_flows, rule_tac x = flagb in exI, simp)+  *)  | 
   587   (*     apply (rule_tac x = pb in exI, simp add:one_flow_flows, rule_tac x = flagb in exI, simp)+  *) *)  | 
   261     moreover have "pc = p \<Longrightarrow> (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p')   | 
   588   | 
   262                             \<or> Info_flow_shm s pa pc"  | 
   589     from p1 have a0: "(path = []) = (pa = pb)" using pbs_prop2 by simp  | 
         | 
   590     have a1:"\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pb\<rbrakk> \<Longrightarrow>   | 
         | 
   591       \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]"  | 
         | 
   592       using p2' by auto  | 
         | 
   593     have b1: "\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pc\<rbrakk> \<Longrightarrow>   | 
         | 
   594       \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pc \<and>  | 
         | 
   595         (pb, h', pc) # path = path' @ [(p, h, p')]"  | 
         | 
   596         | 
         | 
   597         | 
         | 
   598       using p8 a1 p7 p5 a0   | 
         | 
   599       apply (auto split:if_splits elim:path_by_shm_intro4)  | 
         | 
   600       apply (rule_tac x = pb in exI, rule conjI, rule_tac x = SHM_RDWR in exI, simp)  | 
         | 
   601       apply (rule_tac x = pc in exI, rule conjI, rule_tac x = flagb in exI, simp)  | 
         | 
   602       apply (rule_tac x = "[]" in exI, rule conjI)  | 
         | 
   603 apply (erule path_by_shm_intro4, simp)  | 
         | 
   604   | 
         | 
   605       apply (case_tac "path_by_shm s pa path pb", simp) defer  | 
         | 
   606       apply (drule a1, simp+, clarsimp)  | 
         | 
   607       apply (rule conjI, rule_tac x = flagb in exI, simp)  | 
         | 
   608       apply (rule path_by_shm_  | 
         | 
   609       using p2' p8 p5  | 
         | 
   610       apply (auto split:if_splits dest!:pbs_prop2' simp:path_by_shm_intro4)  | 
         | 
   611       apply (drule pbs_prop2', simp)  | 
         | 
   612       apply (erule_tac x = pc in allE, simp add:path_by_shm_intro4)  | 
         | 
   613        | 
         | 
   614       apply (drule_tac x = "pc" in allE)  | 
         | 
   615         | 
         | 
   616       apply simp  | 
         | 
   617   | 
         | 
   618       sorry  | 
         | 
   619     moreover have "pc = p \<Longrightarrow> (\<exists>p' path'. path_by_shm s pa path' p' \<and>  | 
         | 
   620              (pb, h', pc) # path = path' @ [(p', h, p)] \<and> (p', SHM_RDWR) \<in> procs_of_shm s h) \<or>  | 
         | 
   621       (path_by_shm s pa path pc \<and> \<not> edge_related path p h)"  | 
   263       using p2' p7 p8 p5  | 
   622       using p2' p7 p8 p5  | 
   264       by (auto split:if_splits intro:Info_flow_shm_intro3 simp:one_flow_shm_def)  | 
   623       sorry (*  | 
   265     moreover have "\<lbrakk>pc \<noteq> p; pa \<noteq> p \<or> flag \<noteq> SHM_RDWR\<rbrakk> \<Longrightarrow> (\<exists>p' flag'. Info_flow_shm s pa p \<and>  | 
   624       apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def) *)  | 
   266                           flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc) \<or>  | 
   625     moreover have "\<lbrakk>pc \<noteq> p; pa \<noteq> p \<or> flag \<noteq> SHM_RDWR\<rbrakk> \<Longrightarrow>   | 
   267                       (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pc) \<or>  | 
   626       (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>  | 
   268                       Info_flow_shm s pa pc"  | 
   627            path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p, h, p')] @ pathb) \<or>  | 
   269       using p2' p7 p8 p5  | 
   628       (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>  | 
   270       apply (auto split:if_splits intro:Info_flow_shm_intro3 simp:one_flow_shm_def)  | 
   629            path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p', h, p)] @ pathb) \<or>  | 
   271       apply (rule_tac x = pc in exI, simp add:Info_flow_shm_intro4)  | 
   630       (path_by_shm s pa path pc \<and> \<not> edge_related path p h)"  | 
         | 
   631       using p2' p7 p8 p5 (*  | 
         | 
   632       apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def)  | 
         | 
   633       apply (rule_tac x = pc in exI, simp add:path_by_shm_intro4)  | 
   272       apply (rule_tac x = flagb in exI, simp)        | 
