559
+ − 1
<?xml version="1.0" encoding="utf-8"?>
+ − 2
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
+ − 3
<HEAD>
+ − 4
<TITLE>2018/19 BSc Projects</TITLE>
+ − 5
<BASE HREF="https://nms.kcl.ac.uk/christian.urban/">
+ − 6
<script type="text/javascript" src="striper.js"></script>
+ − 7
<link rel="stylesheet" href="nominal.css">
+ − 8
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-MML-AM_CHTML">
+ − 9
</script>
+ − 10
</HEAD>
+ − 11
<BODY TEXT="#000000"
520
+ − 12
BGCOLOR="#4169E1"
+ − 13
LINK="#0000EF"
+ − 14
VLINK="#51188E"
+ − 15
ALINK="#FF0000"
+ − 16
ONLOAD="striper('ul','striped','li','first,second')">
+ − 17
+ − 18
+ − 19
559
+ − 20
<TABLE WIDTH="100%"
520
+ − 21
BGCOLOR="#4169E1"
+ − 22
BORDER="0"
+ − 23
FRAME="border"
+ − 24
CELLPADDING="10"
+ − 25
CELLSPACING="2"
+ − 26
RULES="all">
+ − 27
559
+ − 28
<TR>
520
+ − 29
<TD BGCOLOR="#FFFFFF"
+ − 30
WIDTH="75%"
+ − 31
VALIGN="TOP">
+ − 32
559
+ − 33
<H2>2018/19 BSc Projects</H2>
520
+ − 34
<H4>Supervisor: Christian Urban</H4>
559
+ − 35
<H4>Email: christian dot urban at kcl dot ac dot uk, Office: Bush House N7.07</H4>
+ − 36
<H4>If you are interested in a project, please send me an email and we can discuss details. Please include
520
+ − 37
a short description about your programming skills and Computer Science background in your first email.
559
+ − 38
Thanks.</H4>
520
+ − 39
559
+ − 40
<H4>Note that besides being a lecturer at the theoretical end of Computer Science, I am also a passionate
+ − 41
<A HREF="http://en.wikipedia.org/wiki/Hacker_(programmer_subculture)">hacker</A> …
520
+ − 42
defined as “a person who enjoys exploring the details of programmable systems and
+ − 43
stretching their capabilities, as opposed to most users, who prefer to learn only the minimum
+ − 44
necessary.” I am always happy to supervise like-minded students.
559
+ − 45
</H4>
520
+ − 46
+ − 47
<H4>In 2013/14, I was nominated by the students
+ − 48
for the best BSc project supervisor and best MSc project supervisor awards in the NMS
+ − 49
faculty. Somehow I won both. In 2014/15 I was nominated again for the best MSc
+ − 50
project supervisor, but did not win it. ;o)
+ − 51
</H4>
+ − 52
559
+ − 53
<ul class="striped">
+ − 54
<li> <H4>[CU1] Regular Expressions, Lexing and Derivatives</H4>
520
+ − 55
559
+ − 56
<p>
520
+ − 57
<B>Description:</b>
559
+ − 58
<A HREF="http://en.wikipedia.org/wiki/Regular_expression">Regular expressions</A>
549
+ − 59
are extremely useful for many text-processing tasks, such as finding patterns in hostile
559
+ − 60
<A HREF="https://www.snort.org">network traffic</A>,
520
+ − 61
lexing programs, syntax highlighting and so on. Given that regular expressions were
559
+ − 62
introduced in 1950 by <A HREF="http://en.wikipedia.org/wiki/Stephen_Cole_Kleene">Stephen Kleene</A>,
520
+ − 63
you might think regular expressions have since been studied and implemented to death. But you would definitely be
+ − 64
mistaken: in fact they are still an active research area. On the top of my head, I can give
+ − 65
you at least ten research papers that appeared in the last few years.
+ − 66
For example
559
+ − 67
<A HREF="http://www.home.hs-karlsruhe.de/~suma0002/publications/regex-parsing-derivatives.pdf">this paper</A>
520
+ − 68
about regular expression matching and derivatives was presented in 2014 at the international
559
+ − 69
FLOPS conference. Another <A HREF="https://nms.kcl.ac.uk/christian.urban/Publications/posix.pdf">paper</A> by my PhD student and me was presented in 2016
520
+ − 70
at the international ITP conference.
559
+ − 71
The task in this project is to implement these results and use them for lexing.</p>
520
+ − 72
559
+ − 73
<p>The background for this project is that some regular expressions are
+ − 74
“<A HREF="http://en.wikipedia.org/wiki/ReDoS#Examples">evil</A>”
520
+ − 75
and can “stab you in the back” according to
559
+ − 76
this <A HREF="http://peterscott.github.io/2013/01/17/regular-expressions-will-stab-you-in-the-back/">blog post</A>.
+ − 77
For example, if you use in <A HREF="http://www.python.org">Python</A> or
+ − 78
in <A HREF="http://www.ruby-lang.org/en/">Ruby</A> (or also in a number of other mainstream programming languages) the
+ − 79
innocently looking regular expression <code>a?{28}a{28}</code> and match it, say, against the string
+ − 80
<code>aaaaaaaaaaaaaaaaaaaaaaaaaaaa</code> (that is 28 <code>a</code>s), you will soon notice that your CPU usage goes to 100%. In fact,
520
+ − 81
Python and Ruby need approximately 30 seconds of hard work for matching this string. You can try it for yourself:
559
+ − 82
<A HREF="http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi/afl-material/raw-file/tip/progs/catastrophic.py">catastrophic.py</A> (Python version) and
+ − 83
<A HREF="http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi/afl-material/raw-file/tip/progs/catastrophic.rb">catastrophic.rb</A>
+ − 84
(Ruby version). Here is a similar problem with the regular expression <code>(a*)*b</code> in Java:
+ − 85
<A HREF="http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi/afl-material/raw-file/tip/progs/catastrophic.java">catastrophic.java</A>
+ − 86
</p>
520
+ − 87
+ − 88
<p>
+ − 89
You can imagine an attacker
559
+ − 90
mounting a nice <A HREF="http://en.wikipedia.org/wiki/Denial-of-service_attack">DoS attack</A> against
520
+ − 91
your program if it contains such an “evil” regular expression. But it can also happen by accident:
559
+ − 92
on 20 July 2016 the website <A HREF="http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016">Stack Exchange</A>
520
+ − 93
was knocked offline because of an evil regular expression. One of their engineers talks about this in this
559
+ − 94
<A HREF="https://vimeo.com/112065252">video</A>. A similar problem needed to be fixed in the
+ − 95
<A HREF="http://davidvgalbraith.com/how-i-fixed-atom/">Atom</A> editor.
