diff -r 622516c0fe34 -r 01274a64aece Current_prop.thy --- a/Current_prop.thy Thu Aug 01 12:19:42 2013 +0800 +++ b/Current_prop.thy Mon Aug 05 12:30:26 2013 +0800 @@ -65,825 +65,7 @@ apply (case_tac a, auto split:if_splits option.splits dest:procs_of_shm_prop2) done -(*********** simpset for one_flow_shm **************) -lemma one_flow_not_self: - "one_flow_shm s h p p \ False" -by (simp add:one_flow_shm_def) - -lemma one_flow_shm_attach: - "valid (Attach p h flag # s) \ one_flow_shm (Attach p h flag # s) = (\ h' pa pb. - if (h' = h) - then (pa = p \ pb \ p \ flag = SHM_RDWR \ (\ flagb. (pb, flagb) \ procs_of_shm s h)) \ - (pb = p \ pa \ p \ (pa, SHM_RDWR) \ procs_of_shm s h) \ - (one_flow_shm s h pa pb) - else one_flow_shm s h' pa pb )" -apply (rule ext, rule ext, rule ext, frule vd_cons, frule vt_grant_os) -by (auto simp add: one_flow_shm_def) - -lemma one_flow_shm_detach: - "valid (Detach p h # s) \ one_flow_shm (Detach p h # s) = (\ h' pa pb. - if (h' = h) - then (pa \ p \ pb \ p \ one_flow_shm s h' pa pb) - else one_flow_shm s h' pa pb)" -apply (rule ext, rule ext, rule ext, frule vt_grant_os) -by (auto simp:one_flow_shm_def) - -lemma one_flow_shm_deleteshm: - "valid (DeleteShM p h # s) \ one_flow_shm (DeleteShM p h # s) = (\ h' pa pb. - if (h' = h) - then False - else one_flow_shm s h' pa pb)" -apply (rule ext, rule ext, rule ext, frule vt_grant_os) -by (auto simp: one_flow_shm_def) - -lemma one_flow_shm_clone: - "valid (Clone p p' fds shms # s) \ one_flow_shm (Clone p p' fds shms # s) = (\ h pa pb. - if (pa = p' \ pb \ p' \ h \ shms) - then (if (pb = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h p pb) - else if (pb = p' \ pa \ p' \ h \ shms) - then (if (pa = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h pa p) - else one_flow_shm s h pa pb)" -apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp) -apply (frule_tac p = p' in procs_of_shm_prop2', simp) -apply (auto simp:one_flow_shm_def intro:procs_of_shm_prop4 flag_of_proc_shm_prop1) -done - -lemma one_flow_shm_execve: - "valid (Execve p f fds # s) \ one_flow_shm (Execve p f fds # s) = (\ h pa pb. - pa \ p \ pb \ p \ one_flow_shm s h pa pb )" -apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) -by (auto simp:one_flow_shm_def) - -lemma one_flow_shm_kill: - "valid (Kill p p' # s) \ one_flow_shm (Kill p p' # s) = (\ h pa pb. - pa \ p' \ pb \ p' \ one_flow_shm s h pa pb )" -apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) -by (auto simp:one_flow_shm_def) - -lemma one_flow_shm_exit: - "valid (Exit p # s) \ one_flow_shm (Exit p # s) = (\ h pa pb. - pa \ p \ pb \ p \ one_flow_shm s h pa pb )" -apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) -by (auto simp:one_flow_shm_def) - -lemma one_flow_shm_other: - "\valid (e # s); - \ p h flag. e \ Attach p h flag; - \ p h. e \ Detach p h; - \ p h. e \ DeleteShM p h; - \ p p' fds shms. e \ Clone p p' fds shms; - \ p f fds. e \ Execve p f fds; - \ p p'. e \ Kill p p'; - \ p. e \ Exit p - \ \ one_flow_shm (e # s) = one_flow_shm s" -apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) -apply (case_tac e, auto simp:one_flow_shm_def dest:procs_of_shm_prop2) -apply (drule procs_of_shm_prop1, auto) -done - -lemmas one_flow_shm_simps = one_flow_shm_other one_flow_shm_attach one_flow_shm_detach one_flow_shm_deleteshm - one_flow_shm_clone one_flow_shm_execve one_flow_shm_kill one_flow_shm_exit - -type_synonym t_edge_shm = "t_process \ t_shm \ t_process" -fun Fst:: "t_edge_shm \ t_process" where "Fst (a, b, c) = a" -fun Snd:: "t_edge_shm \ t_shm" where "Snd (a, b, c) = b" -fun Trd:: "t_edge_shm \ t_process" where "Trd (a, b, c) = c" - -fun edge_related:: "t_edge_shm list \ t_process \ t_shm \ bool" -where - "edge_related [] p h = False" -| "edge_related ((from, shm, to) # path) p h = - (if (((p = from) \ (p = to)) \ (h = shm)) then True - else edge_related path p h)" - -inductive path_by_shm :: "t_state \ t_process \ t_edge_shm list \ t_process \ bool" -where - pbs1: "p \ current_procs s \ path_by_shm s p [] p" -| pbs2: "\path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \ set (map Fst path)\ - \ path_by_shm s p ((p', h, p'')# path) p''" - - -lemma one_step_path: "\one_flow_shm s h p p'; valid s\ \ path_by_shm s p [(p, h, p')] p'" -apply (rule_tac path = "[]" and