   634       apply (rule_tac x = flagb in exI, simp)        | 
   273       done  | 
   635       done *)  | 
   274     ultimately  show "if Info_flow_shm s pa pc then True  | 
   636       sorry  | 
   275        else if pa = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc  | 
   637     ultimately    | 
   276             else if pc = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p'  | 
   638     show "if (pb, h', pc) # path = [] then pa = pc \<and> pa \<in> current_procs s  | 
   277                  else (\<exists>p' flag'. Info_flow_shm s pa p \<and>  | 
   639        else path_by_shm s pa ((pb, h', pc) # path) pc \<and> \<not> edge_related ((pb, h', pc) # path) p h \<or>  | 
   278                           flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc) \<or>  | 
   640        (if pa = p \<and> flag = SHM_RDWR  | 
   279                       (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pc)"  | 
   641         then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and>  | 
   280       using p7 by auto  | 
   642                 path_by_shm s p' path' pc \<and> (pb, h', pc) # path = path' @ [(p, h, p')]  | 
         | 
   643         else if pc = p  | 
         | 
   644              then \<exists>p' path'. path_by_shm s pa path' p' \<and>  | 
         | 
   645                      (pb, h', pc) # path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h  | 
         | 
   646              else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and>  | 
         | 
   647                       (p', flag') \<in> procs_of_shm s h \<and>  | 
         | 
   648                       path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathb @ [(p, h, p')] @ pathaa) \<or>  | 
         | 
   649                   (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>  | 
         | 
   650                       path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathb @ [(p', h, p)] @ pathaa))"  | 
         | 
   651         apply (auto split:if_splits)  | 
         | 
   652         using p7 by auto  | 
   281   qed  | 
   653   qed  | 
   282 qed  | 
   654 qed  | 
   283   | 
   655   | 
   284 lemma Info_flow_shm_attach1:  | 
   656 lemma path_by_shm_attach1:  | 
   285   "\<lbrakk>valid (Attach p h flag # s); Info_flow_shm (Attach p h flag # s) pa pb\<rbrakk>  | 
   657   "\<lbrakk>valid (Attach p h flag # s); path_by_shm (Attach p h flag # s) pa pb\<rbrakk>  | 
   286    \<Longrightarrow> (if Info_flow_shm s pa pb then True else  | 
   658    \<Longrightarrow> (if path_by_shm s pa pb then True else  | 
   287      (if (pa = p \<and> flag = SHM_RDWR)   | 
   659      (if (pa = p \<and> flag = SHM_RDWR)   | 
   288       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)  | 
   660       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)  | 
   289       else if (pb = p)   | 
   661       else if (pb = p)   | 
   290            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p')  | 
   662            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')  | 
   291            else (\<exists> p' flag'. Info_flow_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>   | 
   663            else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>   | 
   292                              Info_flow_shm s p' pb) \<or>  | 
   664                              path_by_shm s p' pb) \<or>  | 
   293                 (\<exists> p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb)  | 
   665                 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb)  | 
   294      )  )"  | 
   666      )  )"  | 
   295 apply (drule_tac p = p and h = h and flag = flag in Info_flow_shm_attach1_aux)  | 
   667 apply (drule_tac p = p and h = h and flag = flag in path_by_shm_attach1_aux)  | 
   296 by auto  | 
   668 by auto  | 
   297   | 
   669   | 
   298 lemma Info_flow_shm_attach_aux[rule_format]:  | 
   670 lemma path_by_shm_attach_aux[rule_format]:  | 
   299   "Info_flow_shm s pa pb \<Longrightarrow> valid (Attach p h flag # s) \<longrightarrow> Info_flow_shm (Attach p h flag # s) pa pb"  | 
   671   "path_by_shm s pa pb \<Longrightarrow> valid (Attach p h flag # s) \<longrightarrow> path_by_shm (Attach p h flag # s) pa pb"  | 
   300 apply (erule Info_flow_shm.induct)  | 
   672 apply (erule path_by_shm.induct)  | 
   301 apply (rule impI, rule Info_flow_shm.intros(1), simp)  | 