520
+ − 96
A few implementations of regular expression matchers are almost immune from such problems.
559
+ − 97
For example, <A HREF="http://www.scala-lang.org/">Scala</A> can deal with strings of up to 4,300 <code>a</code>s in less than a second. But if you scale
+ − 98
the regular expression and string further to, say, 4,600 <code>a</code>s, then you get a <code>StackOverflowError</code>
520
+ − 99
potentially crashing your program. Moreover (beside the "minor" problem of being painfully slow) according to this
559
+ − 100
<A HREF="http://www.haskell.org/haskellwiki/Regex_Posix">report</A>
520
+ − 101
nearly all regular expression matchers using the POSIX rules are actually buggy.
+ − 102
</p>
+ − 103
559
+ − 104
<p>
520
+ − 105
On a rainy afternoon, I implemented
559
+ − 106
<A HREF="http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi/afl-material/raw-file/tip/progs/re3.scala">this</A>
520
+ − 107
regular expression matcher in Scala. It is not as fast as the official one in Scala, but
559
+ − 108
it can match up to 11,000 <code>a</code>s in less than 5 seconds without raising any exception
+ − 109
(remember Python and Ruby both need nearly 30 seconds to process 28(!) <code>a</code>s, and Scala's
+ − 110
official matcher maxes out at 4,600 <code>a</code>s). My matcher is approximately
520
+ − 111
85 lines of code and based on the concept of
559
+ − 112
<A HREF="http://lambda-the-ultimate.org/node/2293">derivatives of regular expressions</A>.
+ − 113
These derivatives were introduced in 1964 by <A HREF="http://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)">
+ − 114
Janusz Brzozowski</A>, but according to this
+ − 115
<A HREF="https://www.cs.kent.ac.uk/people/staff/sao/documents/jfp09.pdf">paper</A> had been lost in the “sands of time”.
520
+ − 116
The advantage of derivatives is that they side-step completely the usual
559
+ − 117
<A HREF="http://hackingoff.com/compilers/regular-expression-to-nfa-dfa">translations</A> of regular expressions
520
+ − 118
into NFAs or DFAs, which can introduce the exponential behaviour exhibited by the regular
+ − 119
expression matchers in Python, Java and Ruby.
+ − 120
</p>
+ − 121
559
+ − 122
<p>
520
+ − 123
Now the authors from the
559
+ − 124
<A HREF="http://www.home.hs-karlsruhe.de/~suma0002/publications/regex-parsing-derivatives.pdf">FLOPS'14-paper</A> mentioned
520
+ − 125
above claim they are even faster than me and can deal with even more features of regular expressions
+ − 126
(for example subexpression matching, which my rainy-afternoon matcher cannot). I am sure they thought
+ − 127
about the problem much longer than a single afternoon. The task
+ − 128
in this project is to find out how good they actually are by implementing the results from their paper.
+ − 129
Their approach to regular expression matching is also based on the concept of derivatives.
+ − 130
I used derivatives very successfully once for something completely different in a
559
+ − 131
<A HREF="https://nms.kcl.ac.uk/christian.urban/Publications/rexp.pdf">paper</A>
+ − 132
about the <A HREF="http://en.wikipedia.org/wiki/Myhill–Nerode_theorem">Myhill-Nerode theorem</A>.
520
+ − 133
So I know they are worth their money. Still, it would be interesting to actually compare their results
+ − 134
with my simple rainy-afternoon matcher and potentially “blow away” the regular expression matchers
+ − 135
in Python, Ruby and Java (and possibly in Scala too). The application would be to implement a fast lexer for
559
+ − 136
programming languages, or improve the network traffic analysers in the tools <A HREF="https://www.snort.org">Snort</A> and
+ − 137
<A HREF="https://www.bro.org">Bro</A>.
+ − 138
</p>
520
+ − 139
559
+ − 140
<p>
520
+ − 141
<B>Literature:</B>
+ − 142
The place to start with this project is obviously this
559
+ − 143
<A HREF="http://www.home.hs-karlsruhe.de/~suma0002/publications/regex-parsing-derivatives.pdf">paper</A>
+ − 144
and this <A HREF="https://nms.kcl.ac.uk/christian.urban/Publications/posix.pdf">one</A>.
520
+ − 145
Traditional methods for regular expression matching are explained
+ − 146
in the Wikipedia articles
559
+ − 147
<A HREF="http://en.wikipedia.org/wiki/DFA_minimization">here</A> and
+ − 148
<A HREF="http://en.wikipedia.org/wiki/Powerset_construction">here</A>.
+ − 149
The authoritative <A HREF="http://infolab.stanford.edu/~ullman/ialc.html">book</A>
520
+ − 150
on automata and regular expressions is by John Hopcroft and Jeffrey Ullmann (available in the library).
+ − 151
There is also an online course about this topic by Ullman at
559
+ − 152
<A HREF="https://www.coursera.org/course/automata">Coursera</A>, though IMHO not
520
+ − 153
done with love.
+ − 154
There are millions of other pointers about regular expression
+ − 155
matching on the Web. I found the chapter on Lexing in this
559
+ − 156
<A HREF="http://www.diku.dk/~torbenm/Basics/">online book</A> very helpful. Finally, it will
520
+ − 157
be of great help for this project to take part in my Compiler and Formal Language module (6CCS3CFL).