p = p in path_by_shm.intros(2)) -apply (rule path_by_shm.intros(1)) -apply (auto intro:procs_of_shm_prop2 simp:one_flow_shm_def) -done - -lemma pbs_prop1: - "path_by_shm s p path p' \ ((path = []) = (p = p')) \ (path \ [] \ p \ set (map Fst path))" -apply (erule path_by_shm.induct, simp) -apply (auto simp:one_flow_shm_def) -done - -lemma pbs_prop2: - "path_by_shm s p path p' \ (path = []) = (p = p')" -by (simp add:pbs_prop1) - -lemma pbs_prop2': - "path_by_shm s p path p \ path = []" -by (simp add:pbs_prop2) - -lemma pbs_prop3: - "\path_by_shm s p path p'; path \ []\ \ p \ set (map Fst path)" -by (drule pbs_prop1, auto) - -lemma pbs_prop4[rule_format]: - "path_by_shm s p path p'\ path \ [] \ p' \ set (map Trd path)" -by (erule path_by_shm.induct, auto) - -lemma pbs_prop5[rule_format]: - "path_by_shm s p path p' \ path \ [] \ p' \ set (map Fst path)" -by (erule path_by_shm.induct, auto simp:one_flow_shm_def) - -lemma pbs_prop6_aux: - "path_by_shm s pa pathac pc \ valid s \ (\ pb \ set (map Fst pathac). \ pathab pathbc. path_by_shm s pa pathab pb \ path_by_shm s pb pathbc pc \ pathac = pathbc @ pathab)" -apply (erule path_by_shm.induct) -apply simp -apply clarify -apply (case_tac "pb = p'", simp) -apply (rule_tac x = path in exI, simp) -apply (erule one_step_path, simp) -apply (erule_tac x = pb in ballE, simp_all, clarsimp) -apply (rule_tac x = pathab in exI, simp) -apply (erule pbs2, auto) -done - -lemma pbs_prop6: - "\path_by_shm s pa pathac pc; pb \ set (map Fst pathac); valid s\ - \ \ pathab pathbc. path_by_shm s pa pathab pb \ path_by_shm s pb pathbc pc \ pathac = pathbc @ pathab" -by (drule pbs_prop6_aux, auto) - -lemma pbs_prop7_aux: - "path_by_shm s pa pathac pc \ valid s \ (\ pb \ set (map Trd pathac). \ pathab pathbc. path_by_shm s pa pathab pb \ path_by_shm s pb pathbc pc \ pathac = pathbc @ pathab)" -apply (erule path_by_shm.induct) -apply simp -apply clarify -apply (case_tac "pb = p''", simp) -apply (rule_tac x = "(p',h,p'') # path" in exI, simp) -apply (rule conjI, erule pbs2, simp+) -apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2) -apply (erule_tac x = pb in ballE, simp_all, clarsimp) -apply (rule_tac x = pathab in exI, simp) -apply (erule pbs2, auto) -done - -lemma pbs_prop7: - "\path_by_shm s pa pathac pc; pb \ set (map Trd pathac); valid s\ - \ \ pathab pathbc. path_by_shm s pa pathab pb \ path_by_shm s pb pathbc pc \ pathac = pathbc @ pathab" -by (drule pbs_prop7_aux, drule mp, simp, erule_tac x = pb in ballE, auto) - -lemma pbs_prop8: - "path_by_shm s p path p' \ (set (map Fst path) - {p}) = (set (map Trd path) - {p'})" -proof (induct rule:path_by_shm.induct) - case (pbs1 p s) - thus ?case by simp -next - case (pbs2 s p path p' h p'') - assume p1:"path_by_shm s p path p'" and p2: "set (map Fst path) - {p} = set (map Trd path) - {p'}" - and p3: "one_flow_shm s h p' p''" and p4: "p'' \ set (map Fst path)" - show "set (map Fst ((p', h, p'') # path)) - {p} = set (map Trd ((p', h, p'') # path)) - {p''}" - (is "?left = ?right") - proof (cases "path = []") - case True - with p1 have "p = p'" by (drule_tac pbs_prop2, simp) - thus ?thesis using True - using p2 by (simp) - next - case False - with p1 have a1: "p \ p'" by (drule_tac pbs_prop2, simp) - from p3 have a2: "p' \ p''" by (simp add:one_flow_shm_def) - from p1 False have a3: "p' \ set (map Trd path)" by (drule_tac pbs_prop4, simp+) - from p4 p1 False have a4: "p \ p''" by (drule_tac pbs_prop3, auto) - with p2 a2 p4 have a5: "p'' \ set (map Trd path)" by auto - - have "?left = (set (map Fst path) - {p}) \ {p'}" using a1 by auto - moreover have "... = (set (map Trd path) - {p'}) \ {p'}" - using p2 by auto - moreover have "... = set (map Trd path)" using a3 by auto - moreover have "... = set (map Trd path) - {p''}" using a5 by simp - moreover have "... = ?right" by simp - ultimately show ?thesis by simp - qed -qed - -lemma pbs_prop9_aux[rule_format]: - "path_by_shm s p path p' \ h \ set (map Snd path) \ valid s \ (\ pa pb patha pathb. path_by_shm s p patha pa \ path_by_shm s pb pathb p' \ one_flow_shm s h pa pb \ path = pathb @ [(pa, h, pb)] @ patha \ h \ set (map Snd patha))" -apply (erule path_by_shm.induct, simp) -apply (rule impI, case_tac "h \ set (map Snd path)", simp_all) -apply (erule exE|erule conjE)+ -apply (rule_tac x = pa in exI, rule_tac x = pb in exI, rule_tac x = patha in exI, simp) -apply (rule pbs2, auto) -apply (rule_tac x = p' in exI, rule_tac x = p'' in exI, rule_tac x = path in exI, simp) -apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2) -done - -lemma pbs_prop9: - "\h \ set (map Snd path); path_by_shm s p path p'; valid s\ - \ \ pa pb patha pathb. path_by_shm s p patha pa \ path_by_shm s pb pathb p' \ - one_flow_shm s h pa pb \ path = pathb @ [(pa, h, pb)] @ patha \ h \ set (map Snd patha)" -by (rule pbs_prop9_aux, auto) - -lemma path_by_shm_trans_aux[rule_format]: - "path_by_shm s p' path' p'' \ valid s \ (\ p path. path_by_shm s p path p' \ (\ path''. path_by_shm s p path'' p''))" -proof (induct rule:path_by_shm.induct) - case (pbs1 p s) - thus ?case - by (clarify, rule_tac x = path in exI, simp) -next - case (pbs2 s p path p' h p'') - hence p1: "path_by_shm s p path p'" and p2: "one_flow_shm s h p' p''" - and p3: "valid s \ (\pa path. path_by_shm s pa path p \ (\path''. path_by_shm s pa path'' p'))" - and p4: "p'' \ set (map Fst path)" by auto - show ?case - proof clarify - fix pa path' - assume p5: "path_by_shm s pa path' p" and p6: "valid s" - with p3 obtain path'' where a1: "path_by_shm s pa path'' p'" by auto - have p3': "\pa path. path_by_shm s pa path p \ (\path''. path_by_shm s pa path'' p')" - using p3 p6 by simp - show "\path''. path_by_shm s pa path'' p''" - proof (cases "p'' \ set (map Fst path'')") - case True - then obtain res where "path_by_shm s pa res p''" using a1 pbs_prop6 p6 by blast - thus ?thesis by auto - next - case False - with p2 a1 show ?thesis - apply (rule_tac x = "(p', h, p'') # path''" in exI) - apply (rule path_by_shm.intros(2), auto) - done - qed - qed -qed - -lemma path_by_shm_trans: - "\path_by_shm s p path p'; path_by_shm s p' path' p''; valid s\ \ \ path''. path_by_shm s p path'' p''" -by (drule_tac p' = p' and p'' = p'' in path_by_shm_trans_aux, auto) - -lemma path_by_shm_intro1_prop: - "\ path_by_shm s p [] p \ p \ current_procs s" -by (auto dest:path_by_shm.intros(1)) - -lemma path_by_shm_intro3: - "\path_by_shm s p path from; (from, SHM_RDWR) \ procs_of_shm s h; (to, flag) \ procs_of_shm s h; - to \ set (map Fst path); from \ to\ - \ path_by_shm s p ((from, h, to)#path) to" -apply (rule path_by_shm.intros(2), simp_all) -by (auto simp:one_flow_shm_def) - -lemma path_by_shm_intro4: - "\(p, flag) \ procs_of_shm s h; valid s\ \ path_by_shm s p [] p" -by (drule procs_of_shm_prop2, simp, simp add:path_by_shm.intros(1)) - -lemma path_by_shm_intro5: - "\(from, SHM_RDWR) \ procs_of_shm s h; (to,flag) \ procs_of_shm s h; valid s; from \ to\ - \ path_by_shm s from [(from, h, to)] to" -apply (rule_tac p' = "from" and h = h in path_by_shm.intros(2)) -apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2) -apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto) -done - -(* p'' \ set (map Fst path): not duplicated target process; - * p1 - ha \ p2; p2 - hb \ p3; p3 - ha \ p4; so path_by_shm p1 [(p3,ha,p4), (p2,hb,p3),(p1,ha,p2)] p4, - * but this could be also path_by_shm p1 [(p1,ha,p4)] p4, so the former one is redundant! *) - -inductive path_by_shm':: "t_state \ t_process \ t_edge_shm list \ t_process \ bool" -where - pbs1': "p \ current_procs s \ path_by_shm' s p [] p" -| pbs2': "\path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \ set (map Fst path); - h \ set (map Snd path)\ - \ path_by_shm' s p ((p', h, p'')# path) p''" - -lemma pbs_imp_pbs'[rule_format]: - "path_by_shm s p path p' \ valid s \ (\ path'. path_by_shm' s p path' p')" -apply (erule path_by_shm.induct) -apply (rule impI, rule_tac x = "[]" in exI, erule pbs1') -apply (rule impI, simp, erule exE, case_tac "h \ set (map Snd path)") -apply (drule_tac s = s and p = p and p' = p' in pbs_prop9, simp+) defer -apply (rule_tac x = "(p', h, p'') # path" in exI, erule pbs2', simp+) -apply ((erule exE|erule conjE)+) -apply (rule_tac x = "(pa, h, p'') # patha" in exI) -apply (erule pbs2', auto simp:one_flow_shm_def) -done - -lemma pbs'_imp_pbs[rule_format]: - "path_by_shm' s p path p' \ valid s \ (\ path'. path_by_shm s p path' p')" -apply (erule path_by_shm'.induct) -apply (rule impI, rule_tac x = "[]" in exI, simp add:pbs1) -apply (rule impI, rule_tac x = "(p', h, p'') # path" in