   673 apply (rule impI, rule path_by_shm.intros(1), simp)  | 
   302 apply (rule impI, simp, rule_tac h = ha in Info_flow_shm.intros(2), simp)  | 
   674 apply (rule impI, simp, rule_tac h = ha in path_by_shm.intros(2), simp)  | 
   303 apply (auto simp add:one_flow_shm_simps)  | 
   675 apply (auto simp add:one_flow_shm_simps)  | 
   304 done  | 
   676 done  | 
   305   | 
   677   | 
   306 lemma Info_flow_shm_attach2:  | 
   678 lemma path_by_shm_attach2:  | 
   307   "\<lbrakk>valid (Attach p h flag # s); if Info_flow_shm s pa pb then True else  | 
   679   "\<lbrakk>valid (Attach p h flag # s); if path_by_shm s pa pb then True else  | 
   308      (if (pa = p \<and> flag = SHM_RDWR)   | 
   680      (if (pa = p \<and> flag = SHM_RDWR)   | 
   309       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)  | 
   681       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)  | 
   310       else if (pb = p)   | 
   682       else if (pb = p)   | 
   311            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p')  | 
   683            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')  | 
   312            else (\<exists> p' flag'. Info_flow_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>   | 
   684            else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>   | 
   313                              Info_flow_shm s p' pb) \<or>  | 
   685                              path_by_shm s p' pb) \<or>  | 
   314                 (\<exists> p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb))\<rbrakk>  | 
   686                 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb))\<rbrakk>  | 
   315    \<Longrightarrow> Info_flow_shm (Attach p h flag # s) pa pb"  | 
   687    \<Longrightarrow> path_by_shm (Attach p h flag # s) pa pb"  | 
   316 apply (frule vt_grant_os, frule vd_cons)  | 
   688 apply (frule vt_grant_os, frule vd_cons)  | 
   317 apply (auto split:if_splits intro:Info_flow_shm_intro3 simp:one_flow_shm_def intro:Info_flow_shm_attach_aux)  | 
   689 apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def intro:path_by_shm_attach_aux)  | 
   318 apply (rule_tac p' = p' in Info_flow_trans)  | 
   690 apply (rule_tac p' = p' in Info_flow_trans)  | 
   319 apply (rule_tac p' = p and h = h in Info_flow_shm.intros(2))  | 
   691 apply (rule_tac p' = p and h = h in path_by_shm.intros(2))  | 
   320 apply (rule Info_flow_shm.intros(1), simp)  | 
   692 apply (rule path_by_shm.intros(1), simp)  | 
   321 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   693 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   322 apply (rule conjI, rule notI, simp, rule_tac x = flagb in exI, simp)  | 
   694 apply (rule conjI, rule notI, simp, rule_tac x = flagb in exI, simp)  | 
   323 apply (simp add:Info_flow_shm_attach_aux)  | 
   695 apply (simp add:path_by_shm_attach_aux)  | 
   324   | 
   696   | 
   325 apply (rule_tac p' = p' in Info_flow_trans)  | 
   697 apply (rule_tac p' = p' in Info_flow_trans)  | 
   326 apply (rule_tac p' = p in Info_flow_trans)  | 
   698 apply (rule_tac p' = p in Info_flow_trans)  | 
   327 apply (simp add:Info_flow_shm_attach_aux)  | 
   699 apply (simp add:path_by_shm_attach_aux)  | 
   328 apply (rule_tac p' = p and h = h in Info_flow_shm.intros(2))  | 
   700 apply (rule_tac p' = p and h = h in path_by_shm.intros(2))  | 
   329 apply (rule Info_flow_shm.intros(1), simp)  | 
   701 apply (rule path_by_shm.intros(1), simp)  | 
   330 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   702 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   331 apply (rule conjI, rule notI, simp, rule_tac x = flag' in exI, simp)  | 
   703 apply (rule conjI, rule notI, simp, rule_tac x = flag' in exI, simp)  | 
   332 apply (simp add:Info_flow_shm_attach_aux)  | 
   704 apply (simp add:path_by_shm_attach_aux)  | 
   333   | 
   705   | 
   334 apply (rule_tac p' = p in Info_flow_trans)  | 
   706 apply (rule_tac p' = p in Info_flow_trans)  | 
   335 apply (rule_tac p' = p' in Info_flow_trans)  | 
   707 apply (rule_tac p' = p' in Info_flow_trans)  | 
   336 apply (simp add:Info_flow_shm_attach_aux)  | 
   708 apply (simp add:path_by_shm_attach_aux)  | 
   337 apply (rule_tac p' = p' and h = h in Info_flow_shm.intros(2))  | 
   709 apply (rule_tac p' = p' and h = h in path_by_shm.intros(2))  | 
   338 apply (rule Info_flow_shm.intros(1), simp add:procs_of_shm_prop2)  | 
   710 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)  | 