559
+ − 158
Test cases for “<A HREF="http://en.wikipedia.org/wiki/ReDoS#Examples">evil</A>”
+ − 159
regular expressions can be obtained from <A HREF="http://www.haskell.org/haskellwiki/Regex_Posix">here</A>.
+ − 160
</p>
520
+ − 161
559
+ − 162
<p>
520
+ − 163
<B>Skills:</B>
+ − 164
This is a project for a student with an interest in theory and with
+ − 165
good programming skills. The project can be easily implemented
+ − 166
in functional languages like
559
+ − 167
<A HREF="http://www.scala-lang.org/">Scala</A>,
+ − 168
<A HREF="http://fsharp.org">F#</A>,
+ − 169
<A HREF="http://en.wikipedia.org/wiki/Standard_ML">ML</A>,
+ − 170
<A HREF="http://haskell.org/haskellwiki/Haskell">Haskell</A>, etc. Python and other non-functional languages
520
+ − 171
can be also used, but seem much less convenient. If you do attend my Compilers and Formal Languages
+ − 172
module, that would obviously give you a head-start with this project.
559
+ − 173
</p>
539
+ − 174
559
+ − 175
<li> <H4>[CU5] Grammars and Derivative-Based Parsing Algorithms</H4>
539
+ − 176
553
+ − 177
<p>
+ − 178
Parsing is an old nut. Generations of software developers need to do parsing of data or text.
+ − 179
There are zillions of links, tools, papers and textbooks about parsing. One particular
559
+ − 180
<A HREF="https://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf">book</A> contains something
553
+ − 181
like 700 different algorithm, nicely analysed and described. Surely, parsing must be a solved problem. Or is it?
559
+ − 182
Laurie Tratt has a blog <A HREF="https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html">post</A>
553
+ − 183
about <i>Parsing: The Solved Problem That Isn't</i>. IMHO parsing is still a wide open field and not solved at all.
+ − 184
PEG parsing, error reporting, error correction, runtime to name just a few are aspects that seem to cause headaches
559
+ − 185
to developers, and to researchers.</p>
553
+ − 186
+ − 187
<p>
559
+ − 188
A recent <A HREF="https://www.cl.cam.ac.uk/~jdy22/papers/a-typed-algebraic-approach-to-parsing.pdf">paper</A>
553
+ − 189
(not even published yet) follows an idea for regular expressions: it adapts the notion of
+ − 190
derivatives of regular expressions to grammars. The idea is to implement in a functional programming language
+ − 191
the parsing algorithm proposed in this paper and to try it out with some sample data.
559
+ − 192
</p>
541
+ − 193
554
+ − 194
<p>
559
+ − 195
<B>Literature:</B> <A HREF="https://www.cl.cam.ac.uk/~jdy22/papers/a-typed-algebraic-approach-to-parsing.pdf">paper</A>
554
+ − 196
</p>
553
+ − 197
559
+ − 198
<p>
+ − 199
<B>Skills:</B> See [CU1].
+ − 200
</p>
541
+ − 201
559
+ − 202
<li> <H4>[CU6] Webassembly Interpreter / Compiler</H4>
558
+ − 203
559
+ − 204
<p>
553
+ − 205
Webassembly is a recently agreed standard for speeding up web applications in browsers. In this
+ − 206
project the aim is to implement an interpreter or compiler for webassembly. There are already
559
+ − 207
<A HREF="https://github.com/WebAssembly/spec/tree/master/interpreter">reference interpreters</A>,
553
+ − 208
but people take different views, for example implement a
559
+ − 209
<A HREF="https://groups.google.com/forum/#!topic/comp.lang.forth/CvNrP_AOmmw">Forth</A> language on top of webassembly.
553
+ − 210
What is good about webassembly is that is a rather simple format, which can be generated quite
+ − 211
easily, unlike Java class files, which need some head-standing when you generate them.
+ − 212
</p>
+ − 213
559
+ − 214
<p>
+ − 215
A <A HREF="https://github.com/WebAssembly/spec/tree/master/interpreter">reference interpreter</A> for webassembly.
+ − 216
</p>
+ − 217
+ − 218
<li> <H4>[CU2] A Compiler for a small Programming Language</H4>
520
+ − 219
+ − 220
<p>
559
+ − 221
<b>Description:</b>
520
+ − 222
Compilers translate high-level programs that humans can read and write into
+ − 223
efficient machine code that can be run on a CPU or virtual machine.
+ − 224
A compiler for a simple functional language generating X86 code is described
559
+ − 225
<A HREF="https://libraries.io/github/chameco/Shade">here</A>.
520
+ − 226
I recently implemented a very simple compiler for an even simpler functional
+ − 227
programming language following this
+ − 228
<A HREF="https://www.cs.princeton.edu/~dpw/papers/tal-toplas.pdf">paper</A>
559
+ − 229
(also described <A HREF="https://www.cs.princeton.edu/~dpw/papers/tal-tr.pdf">here</A>).
+ − 230
My code, written in <A HREF="http://www.scala-lang.org/">Scala</A>, of this compiler is
+ − 231
<A HREF="https://nms.kcl.ac.uk/christian.urban/compiler.scala">here</A>.
520
+ − 232
The compiler can deal with simple programs involving natural numbers, such
+ − 233
as Fibonacci numbers or factorial (but it can be easily extended - that is not the point).
+ − 234
</p>
+ − 235
+ − 236
<p>
+ − 237
While the hard work has been done (understanding the two papers above),
+ − 238
my compiler only produces some idealised machine code. For example I
+ − 239
assume there are infinitely many registers. The goal of this
+ − 240
project is to generate machine code that is more realistic and can
+ − 241
run on a CPU, like X86, or run on a virtual machine, say the JVM.
+ − 242
This gives probably a speedup of thousand times in comparison to
+ − 243
my naive machine code and virtual machine. The project
+ − 244
requires to dig into the literature about real CPUs and generating
+ − 245
real machine code.