exI, simp add:pbs2) -done - -definition flow_by_shm :: "t_state \ t_process \ t_process \ bool" -where - "flow_by_shm s p p' \ \ path. path_by_shm s p path p'" - -lemma flow_by_shm_intro': - "valid s \ flow_by_shm s p p' = (\ path. path_by_shm' s p path p')" -by (auto simp:flow_by_shm_def intro: pbs_imp_pbs' pbs'_imp_pbs) - -lemma one_step_flows: "\one_flow_shm s h p p'; valid s\ \ flow_by_shm s p p'" -by (drule one_step_path, auto simp:flow_by_shm_def) - -lemma flow_by_shm_trans: - "\flow_by_shm s p p'; flow_by_shm s p' p''; valid s\ \ flow_by_shm s p p''" -by (auto simp:flow_by_shm_def intro!:path_by_shm_trans) - -lemma flow_by_shm_intro1_prop: - "\ flow_by_shm s p p \ p \ current_procs s" -by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def) - -lemma flow_by_shm_intro1: - "p \ current_procs s \ flow_by_shm s p p" -by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def) - -lemma flow_by_shm_intro2: - "\flow_by_shm s p p'; one_flow_shm s h p' p''; valid s\ \ flow_by_shm s p p''" -by (auto intro:flow_by_shm_trans dest:one_step_flows) - -lemma flow_by_shm_intro3: - "\flow_by_shm s p from; (from, SHM_RDWR) \ procs_of_shm s h; (to, flag) \ procs_of_shm s h; from \ to; valid s\ - \ flow_by_shm s p to" -apply (rule flow_by_shm_intro2) -by (auto simp:one_flow_shm_def) - -lemma flow_by_shm_intro4: - "\(p, flag) \ procs_of_shm s h; valid s\ \ flow_by_shm s p p" -by (drule procs_of_shm_prop2, simp, simp add:flow_by_shm_intro1) - -lemma flow_by_shm_intro5: - "\(from, SHM_RDWR) \ procs_of_shm s h; (to,flag) \ procs_of_shm s h; valid s; from \ to\ - \ flow_by_shm s from to" -apply (rule_tac p' = "from" and h = h in flow_by_shm_intro2) -apply (rule flow_by_shm_intro1, simp add:procs_of_shm_prop2) -apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto) -done - -lemma flow_by_shm_intro6: - "path_by_shm s p path p' \ flow_by_shm s p p'" -by (auto simp:flow_by_shm_def) -(********* simpset for inductive Info_flow_shm **********) -term edge_related -lemma path_by_shm_detach1_aux: - "path_by_shm s' pa path pb \ valid (Detach p h # s) \ (s' = Detach p h # s) - \ \ edge_related path p h \ path_by_shm s pa path pb" -apply (erule path_by_shm.induct, simp) -apply (rule impI, rule path_by_shm.intros(1), simp+) -by (auto simp:one_flow_shm_def split:if_splits intro:path_by_shm_intro3) - -lemma path_by_shm_detach1: - "\path_by_shm (Detach p h # s) pa path pb; valid (Detach p h # s)\ - \ \ edge_related path p h \ path_by_shm s pa path pb" -by (auto dest:path_by_shm_detach1_aux) - -lemma path_by_shm_detach2_aux[rule_format]: - "path_by_shm s pa path pb \ valid (Detach p h # s) \ \ edge_related path p h - \ path_by_shm (Detach p h # s) pa path pb" -apply (induct rule:path_by_shm.induct) -apply (rule impI, rule path_by_shm.intros(1), simp) -apply (rule impI, erule conjE, simp split:if_splits) -apply (rule path_by_shm.intros(2), simp) -apply (simp add:one_flow_shm_detach) -apply (rule impI, simp+) -done - -lemma path_by_shm_detach2: - "\valid (Detach p h # s); \ edge_related path p h; path_by_shm s pa path pb\ - \ path_by_shm (Detach p h # s) pa path pb" -by (auto intro!:path_by_shm_detach2_aux) - -lemma path_by_shm_detach: - "valid (Detach p h # s) \ - path_by_shm (Detach p h # s) pa path pb = (\ edge_related path p h \ path_by_shm s pa path pb)" -by (auto dest:path_by_shm_detach1 path_by_shm_detach2) - -lemma flow_by_shm_detach: - "valid (Detach p h # s) \ - flow_by_shm (Detach p h # s) pa pb = (\ path. \ edge_related path p h \ path_by_shm s pa path pb)" -by (auto dest:path_by_shm_detach simp:flow_by_shm_def) - -lemma path_by_shm_attach1_aux: - "path_by_shm s' pa path pb \ valid s' \ (s' = Attach p h flag # s) \ - (path_by_shm s pa path pb) \ - (\ path1 path2 p'. path_by_shm s pa path1 p' \ path_by_shm s p path2 pb \ - (p', SHM_RDWR) \ procs_of_shm s h \ path = path2 @ [(p', h, p)] @ path1 ) \ - (\ path1 path2 p' flag'. path_by_shm s pa path1 p \ path_by_shm s p' path2 pb \ - (p', flag') \ procs_of_shm s h \ path = path2 @ [(p, h, p')] @ path1 \ flag = SHM_RDWR)" -apply (erule path_by_shm.induct) -apply (simp, rule impI, rule pbs1, simp) -apply (rule impI, erule impE, clarsimp) -apply (erule disjE) -apply (clarsimp simp:one_flow_shm_attach split:if_splits) -apply (erule disjE, clarsimp) -apply (erule_tac x = path in allE, clarsimp) -apply (erule impE, rule pbs1, erule procs_of_shm_prop2, erule vd_cons, simp) -apply (erule disjE, clarsimp) -apply (rule_tac x = path in exI, rule_tac x = "[]" in exI, rule_tac x = p' in exI, simp) -apply (rule pbs1, drule vt_grant_os, clarsimp) -apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2, simp+) -apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2, simp+) - -apply (erule disjE) -apply ((erule exE|erule conjE)+, simp split:if_splits add:one_flow_shm_attach) -apply (clarsimp simp:one_flow_shm_attach split:if_splits) -apply (erule disjE, clarsimp) -apply (clarsimp) - - -apply (erule conjE)+ - - - -apply (erule conjE, clarsimp simp only:one_flow_shm_attach split:if_splits) -apply simp - - - -lemma path_by_shm_attach1_aux: - "path_by_shm s' pa path pb \ valid s' \ (s' = Attach p h flag # s) \ - path_by_shm s pa path pb \ - (if (pa = p \ flag = SHM_RDWR) - then \ p' flagb path'. (p', flagb) \ procs_of_shm s h \ - path_by_shm s p' path' pb \ path = path' @ [(p, h, p')] - else if (pb = p) - then \ p' path'. path_by_shm s pa path' p' \ path = (p', h, p) # path' \ - (p', SHM_RDWR) \ procs_of_shm s h - else (\ p' flag' patha pathb. path_by_shm s pa patha p \ flag = SHM_RDWR \ - (p', flag') \ procs_of_shm s h \ path_by_shm s p' pathb pb \ - path = pathb @ [(p, h, p')] @ patha) \ - (\ p' patha pathb. path_by_shm s pa patha p' \ (p', SHM_RDWR) \ procs_of_shm s h \ - path_by_shm s p pathb pb \ path = pathb @ [(p', h, p)] @ patha))" -proof (induct rule:path_by_shm.induct) - case (pbs1 proc \) - show ?case - proof (rule impI) - assume pre: "valid \ \ \ = Attach p h flag # s" - from pbs1 pre have "proc \ current_procs s" by simp - thus "path_by_shm s proc [] proc \ - (if proc = p \ flag = SHM_RDWR - then \p' flagb path'. - (p', flagb) \ procs_of_shm s h \ path_by_shm s p' path' proc \ [] = path' @ [(p, h, p')] - else if proc = p - then \p' path'. - path_by_shm s proc path' p' \ [] = (p', h, p) # path' \ (p', SHM_RDWR) \ procs_of_shm s h - else (\p' flag' patha pathb. - path_by_shm s proc patha p \ - flag = SHM_RDWR \ - (p', flag') \ procs_of_shm s h \ - path_by_shm s p' pathb proc \ [] = pathb @ [(p, h, p')] @ patha) \ - (\p' patha pathb. - path_by_shm s proc patha p' \ - (p', SHM_RDWR) \ procs_of_shm s h \ - path_by_shm s p pathb proc \ [] = pathb @ [(p', h, p)] @ patha))" - by (auto intro:path_by_shm.intros) - qed -next - case (pbs2 \ pa path pb h' pc) - thus ?case - proof (rule_tac impI) - assume p1:"path_by_shm \ pa path pb" and p2: "valid \ \ \ = Attach p h flag # s \ - path_by_shm s pa path pb \ - (if pa = p \ flag = SHM_RDWR - then \p' flagb path'. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' path' pb \ path = path' @ [(p, h, p')] - else if pb = p - then \p' path'. path_by_shm s pa path' p' \ path = (p', h, p) # path' \ (p', SHM_RDWR) \ procs_of_shm s h - else (\p' flag' pathaa pathb. path_by_shm s pa pathaa p \ flag = SHM_RDWR \ - (p', flag') \ procs_of_shm s h \ path_by_shm s p' pathb pb \ - path = pathb @ [(p, h, p')] @ pathaa) \ - (\p' pathaa pathb. path_by_shm s pa pathaa p' \ (p', SHM_RDWR) \ procs_of_shm s h \ - path_by_shm s p pathb pb \ path = pathb @ [(p', h, p)] @ pathaa))" - and p3: "one_flow_shm \ h' pb pc" and p4: "valid \ \ \ = Attach p h flag # s" - - from p2 and p4 have p2': " - path_by_shm s pa path pb \ - (if pa = p \ flag = SHM_RDWR - then \p' flagb path'. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' path' pb \ path = path' @ [(p, h, p')] - else if pb = p - then \p' path'. path_by_shm s pa path' p' \ path = (p', h, p) # path' \ (p', SHM_RDWR) \ procs_of_shm s h - else (\p' flag' pathaa pathb. path_by_shm s pa pathaa p \ flag = SHM_RDWR \ - (p', flag') \ procs_of_shm s h \ path_by_shm s p' pathb pb \ - path = pathb @ [(p, h, p')] @ pathaa) \ - (\p' pathaa pathb. path_by_shm s pa pathaa p' \ (p', SHM_RDWR) \ procs_of_shm s h \ - path_by_shm s p pathb pb \ path = pathb @ [(p', h, p)] @ pathaa))" - by (erule_tac impE, simp) - from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os) - from p6 have "p \ current_procs s" by simp hence p7:"path_by_shm s p [] p" by (erule_tac path_by_shm.intros) - from p3 p4 have p8: "if (h' = h) - then (pb = p \ pc \ p \ flag = SHM_RDWR \ (\ flagb. (pc, flagb) \ procs_of_shm s h)) \ - (pc = p \ pb \ p \ (pb, SHM_RDWR) \ procs_of_shm s h) \ - (one_flow_shm s h pb pc) - else one_flow_shm s h' pb pc" by (auto simp add:one_flow_shm_attach) - - -(* - have "\ flagb. (pc, flagb) \ procs_of_shm s h - \ \ p' flagb. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' [] pc" - apply (rule_tac x= pc in exI, rule_tac x = flagb in exI, frule procs_of_shm_prop2) - by (simp add:p5, simp add:path_by_shm.intros(1)) - hence p10: "\ path_by_shm s p path pc \ (\p' flagb. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' pc) \ - path_by_shm s pa pc" - using p2' p7 p8 p5 - by (auto split:if_splits dest:path_by_shm.intros(2)) - (* apply (rule_tac x = pb in exI, simp add:one_flow_flows, rule_tac x = flagb in exI, simp)+ *) *) - - from p1 have a0: "(path = []) = (pa = pb)" using pbs_prop2 by simp - have a1:"\pa = p; flag = SHM_RDWR; \ path_by_shm s pa path pb\ \ - \p' flagb path'. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' path' pb \ path = path' @ [(p, h, p')]" - using p2' by auto - have b1: "\pa = p; flag = SHM_RDWR; \ path_by_shm s pa path pc\ \ - \p' flagb path'. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' path' pc \ - (pb, h', pc) # path = path' @ [(p, h, p')]" - - - using p8 a1 p7 p5 a0 - apply (auto split:if_splits elim:path_by_shm_intro4) - apply (rule_tac x = pb in exI, rule conjI, rule_tac x = SHM_RDWR in exI, simp) - apply (rule_tac x = pc in exI, rule conjI, rule_tac x = flagb in exI, simp) - apply (rule_tac x = "[]" in exI, rule conjI) -apply (erule path_by_shm_intro4, simp) - - apply (case_tac "path_by_shm s pa path pb", simp) defer - apply (drule a1, simp+, clarsimp) - apply (rule conjI, rule_tac x = flagb in exI, simp) - apply (rule path_by_shm_ - using p2' p8 p5 - apply (auto split:if_splits dest!:pbs_prop2' simp:path_by_shm_intro4) - apply (drule pbs_prop2', simp) - apply (erule_tac x = pc in allE, simp add:path_by_shm_intro4) - - apply (drule_tac x = "pc" in allE) - - apply simp - - sorry - moreover have "pc = p \ (\p' path'. path_by_shm s pa path' p' \ - (pb, h', pc) # path = path' @ [(p', h, p)] \ (p', SHM_RDWR) \ procs_of_shm s h) \ - (path_by_shm s pa path pc \ \ edge_related path p h)" - using p2' p7 p8 p5 - sorry (* - apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def) *) - moreover have "\pc \ p; pa \ p \ flag \ SHM_RDWR\ \ - (\p' flag' pathaa pathb. path_by_shm s pa pathaa p \ flag = SHM_RDWR \ (p', flag') \ procs_of_shm s h \ - path_by_shm s p' pathb pc \ (pb, h', pc) # path = pathaa @ [(p, h, p')] @ pathb) \ - (\p' pathaa pathb. path_by_shm s pa pathaa p' \ (p', SHM_RDWR) \ procs_of_shm s h \ - path_by_shm s p pathb pc \ (pb, h', pc) # path = pathaa @ [(p', h, p)] @ pathb) \ - (path_by_shm s pa path pc \ \ edge_related path p h)" - using p2' p7 p8 p5 (* - apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def) - apply (rule_tac x = pc in exI, simp add:path_by_shm_intro4) - apply (rule_tac x = flagb in exI, simp) - done *) - sorry - ultimately - show "if (pb, h', pc) # path = [] then pa = pc \ pa \ current_procs s - else path_by_shm s pa ((pb, h', pc) # path) pc \ \ edge_related ((pb, h', pc) # path) p h \ - (if pa = p \ flag = SHM_RDWR - then \p' flagb path'. (p', flagb) \ procs_of_shm s h \ - path_by_shm s p' path' pc \ (pb, h', pc) # path = path' @ [(p, h, p')] - else if pc = p - then \p' path'. path_by_shm s pa path' p' \ - (pb, h', pc) # path = (p', h, p) # path' \ (p', SHM_RDWR) \ procs_of_shm s h - else (\p' flag' pathaa pathb. path_by_shm s pa pathaa p \ flag = SHM_RDWR \ - (p', flag') \ procs_of_shm s h \ - path_by_shm s p' pathb pc \ (pb, h', pc) # path = pathb @ [(p, h, p')] @ pathaa) \ - (\p' pathaa pathb. path_by_shm s pa pathaa p' \ (p', SHM_RDWR) \ procs_of_shm s h \ - path_by_shm s p pathb pc \ (pb, h', pc) # path = pathb @ [(p', h, p)] @ pathaa))" - apply (auto split:if_splits) - using p7 by auto - qed -qed - -lemma path_by_shm_attach1: - "\valid (Attach p h flag # s); path_by_shm (Attach p h flag # s) pa pb\ - \ (if path_by_shm s pa pb then True else - (if (pa = p \ flag = SHM_RDWR) - then (\ p' flagb. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' pb) - else if (pb = p) - then (\ p'. (p', SHM_RDWR) \ procs_of_shm s h \ path_by_shm s pa p') - else (\ p' flag'. path_by_shm s pa p \ flag = SHM_RDWR \ (p', flag') \ procs_of_shm s h \ - path_by_shm s p' pb) \ - (\ p'. path_by_shm s pa p' \ (p', SHM_RDWR) \ procs_of_shm s h \ path_by_shm s p pb) - ) )" -apply (drule_tac p = p and h = h and flag = flag in path_by_shm_attach1_aux) -by auto - -lemma path_by_shm_attach_aux[rule_format]: - "path_by_shm s pa pb \ valid (Attach p h flag # s) \ path_by_shm (Attach p h flag # s) pa pb" -apply (erule path_by_shm.induct) -apply (rule impI, rule path_by_shm.intros(1), simp) -apply (rule impI, simp, rule_tac h = ha in path_by_shm.intros(2), simp) -apply (auto simp add:one_flow_shm_simps) -done - -lemma path_by_shm_attach2: - "\valid (Attach p h flag # s); if path_by_shm s pa pb then True else - (if (pa = p \ flag = SHM_RDWR) - then (\ p' flagb. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' pb) - else if (pb = p) - then (\ p'. (p', SHM_RDWR) \ procs_of_shm s h \ path_by_shm s pa p') - else (\ p' flag'. path_by_shm s pa p \ flag = SHM_RDWR \ (p', flag') \ procs_of_shm s h \ - path_by_shm s p' pb) \ - (\ p'. path_by_shm s pa p' \ (p', SHM_RDWR) \ procs_of_shm s h \ path_by_shm s p pb))\ - \ path_by_shm (Attach p h flag # s) pa pb" -apply (frule vt_grant_os, frule vd_cons) -apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def intro:path_by_shm_attach_aux) -apply (rule_tac p' = p' in Info_flow_trans) -apply (rule_tac p' = p and h = h in path_by_shm.intros(2)) -apply (rule path_by_shm.intros(1), simp) -apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) -apply (rule conjI, rule notI, simp, rule_tac x = flagb in exI, simp) -apply (simp add:path_by_shm_attach_aux) - -apply (rule_tac p' = p' in Info_flow_trans) -apply (rule_tac p' = p in Info_flow_trans) -apply (simp add:path_by_shm_attach_aux) -apply (rule_tac p' = p and h = h in path_by_shm.intros(2)) -apply (rule path_by_shm.intros(1), simp) -apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) -apply (rule conjI, rule notI, simp, rule_tac x = flag' in exI, simp) -apply (simp add:path_by_shm_attach_aux) - -apply (rule_tac p' = p in Info_flow_trans) -apply (rule_tac p' = p' in Info_flow_trans) -apply (simp add:path_by_shm_attach_aux) -apply (rule_tac p' = p' and h = h in path_by_shm.intros(2)) -apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2) -apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) -apply (rule notI, simp) -apply (simp add:path_by_shm_attach_aux) - -apply (rule_tac p' = p in Info_flow_trans) -apply (rule_tac p' = p' in Info_flow_trans) -apply (simp add:path_by_shm_attach_aux) -apply (rule_tac p' = p' and h = h in path_by_shm.intros(2)) -apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2) -apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) -apply (rule notI, simp) -apply (simp add:path_by_shm_attach_aux) -done - -lemma path_by_shm_attach: - "valid (Attach p h flag # s) \ path_by_shm (Attach p h flag # s) = (\ pa pb. - path_by_shm s pa pb \ - (if (pa = p \ flag = SHM_RDWR) - then (\ p' flagb. (p', flagb) \ procs_of_shm s h \ path_by_shm s p' pb) - else if (pb = p) - then (\ p'. (p', SHM_RDWR) \ procs_of_shm s h \ path_by_shm s pa p') - else (\ p' flag'. path_by_shm s pa p \ flag = SHM_RDWR \ (p', flag') \ procs_of_shm s h \ - path_by_shm s p' pb) \ - (\ p'. path_by_shm s pa p' \ (p', SHM_RDWR) \ procs_of_shm s h \ path_by_shm s p pb) - ) )" -apply (rule ext, rule ext, rule iffI) -apply (drule_tac pa = pa and pb = pb in path_by_shm_attach1, simp) -apply (auto split:if_splits)[1] -apply (drule_tac pa = pa and pb = pb in path_by_shm_attach2) -apply (auto split:if_splits) -done - - - - - - - - - - - - - - - - - - - - - - - - -lemma info_flow_shm_detach: - "valid (Detach p h # s) \ info_flow_shm (Detach p h # s) = (\ pa pb. - self_shm s pa pb \ ((p = pa \ p = pb) \ (\ h'. h' \ h \ one_flow_shm s h' pa pb)) \ - (pa \ p \ pb \ p \ info_flow_shm s pa pb) )" -apply (rule ext, rule ext, frule vt_grant_os) -by (auto simp:info_flow_shm_def one_flow_shm_def) - -lemma info_flow_shm_deleteshm: - "valid (DeleteShM p h # s) \ info_flow_shm (DeleteShM p h # s) = (\ pa pb. - self_shm s pa pb \ (\ h'. h' \ h \ one_flow_shm s h' pa pb) )" -apply (rule ext, rule ext, frule vt_grant_os) -by (auto simp:info_flow_shm_def one_flow_shm_def) - -lemma info_flow_shm_clone: - "valid (Clone p p' fds shms # s) \ info_flow_shm (Clone p p' fds shms # s) = (\ pa pb. - (pa = p' \ pb = p') \ (pa = p' \ pb \ p' \ (\ h \ shms. one_flow_shm s h p pb)) \ - (pb = p' \ pa \ p' \ (\ h \ shms. one_flow_shm s h pa p)) \ - (pa \ p' \ pb \ p' \ info_flow_shm s pa pb))" -apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp) -apply (frule_tac p = p' in procs_of_shm_prop2', simp) -sorry (* -apply (auto simp:info_flow_shm_def one_flow_shm_def) -done *) - -lemma info_flow_shm_execve: - "valid (Execve p f fds # s) \ info_flow_shm (Execve p f fds # s) = (\ pa pb. - (pa = p \ pb = p) \ (pa \ p \ pb \ p \ info_flow_shm s pa pb) )" -apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) -by (auto simp:info_flow_shm_def one_flow_shm_def) - -lemma info_flow_shm_kill: - "valid (Kill p p' # s) \ info_flow_shm (Kill p p' # s) = (\ pa pb. - pa \ p' \ pb \ p' \ info_flow_shm s pa pb )" -apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) -by (auto simp:info_flow_shm_def one_flow_shm_def) - -lemma info_flow_shm_exit: - "valid (Exit p # s) \ info_flow_shm (Exit p # s) = (\ pa pb. - pa \ p \ pb \ p \ info_flow_shm s pa pb )" -apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) -by (auto simp:info_flow_shm_def one_flow_shm_def) - -lemma info_flow_shm_other: - "\valid (e # s); - \ p h flag. e \ Attach p h flag; - \ p h. e \ Detach p h; - \ p h. e \ DeleteShM p h; - \ p p' fds shms. e \ Clone p p' fds shms; - \ p f fds. e \ Execve p f fds; - \ p p'. e \ Kill p p'; - \ p. e \ Exit p - \ \ info_flow_shm (e # s) = info_flow_shm s" -apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) -apply (case_tac e, auto simp:info_flow_shm_def one_flow_shm_def dest:procs_of_shm_prop2) -apply (erule_tac x = h in allE, simp) -apply (drule procs_of_shm_prop1, auto) -done - - -(* -lemma info_flow_shm_prop1: - "\info_flow_shm s p p'; p \ p'; valid s\ - \ \ h h' flag. (p, SHM_RDWR) \ procs_of_shm s h \ (p', flag) \ procs_of_shm s h'" -by (induct rule: info_flow_shm.induct, auto) - -lemma info_flow_shm_cases: - "\info_flow_shm \ pa pb; \p s. \s = \ ; pa = p; pb = p; p \ current_procs s\ \ P; - \s p p' h p'' flag. \s = \; pa = p; pb = p''; info_flow_shm s p p'; (p', SHM_RDWR) \ procs_of_shm s h; - (p'', flag) \ procs_of_shm s h\\ P\ - \ P" -by (erule info_flow_shm.cases, auto) - -definition one_flow_shm :: "t_state \ t_process \ t_process \ bool" -where - "one_flow_shm s p p' \ p \ p' \ (\ h flag. (p, SHM_RDWR) \ procs_of_shm s h \ (p', flag) \ procs_of_shm s h)" - -inductive flows_shm :: "t_state \ t_process \ t_process \ bool" -where - "p \ current_procs s \ flows_shm s p p" -| "\flows_shm s p p'; one_flow_shm s p' p''\ \ flows_shm s p p''" - -definition attached_procs :: "t_state \ t_shm \ t_process set" -where - "attached_procs s h \ {p. \ flag. (p, flag) \ procs_of_shm s h}" - -definition flowed_procs:: "t_state \ t_shm \ t_process set" -where - "flowed_procs s h \ {p'. \ p \ attached_procs s h. flows_shm s p p'}" - -inductive flowed_shm:: "t_state \ t_process \ t_shm set" - -fun Info_flow_shm :: "t_state \ t_process \ t_process set" -where - "Info_flow_shm [] = (\ p. {p'. flows_shm [] p p'})" -| "Info_flow_shm (Attach p h flag # s) = (\ p'. - if (p' = p) then flowed_procs s h - else if () - " - - -lemma info_flow_shm_attach: - "valid (Attach p h flag # s) \ info_flow_shm (Attach p h flag # s) = (\ pa pb. (info_flow_shm s pa pb) \ - (if (pa = p) - then (if (flag = SHM_RDWR) - then (\ flag. (pb, flag) \ procs_of_shm s h) - else (pb = p)) - else (if (pb = p) - then (pa, SHM_RDWR) \ procs_of_shm s h - else info_flow_shm s pa pb)) )" -apply (frule vd_cons, frule vt_grant_os, rule ext, rule ext) -apply (case_tac "info_flow_shm s pa pb", simp) - -thm info_flow_shm.cases -apply (auto split:if_splits intro:info_flow_shm.intros elim:info_flow_shm_cases) -apply (erule info_flow_shm_cases, simp, simp split:if_splits) -apply (rule_tac p = pa and p' = p' in info_flow_shm.intros(2), simp+) -apply (rule notI, erule info_flow_shm.cases, simp+) -pr 5 -*) -lemmas info_flow_shm_simps = info_flow_shm_other (* info_flow_shm_attach *) info_flow_shm_detach info_flow_shm_deleteshm - info_flow_shm_clone info_flow_shm_execve info_flow_shm_kill info_flow_shm_exit lemma has_same_inode_in_current: "\has_same_inode s f f'; valid s\ \ f \ current_files s \ f' \ current_files s"