   339 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   711 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   340 apply (rule notI, simp)  | 
   712 apply (rule notI, simp)  | 
   341 apply (simp add:Info_flow_shm_attach_aux)  | 
   713 apply (simp add:path_by_shm_attach_aux)  | 
   342   | 
   714   | 
   343 apply (rule_tac p' = p in Info_flow_trans)  | 
   715 apply (rule_tac p' = p in Info_flow_trans)  | 
   344 apply (rule_tac p' = p' in Info_flow_trans)  | 
   716 apply (rule_tac p' = p' in Info_flow_trans)  | 
   345 apply (simp add:Info_flow_shm_attach_aux)  | 
   717 apply (simp add:path_by_shm_attach_aux)  | 
   346 apply (rule_tac p' = p' and h = h in Info_flow_shm.intros(2))  | 
   718 apply (rule_tac p' = p' and h = h in path_by_shm.intros(2))  | 
   347 apply (rule Info_flow_shm.intros(1), simp add:procs_of_shm_prop2)  | 
   719 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)  | 
   348 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   720 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)  | 
   349 apply (rule notI, simp)  | 
   721 apply (rule notI, simp)  | 
   350 apply (simp add:Info_flow_shm_attach_aux)  | 
   722 apply (simp add:path_by_shm_attach_aux)  | 
   351 done  | 
   723 done  | 
   352   | 
   724   | 
   353 lemma Info_flow_shm_attach:  | 
   725 lemma path_by_shm_attach:  | 
   354   "valid (Attach p h flag # s) \<Longrightarrow> Info_flow_shm (Attach p h flag # s) = (\<lambda> pa pb.   | 
   726   "valid (Attach p h flag # s) \<Longrightarrow> path_by_shm (Attach p h flag # s) = (\<lambda> pa pb.   | 
   355      Info_flow_shm s pa pb \<or>  | 
   727      path_by_shm s pa pb \<or>  | 
   356      (if (pa = p \<and> flag = SHM_RDWR)   | 
   728      (if (pa = p \<and> flag = SHM_RDWR)   | 
   357       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)  | 
   729       then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)  | 
   358       else if (pb = p)   | 
   730       else if (pb = p)   | 
   359            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p')  | 
   731            then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')  | 
   360            else (\<exists> p' flag'. Info_flow_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>   | 
   732            else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>   | 
   361                              Info_flow_shm s p' pb) \<or>  | 
   733                              path_by_shm s p' pb) \<or>  | 
   362                 (\<exists> p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb)  | 
   734                 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb)  | 
   363      )  )"  | 
   735      )  )"  | 
   364 apply (rule ext, rule ext, rule iffI)  | 
   736 apply (rule ext, rule ext, rule iffI)  | 
   365 apply (drule_tac pa = pa and pb = pb in Info_flow_shm_attach1, simp)  | 
   737 apply (drule_tac pa = pa and pb = pb in path_by_shm_attach1, simp)  | 
   366 apply (auto split:if_splits)[1]  | 
   738 apply (auto split:if_splits)[1]  | 
   367 apply (drule_tac pa = pa and pb = pb in Info_flow_shm_attach2)  | 
   739 apply (drule_tac pa = pa and pb = pb in path_by_shm_attach2)  | 
   368 apply (auto split:if_splits)  | 
   740 apply (auto split:if_splits)  | 
   369 done  | 
   741 done  | 
         | 
   742   | 
         | 
   743   | 
         | 
   744   | 
         | 
   745   | 
         | 
   746   | 
         | 
   747   | 
         | 
   748   | 
         | 
   749   | 
         | 
   750   | 
         | 
   751   | 
         | 
   752   | 
         | 
   753   | 
         | 
   754   | 
         | 
   755   | 
         | 
   756   | 
         | 
   757   | 
         | 
   758   | 
         | 
   759   | 
         | 
   760   | 
         | 
   761   | 
         | 
   762   | 
         | 
   763   | 
   370   | 
   764   | 
   371   | 
   765   | 
   372 lemma info_flow_shm_detach:  | 
   766 lemma info_flow_shm_detach:  | 
   373   "valid (Detach p h # s) \<Longrightarrow> info_flow_shm (Detach p h # s) = (\<lambda> pa pb.   | 
   767   "valid (Detach p h # s) \<Longrightarrow> info_flow_shm (Detach p h # s) = (\<lambda> pa pb.   | 
   374      self_shm s pa pb \<or> ((p = pa \<or> p = pb) \<and> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)) \<or>  | 
   768      self_shm s pa pb \<or> ((p = pa \<or> p = pb) \<and> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)) \<or>  |