+ − 246
</p>
+ − 247
<p>
+ − 248
An alternative is to not generate machine code, but build a compiler that compiles to
559
+ − 249
<A HREF="http://www.w3schools.com/js/">JavaScript</A>. This is the language that is supported by most
520
+ − 250
browsers and therefore is a favourite
559
+ − 251
vehicle for Web-programming. Some call it <B>the</B> scripting language of the Web.
520
+ − 252
Unfortunately, JavaScript is also probably one of the worst
559
+ − 253
languages to program in (being designed and released in a hurry). <B>But</B> it can be used as a convenient target
520
+ − 254
for translating programs from other languages. In particular there are two
+ − 255
very optimised subsets of JavaScript that can be used for this purpose:
559
+ − 256
one is <A HREF="http://asmjs.org">asm.js</A> and the other is
+ − 257
<A HREF="https://github.com/kripken/emscripten/wiki">emscripten</A>. Since
+ − 258
last year there is even the official <A HREF="http://webassembly.org">Webassembly</A>
+ − 259
There is a <A HREF="http://kripken.github.io/emscripten-site/docs/getting_started/Tutorial.html">tutorial</A> for emscripten
+ − 260
and an impressive <A HREF="https://youtu.be/c2uNDlP4RiE">demo</A> which runs the
+ − 261
<A HREF="http://en.wikipedia.org/wiki/Unreal_Engine">Unreal Engine 3</A>
520
+ − 262
in a browser with spectacular speed. This was achieved by compiling the
+ − 263
C-code of the Unreal Engine to the LLVM intermediate language and then translating the LLVM
+ − 264
code to JavaScript.
559
+ − 265
</p>
520
+ − 266
559
+ − 267
<p>
520
+ − 268
<B>Literature:</B>
+ − 269
There is a lot of literature about compilers
559
+ − 270
(for example <A HREF="http://www.cs.princeton.edu/~appel/papers/cwc.html">this book</A> -
520
+ − 271
I can lend you my copy for the duration of the project, or this
559
+ − 272
<A HREF="http://www.diku.dk/~torbenm/Basics/">online book</A>). A very good overview article
520
+ − 273
about implementing compilers by
559
+ − 274
<A HREF="http://tratt.net/laurie/">Laurie Tratt</A> is
+ − 275
<A HREF="http://tratt.net/laurie/tech_articles/articles/how_difficult_is_it_to_write_a_compiler">here</A>.
520
+ − 276
An online book about the Art of Assembly Language is
559
+ − 277
<A HREF="http://flint.cs.yale.edu/cs422/doc/art-of-asm/pdf/">here</A>.
+ − 278
An introduction into x86 machine code is <A HREF="http://ianseyler.github.com/easy_x86-64/">here</A>.
520
+ − 279
Intel's official manual for the x86 instruction is
559
+ − 280
<A HREF="http://download.intel.com/design/intarch/manuals/24319101.pdf">here</A>.
+ − 281
Two assemblers for the JVM are described <A HREF="http://jasmin.sourceforge.net">here</A>
+ − 282
and <A HREF="https://github.com/Storyyeller/Krakatau">here</A>.
520
+ − 283
An interesting twist of this project is to not generate code for a CPU, but
559
+ − 284
for the intermediate language of the <A HREF="http://llvm.org">LLVM</A> compiler
+ − 285
(also described <A HREF="http://llvm.org/docs/LangRef.html">here</A>). If you want to see
520
+ − 286
what machine code looks like you can compile your C-program using gcc -S.
559
+ − 287
</p>
520
+ − 288
<p>
559
+ − 289
If JavaScript is chosen as a target instead, then there are plenty of <A HREF="http://www.w3schools.com/js/">tutorials</A> on the Web.
+ − 290
<A HREF="http://jsbooks.revolunet.com">Here</A> is a list of free books on JavaScript.
520
+ − 291
A project from which you can draw inspiration is this
559
+ − 292
<A HREF="http://jlongster.com/Outlet--My-Lisp-to-Javascript-Experiment">Lisp-to-JavaScript</A>
+ − 293
translator. <A HREF="https://bitbucket.org/ktg/parenjs/overview">Here</A> is another such project.
+ − 294
And <A HREF="https://github.com/viclib/liscript">another</A> in less than 100 lines of code.
+ − 295
<A HREF="http://en.wikipedia.org/wiki/CoffeeScript">Coffeescript</A> is a similar project
+ − 296
except that it is already quite <A HREF="http://coffeescript.org">mature</A>. And finally not to
+ − 297
forget <A HREF="http://www.typescriptlang.org">TypeScript</A> developed by Microsoft. The main
520
+ − 298
difference between these projects and this one is that they translate into relatively high-level
559
+ − 299
JavaScript code; none of them use the much lower levels <A HREF="http://asmjs.org">asm.js</A> and
+ − 300
<A HREF="https://github.com/kripken/emscripten/wiki">emscripten</A>.
+ − 301
</p>
+ − 302
<p>
520
+ − 303
<B>Skills:</B>
+ − 304
This is a project for a student with a deep interest in programming languages and
559
+ − 305
compilers. Since my compiler is implemented in <A HREF="http://www.scala-lang.org/">Scala</A>,
520
+ − 306
it would make sense to continue this project in this language. I can be
559
+ − 307
of help with questions and books about <A HREF="http://www.scala-lang.org/">Scala</A>.
520
+ − 308
But if Scala is a problem, my code can also be translated quickly into any other functional
+ − 309
language. Again, it will be of great help for this project to take part in
+ − 310
my Compiler and Formal Language module (6CCS3CFL).
+ − 311
</p>
+ − 312
559
+ − 313
<p>
+ − 314
<B>PS:</B> Compiler projects consistently received high marks in the past.
520
+ − 315
I have supervised eight so far and most of them received a mark above 70% - one even was awarded a prize.
+ − 316
</p>
+ − 317
559
+ − 318
<li> <H4>[CU3] Slide-Making in the Web-Age</H4>
520
+ − 319
559
+ − 320
<p>
520
+ − 321
The standard technology for writing scientific papers in Computer Science is to use
559
+ − 322
<A HREF="http://en.wikipedia.org/wiki/LaTeX">LaTeX</A>, a document preparation
+ − 323
system originally implemented by <A HREF="http://en.wikipedia.org/wiki/Donald_Knuth">Donald Knuth</A>
+ − 324
and <A HREF="http://en.wikipedia.org/wiki/Leslie_Lamport">Leslie Lamport</A>.
520
+ − 325
LaTeX produces very pleasantly looking documents, can deal nicely with mathematical
559
+ − 326
formulas and is very flexible. If you are interested, <A HREF="http://openwetware.org/wiki/Word_vs._LaTeX">here</A>
520
+ − 327
is a side-by-side comparison between Word and LaTeX (which LaTeX “wins” with 18 out of 21 points).
+ − 328
Computer scientists not only use LaTeX for documents,
+ − 329
but also for slides (really, nobody who wants to be cool uses Keynote or Powerpoint).
559
+ − 330
</p>
520
+ − 331
559
+ − 332
<p>
520
+ − 333
Although used widely, LaTeX seems nowadays a bit dated for producing
+ − 334
slides. Unlike documents, which are typically “static” and published in a book or journal,
+ − 335
slides often contain changing contents that might first only be partially visible and
+ − 336
only later be revealed as the “story” of a talk or lecture demands.
+ − 337
Also slides often contain animated algorithms where each state in the
+ − 338
calculation is best explained by highlighting the changing data.
+ − 339
</p>
+ − 340
559
+ − 341
<p>
520
+ − 342
It seems HTML and JavaScript are much better suited for generating
559
+ − 343
such animated slides. This <A HREF="http://www.impressivewebs.com/html-slidedeck-toolkits/">page</A>
520
+ − 344
links to slide-generating programs using this combination of technologies.
+ − 345
However, the problem with all of these project is that they depend heavily on the users being
+ − 346
able to write JavaScript, CCS or HTML...not something one would like to depend on given that
+ − 347
“normal” users likely only have a LaTeX background. The aim of this project is to invent a
+ − 348
very simple language that is inspired by LaTeX and then generate from code written in this language
+ − 349
slides that can be displayed in a web-browser. An example would be the
559
+ − 350
<A HREF="https://www.madoko.net">Madoko</A> project.
+ − 351
</p>
520
+ − 352
559
+ − 353
<p>
520
+ − 354
This sounds complicated, but there is already some help available:
559
+ − 355
<A HREF="http://www.mathjax.org">Mathjax</A> is a JavaScript library that can
+ − 356
be used to display mathematical text, for example</p>
520
+ − 357
559
+ − 358
<blockquote>
520
+ − 359
<p>When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
+ − 360
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\).</p>
559
+ − 361
</blockquote>
520
+ − 362
559
+ − 363
<p>
520
+ − 364
by writing code in the familiar LaTeX-way. This can be reused.
559
+ − 365
Another such library is <A HREF="http://khan.github.io/KaTeX/">KaTeX</A>.
520
+ − 366
There are also plenty of JavaScript
+ − 367
libraries for graphical animations (for example
559
+ − 368
<A HREF="http://raphaeljs.com">Raphael</A>,
+ − 369
<A HREF="http://svgjs.com">SVG.JS</A>,
+ − 370
<A HREF="http://bonsaijs.org">Bonsaijs</A>,
+ − 371
<A HREF="http://jsxgraph.uni-bayreuth.de/wp/">JSXGraph</A>). The inspiration for how the user should be able to write
+ − 372
slides could come from the LaTeX packages <A HREF="http://en.wikipedia.org/wiki/Beamer_(LaTeX)">Beamer</A>
+ − 373
and <A HREF="http://en.wikipedia.org/wiki/PGF/TikZ">PGF/TikZ</A>. A slide-making project from which
+ − 374
inspiration can be drawn is <A HREF="http://maciejczyzewski.me/hyhyhy/">hyhyhy</A>.
+ − 375
</p>
520
+ − 376
559
+ − 377
<p>
+ − 378
<B>Skills:</B>
520
+ − 379
This is a project that requires good knowledge of JavaScript. You need to be able to
+ − 380
parse a language and translate it to a suitable part of JavaScript using
559
+ − 381
appropriate libraries. Tutorials for JavaScript are <A HREF="http://www.w3schools.com/js/">here</A>.
+ − 382
A parser generator for JavaScript is <A HREF="http://pegjs.majda.cz">here</A>. There are probably also
520
+ − 383
others. If you want to avoid JavaScript there are a number of alternatives: for example the
559
+ − 384
<A HREF="http://elm-lang.org">Elm</A>
520
+ − 385
language has been especially designed for implementing interactive animations, which would be
+ − 386
very convenient for this project. A nice slide making project done by a previous student is
559
+ − 387
<A HREF="http://www.markslides.org">MarkSlides</A> by Oleksandr Cherednychenko.
520
+ − 388
</p>
+ − 389
559
+ − 390
<li> <H4>[CU4] Raspberry Pi's and Arduinos</H4>
520
+ − 391
+ − 392
<p>
559
+ − 393
<B>Description:</B>
+ − 394
This project is for true hackers! <A HREF="http://en.wikipedia.org/wiki/Raspberry_Pi">Raspberry Pi's</A>
520
+ − 395
are small Linux computers the size of a credit-card and only cost £26, the
+ − 396
simplest version even costs only £5 (see pictures on the left below). They were introduced
+ − 397
in 2012 and people went crazy...well some of them. There is a
559
+ − 398
<A HREF="https://plus.google.com/communities/113390432655174294208?hl=en">Google+</A>
520
+ − 399
community about Raspberry Pi's that has more
559
+ − 400
than 300k of followers. A similar number follow the corresponding <A HREF="https://www.facebook.com/raspberrypi/">group</A>
543
+ − 401
on Facebook. It is hard to keep up with what people do with these small computers. The possibilities
559
+ − 402
seem to be limitless. The main resource for Raspberry Pi's is <A HREF="http://www.raspberrypi.org">here</A>.
+ − 403
There are <A HREF="https://www.raspberrypi.org/magpi/">magazines</A> dedicated to them and tons of
+ − 404
<A HREF="http://www.raspberrypi.org/phpBB3/viewforum.php?f=39">books</A> (not to mention
+ − 405
floods of <A HREF="https://www.google.co.uk/search?q=raspberry+pi">online</A> material,
+ − 406
such as the <A HREF="https://www.raspberrypi.org/magpi-issues/Projects_Book_v1.pdf">RPi projects book</A>).
520
+ − 407
Google just released a
559
+ − 408
<A HREF="http://googlecreativelab.github.io/coder/">framework</A>
520
+ − 409
for web-programming on Raspberry Pi's turning them into webservers.
+ − 410
In my home one Raspberry Pi has the very important task of automatically filtering out
+ − 411
nearly all advertisments using the
559
+ − 412
<A HREF="https://github.com/pi-hole/pi-hole">Pi-Hole</A> software
544
+ − 413
(you cannot imagine what difference this does to your web experience).
559
+ − 414
</p>
520
+ − 415
559
+ − 416
<p>
+ − 417
<A HREF="http://en.wikipedia.org/wiki/Arduino">Arduinos</A> are slightly older (from 2005) but still very cool (see picture on the right below). They
520
+ − 418
are small single-board micro-controllers that can talk to various external gadgets (sensors, motors, etc). Since Arduinos
+ − 419
are open-software and open-hardware there are many clones and add-on boards. Like for the Raspberry Pi, there
559
+ − 420
is a lot of material <A HREF="https://www.google.co.uk/search?q=arduino">available</A> about Arduinos.
+ − 421
The main reference is <A HREF="http://www.arduino.cc">here</A>. Like the Raspberry Pi's, the good thing about
520
+ − 422
Arduinos is that they can be powered with simple AA-batteries.
559
+ − 423
</p>
520
+ − 424
+ − 425
<p>
559
+ − 426
I have several Raspberry Pi's including wifi-connectors and two <A HREF="http://www.raspberrypi.org/camera">cameras</A>.
+ − 427
I also have two <A HREF="http://www.freaklabs.org/index.php/Blog/Store/Introducing-the-Freakduino-Chibi-An-Arduino-based-Board-For-Wireless-Sensor-Networking.html">Freakduino Boards</A> that are Arduinos extended with wireless communication. I can lend them to responsible
520
+ − 428
students for one or two projects. However, the aim is to first come up with an idea for a project. Popular projects are
559
+ − 429
automated temperature sensors, network servers, robots, web-cams (<A HREF="http://www.secretbatcave.co.uk/electronics/shard-rain-cam/">here</A>
+ − 430
is a <A HREF="http://www.raspberrypi.org/archives/3547">web-cam</A> directed at the Shard that can
+ − 431
<A HREF="http://www.secretbatcave.co.uk/software/shard-rain-cam-quantifying-cloudy/">tell</A>
520
+ − 432
you whether it is raining or cloudy). There are plenty more ideas listed
559
+ − 433
<A HREF="http://www.raspberrypi.org/phpBB3/viewforum.php?f=15">here</A> for Raspberry Pi's and
+ − 434
<A HREF="http://playground.arduino.cc/projects/ideas">here</A> for Arduinos.
+ − 435
</p>
520
+ − 436
+ − 437
<p>
+ − 438
There are essentially two kinds of projects: One is purely software-based. Software projects for Raspberry Pi's are often
559
+ − 439
written in <A HREF="http://www.python.org">Python</A>, but since these are Linux-capable computers any other
520
+ − 440
language would do as well. You can also write your own operating system as done
559
+ − 441
<A HREF="http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/">here</A>. For example the students
+ − 442
<A HREF="http://www.recantha.co.uk/blog/?p=4918">here</A> developed their own bare-metal OS and then implemented
520
+ − 443
a chess-program on top of it (have a look at their very impressive
559
+ − 444
<A HREF="http://www.youtube.com/watch?v=-03bouPsfEQ&feature=player_embedded">youtube</A> video).
520
+ − 445
The other kind of project is a combination of hardware and software; usually attaching some sensors
+ − 446
or motors to the Raspberry Pi or Arduino. This might require some soldering or what is called
559
+ − 447
a <A HREF="http://en.wikipedia.org/wiki/Breadboard">bread-board</A>. But be careful before choosing a project
520
+ − 448
involving new hardware: these devices
+ − 449
can be destroyed (if “Vin connected to GND” or “drawing more than 30mA from a GPIO”
+ − 450
does not make sense to you, you should probably stay away from such a project).
559
+ − 451
</p>
520
+ − 452
559
+ − 453
<center>
520
+ − 454
<img style="-webkit-user-select: none; cursor: -webkit-zoom-in;"
+ − 455
src="http://upload.wikimedia.org/wikipedia/commons/3/3d/RaspberryPi.jpg"
+ − 456
alt="Raspberry Pi"
+ − 457
width="313" height="209">
+ − 458
559
+ − 459
<img style="-webkit-user-select: none; cursor: -webkit-zoom-in;"
520
+ − 460
src="https://upload.wikimedia.org/wikipedia/commons/7/7e/Raspberry-Pi-Zero-FL.jpg"
+ − 461
alt="Raspberry Pi Zero"
+ − 462
width="313" height="209">
+ − 463
559
+ − 464
<img style="-webkit-user-select: none; cursor: -webkit-zoom-in;"
520
+ − 465
src="http://upload.wikimedia.org/wikipedia/commons/3/38/Arduino_Uno_-_R3.jpg"
+ − 466
alt="Arduino"
+ − 467
width="240" height="209">
559
+ − 468
</center>
520
+ − 469
+ − 470
+ − 471
<p>
559
+ − 472
<B>Skills:</B>
520
+ − 473
Well, you must be a hacker; happy to make things. Your desk might look like the photo below on the left.
+ − 474
The photo below on the middle shows an earlier student project which connects wirelessly a wearable Arduino (packaged
+ − 475
in a "self-3d-printed" watch) to a Raspberry Pi seen in the background. The Arduino in the foreground takes
+ − 476
measurements of
+ − 477
heart rate and body temperature; the Raspberry Pi collects this data and makes it accessible via a simple
+ − 478
web-service. The picture on the right is another project that implements an airmouse using an Arduino.
+ − 479
559
+ − 480
<center>
+ − 481
<img style="-webkit-user-select: none; cursor: -webkit-zoom-in;"
522
+ − 482
src="https://nms.kcl.ac.uk/christian.urban/rpi-photo.jpg"
520
+ − 483
alt="Raspberry Pi"
+ − 484
width="209" height="313">
+ − 485
559
+ − 486
<img style="-webkit-user-select: none; cursor: -webkit-zoom-in;"
522
+ − 487
src="https://nms.kcl.ac.uk/christian.urban/rpi-watch.jpg"
520
+ − 488
alt="Raspberry Pi"
+ − 489
width="450" height="254">
+ − 490
559
+ − 491
<img style="-webkit-user-select: none; cursor: -webkit-zoom-in;"
522
+ − 492
src="https://nms.kcl.ac.uk/christian.urban/rpi-airmouse.jpg"
520
+ − 493
alt="Raspberry Pi"
+ − 494
width="250" height="254">
559
+ − 495
</center><p>
537
+ − 496
+ − 497
+ − 498
A really cool project using a toy helicopter and two Raspberry Pi's was done by Nikolaos Kyknas. He transformed
+ − 499
an off-the-shelf toy helicopter into an autonomous flying machine. He attached a Raspberry Pi Zero and an ultrasound
+ − 500
sensor to the helicopter for measuring the distance from ground. Another Raspberry Pi is attached to the “ground control
+ − 501
unit” in order to give instructions to the throttle of the helicopter. Both Raspberry Pi's communicate over WiFi for calculating
538
+ − 502
the next flight instruction. The goal is to find and maintain a steady altitude. Sounds simple? Well, not so fast!
+ − 503
First you need to get the balance of the helicopter plus Raspberry Pi plus its power source just right,
537
+ − 504
otherwise the helicopter will simply take off in random directions. Also the flight instructions need to be just right,
538
+ − 505
otherwise the helicopter would at best “oscillate” around the set altitude, but never be steady. To solve this problem,
537
+ − 506
Nikolaos used exactly the same algorithm that keeps cars at a steady pace when in cruise control.
+ − 507
559
+ − 508
<center>
+ − 509
<video width="320" height="576" controls>
+ − 510
<source src="https://nms.kcl.ac.uk/christian.urban/h1.mp4" type="video/mp4">
538
+ − 511
Your browser does not support the video tag.
559
+ − 512
</video>
+ − 513
<video width="320" height="576" controls>
+ − 514
<source src="https://nms.kcl.ac.uk/christian.urban/h3.mp4">
538
+ − 515
Your browser does not support the video tag.
559
+ − 516
</video>
+ − 517
</center>
520
+ − 518
559
+ − 519
<li> <H4>[CU7] An Infrastructure for Displaying and Animating Code in a Web-Browser</H4>
520
+ − 520
559
+ − 521
<p>
+ − 522
<B>Description:</B>
520
+ − 523
The project aim is to implement an infrastructure for displaying and
+ − 524
animating code in a web-browser. The infrastructure should be agnostic
+ − 525
with respect to the programming language, but should be configurable.
+ − 526
I envisage something smaller than the projects
559
+ − 527
<A HREF="http://www.pythontutor.com">here</A> (for Python),
+ − 528
<A HREF="http://ideone.com">here</A> (for Java),
+ − 529
<A HREF="http://codepad.org">here</A> (for multiple languages),
+ − 530
<A HREF="http://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro">here</A> (for HTML)
+ − 531
<A HREF="http://repl.it/languages/JavaScript">here</A> (for JavaScript),
+ − 532
and <A HREF="http://www.scala-tour.com/#/welcome">here</A> (for Scala).
+ − 533
</p>
520
+ − 534
+ − 535
<p>
+ − 536
The tasks in this project are being able (1) to lex and parse languages and (2) to write an interpreter.
+ − 537
The goal is to implement this as much as possible in a language-agnostic fashion.
559
+ − 538
</p>
520
+ − 539
+ − 540
<p>
559
+ − 541
<B>Skills:</B>
520
+ − 542
Good skills in lexing and language parsing, as well as being fluent with web programming (for
+ − 543
example JavaScript).
559
+ − 544
</p>
520
+ − 545
+ − 546
559
+ − 547
<li> <H4>[CU8] Proving the Correctness of Programs</H4>
520
+ − 548
559
+ − 549
<p>
520
+ − 550
I am one of the main developers of the interactive theorem prover
559
+ − 551
<A HREF="http://isabelle.in.tum.de">Isabelle</A>. This theorem prover
520
+ − 552
has been used to establish the correctness of some quite large
559
+ − 553
programs (for example an <A HREF="http://ertos.nicta.com.au/research/l4.verified/">operating system</A>).
520
+ − 554
Together with colleagues from Nanjing, I used this theorem prover to establish the correctness of a
+ − 555
scheduling algorithm, called
559
+ − 556
<A HREF="http://en.wikipedia.org/wiki/Priority_inheritance">Priority Inheritance</A>,
520
+ − 557
for real-time operating systems. This scheduling algorithm is part of the operating
+ − 558
system that drives, for example, the
559
+ − 559
<A HREF="http://en.wikipedia.org/wiki/Mars_Exploration_Rover">Mars rovers</A>.
520
+ − 560
Actually, the very first Mars rover mission in 1997 did not have this
+ − 561
algorithm switched on and it almost caused a catastrophic mission failure (see
559
+ − 562
this youtube video <A HREF="http://www.youtube.com/watch?v=lyx7kARrGeM">here</A>
520
+ − 563
for an explanation what happened).
+ − 564
We were able to prove the correctness of this algorithm, but were also able to
+ − 565
establish the correctness of some optimisations in this
559
+ − 566
<A HREF="https://nms.kcl.ac.uk/christian.urban/Publications/pip.pdf">paper</A>.
+ − 567
</p>
520
+ − 568
559
+ − 569
<p>On a much smaller scale, there are a few small programs and underlying algorithms where it
520
+ − 570
is not really understood whether they always compute a correct result (for example the
+ − 571
regular expression matcher by Sulzmann and Lu in project [CU1]). The aim of this
+ − 572
project is to completely specify an algorithm in Isabelle and then prove it correct (that is,
+ − 573
it always computes the correct result).
559
+ − 574
</p>
520
+ − 575
559
+ − 576
<p>
+ − 577
<B>Skills:</B>
520
+ − 578
This project is for a very good student with a knack for theoretical things and formal reasoning.
559
+ − 579
</p>
520
+ − 580
559
+ − 581
<li> <H4>[CU9] Anything Security Related that is Interesting</H4>
520
+ − 582
559
+ − 583
<p>
520
+ − 584
If you have your own project that is related to security (must be
+ − 585
something interesting), please propose it. We can then have a look
+ − 586
whether it would be suitable for a project.
559
+ − 587
</p>
520
+ − 588
559
+ − 589
<li> <H4>[CU10] Anything Interesting in the Areas</H4>
520
+ − 590
559
+ − 591
<ul>
+ − 592
<li><A HREF="http://elm-lang.org">Elm</A> (a reactive functional language for animating webpages; have a look at the cool examples, or <A HREF="http://pragmaticstudio.com/blog/2014/12/19/getting-started-with-elm">here</A> for an introduction)
+ − 593
<li><A HREF="http://www.smlserver.org/smltojs/">SMLtoJS</A> (a ML compiler to JavaScript; or anything else related to
520
+ − 594
sane languages that compile to JavaScript)
559
+ − 595
<li>Any statistical data related to Bitcoins (in the spirit of this
+ − 596
<A HREF="http://people.csail.mit.edu/spillai/data/papers/bitcoin-transaction-graph-analysis.pdf">paper</A> or
+ − 597
this <A HREF="https://eprint.iacr.org/2012/584.pdf">one</A>; this will probably require some extensive C knowledge or any
520
+ − 598
other heavy-duty programming language)
559
+ − 599
<li>Anything related to programming languages and formal methods (like
+ − 600
<A HREF="http://matt.might.net/articles/intro-static-analysis/">static program analysis</A>)
520
+ − 601
<li>Anything related to low-cost, hands-on hardware like Raspberry Pi, Arduino,
559
+ − 602
<A HREF="http://en.wikipedia.org/wiki/Cubieboard">Cubieboard</A>
+ − 603
<li>Anything related to unikernel operating systems, like
+ − 604
<A HREF="http://www.xenproject.org">Xen</A> or
+ − 605
<A HREF="http://www.openmirage.org">Mirage OS</A>
+ − 606
<li>Any kind of applied hacking, for example the Arduino-based keylogger described
+ − 607
<A HREF="http://samy.pl/keysweeper/">here</A>
520
+ − 608
<li>Anything related to code books, like this
559
+ − 609
<A HREF="http://www.joelotter.com/kajero/">one</A>
+ − 610
</ul>
520
+ − 611
+ − 612
+ − 613
559
+ − 614
<li> <H4>Earlier Projects</H4>
520
+ − 615
+ − 616
I am also open to project suggestions from you. You might find some inspiration from my earlier projects:
559
+ − 617
<A HREF="https://nms.kcl.ac.uk/christian.urban/bsc-projects-12.html">BSc 2012/13</A>,
+ − 618
<A HREF="https://nms.kcl.ac.uk/christian.urban/msc-projects-12.html">MSc 2012/13</A>,
+ − 619
<A HREF="https://nms.kcl.ac.uk/christian.urban/bsc-projects-13.html">BSc 2013/14</A>,
+ − 620
<A HREF="https://nms.kcl.ac.uk/christian.urban/msc-projects-13.html">MSc 2013/14</A>,
+ − 621
<A HREF="https://nms.kcl.ac.uk/christian.urban/bsc-projects-14.html">BSc 2014/15</A>,
+ − 622
<A HREF="https://nms.kcl.ac.uk/christian.urban/msc-projects-14.html">MSc 2014/15</A>,
+ − 623
<A HREF="https://nms.kcl.ac.uk/christian.urban/bsc-projects-15.html">BSc 2015/16</A>,
522
+ − 624
<A HREF="https://nms.kcl.ac.uk/christian.urban/msc-projects-15.html">MSc 2015/16</A>,
559
+ − 625
<A HREF="https://nms.kcl.ac.uk/christian.urban/bsc-projects-16.html">BSc 2016/17</A>,
+ − 626
<A HREF="https://nms.kcl.ac.uk/christian.urban/msc-projects-16.html">MSc 2016/17</A>,
+ − 627
<A HREF="https://nms.kcl.ac.uk/christian.urban/bsc-projects-17.html">BSc 2017/18</A>,
+ − 628
<A HREF="https://nms.kcl.ac.uk/christian.urban/msc-projects-17.html">MSc 2017/18</A>
+ − 629
</ul>
+ − 630
</TD>
+ − 631
</TR>
+ − 632
</TABLE>
520
+ − 633
559
+ − 634
<P>
555
+ − 635
2018-09-24 12:12:35 by Christian Urban
559
+ − 636
<a href="https://validator.w3.org/check/referer">[Validate this page.]</a>
520
+ − 637
</P>
559
+ − 638
</BODY>
+ − 639
</HTML>
520
+ − 640
+ − 641
+ − 642