main_testing2/danube.scala
changeset 384 6e1237691307
parent 379 5616b45d656f
child 403 ffce7b61b446
--- a/main_testing2/danube.scala	Mon Dec 07 01:25:41 2020 +0000
+++ b/main_testing2/danube.scala	Fri Jan 15 02:40:57 2021 +0000
@@ -1,9 +1,8 @@
-// Core Part about Movie Recommendations 
+// Core Part about Movie Recommendations
 // at Danube.co.uk
-//========================================
+//===========================================
 
-
-object CW7b { // for purposes of generating a jar
+object CW7b {
 
 import io.Source
 import scala.util._
@@ -13,99 +12,182 @@
 //     as argument and requests the corresponding file. The two urls
 //     of interest are ratings_url and movies_url, which correspond 
 //     to CSV-files.
-//     The function should return the CSV file appropriately broken
+//
+//     The function should ReTurn the CSV-file appropriately broken
 //     up into lines, and the first line should be dropped (that is without
-//     the header of the CSV file). The result is a list of strings (lines
+//     the header of the CSV-file). The result is a list of strings (lines
 //     in the file).
 
 def get_csv_url(url: String) : List[String] = {
-  val csv = Source.fromURL(url)("ISO-8859-1")
-  csv.mkString.split("\n").toList.drop(1)
+  val site = Source.fromURL(url, "ISO-8859-1")
+  val site_string = site.mkString
+  val output = (site_string.split("\n")).toList
+  output.tail
 }
 
-val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
-val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
+  // get_csv_url("https://nms.kcl.ac.uk/christian.urban/ratings.csv")
+
+//val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
+//val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
 
-// test cases
-
-//val ratings = get_csv_url(ratings_url)
+// testcases
+//-----------
+//:
 //val movies = get_csv_url(movies_url)
+  // val ratings = get_csv_url(ratings_url)
 
 //ratings.length  // 87313
 //movies.length   // 9742
 
-// (2) Implement two functions that process the CSV files. The ratings
-//     function filters out all ratings below 4 and returns a list of 
-//     (userID, movieID) pairs. The movies function just returns a list 
-//     of (movieId, title) pairs.
+
+// (2) Implement two functions that process the CSV-files from (1). The ratings
+//     function filters out all ratings below 4 and ReTurns a list of 
+//     (userID, movieID) pairs. The movies function just ReTurns a list 
+//     of (movieID, title) pairs. Note the input to these functions, that is
+//     the argument lines, will be the output of the function get_csv_url.
 
 
-//def process_ratings(lines: List[String]) : List[(String, String)] = {
-//  for (cols <- lines.map(_.split(",").toList); 
-//       if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
-//}
-
 def process_ratings(lines: List[String]) : List[(String, String)] = {
-  for (cols <- lines.map(_.split(",").toList); 
-       if (cols(2).toInt >= 4)) yield (cols(0), cols(1))  
+  val filter = lines.filter(_.last.asDigit >=4)
+  val output = (for(i <- 0 until filter.length) yield ((filter(i).split(",").toList)(0), (filter(i).split(",").toList)(1))).toList
+  output
 }
 
 def process_movies(lines: List[String]) : List[(String, String)] = {
+  val output = (for(i <- 0 until lines.length) yield ((lines(i).split(",").toList)(0), (lines(i).split(",").toList)(1))).toList
+  output
+}
+
+
+
+def process_ratings2(lines: List[String]) : List[(String, String)] = {
+  for (cols <- lines.map(_.split(",").toList); 
+       if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
+}
+
+def process_movies2(lines: List[String]) : List[(String, String)] = {
   for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))  
 }
 
-// test cases
-
+// testcases
+//-----------
 //val good_ratings = process_ratings(ratings)
 //val movie_names = process_movies(movies)
 
 //good_ratings.length   //48580
 //movie_names.length    // 9742
 
-//==============================================
-// Do not change anything below, unless you want 
-// to submit the file for the advanced part 3!
-//==============================================
+
 
 
-// (3) Implement a grouping function that calulates a map
-//     containing the userIds and all the corresponding recommendations 
-//     (list of movieIds). This  should be implemented in a tail
-//     recursive fashion, using a map m as accumulator. This map
-//     is set to Map() at the beginning of the claculation.
+// (3) Implement a grouping function that calculates a Map
+//     containing the userIDs and all the corresponding recommendations 
+//     (list of movieIDs). This  should be implemented in a tail
+//     recursive fashion, using a Map m as accumulator. This Map m
+//     is set to Map() at the beginning of the calculation.
+
+val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
+val ratings = get_csv_url(ratings_url)
+val good_ratings = process_ratings(ratings)
+val v515 = good_ratings.filter(_._1 == "515")
+val v515_2 = v515.map(_._2)
 
 def groupById(ratings: List[(String, String)], 
+              m: Map[String, List[String]]) : Map[String, List[String]] = {
+val users = (for((k,v) <- ratings) yield k).distinct
+val movie_ids = (for(i <- 1 to users.length) yield
+  (for ((k,v) <- ratings if(i.toString == k)) yield v).toList).toList
+  val out_map = (users zip movie_ids).toMap
+out_map
+}
+
+def groupById2(ratings: List[(String, String)], 
               m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
   case Nil => m
   case (id, mov) :: rest => {
     val old_ratings = m.getOrElse (id, Nil)
     val new_ratings = m + (id -> (mov :: old_ratings))
-    groupById(rest, new_ratings)
+    groupById2(rest, new_ratings)
   }
 }
 
-// test cases
+val ls0_urban = 
+  List(("1", "a"), ("1", "c"), ("1", "c"))
+
+groupById(ls0_urban, Map())
+groupById2(ls0_urban, Map())
+
+val ls00_urban = 
+  List(("3", "a"), ("3", "c"), ("3", "c"))
+
+groupById(ls00_urban, Map())
+groupById2(ls00_urban, Map())
+
+groupById(good_ratings, Map()).getOrElse("515", Nil)
+groupById2(good_ratings, Map()).getOrElse("515", Nil)
+
+val ls1_urban = 
+  List(("1", "a"), ("2", "a"), 
+       ("1", "c"), ("2", "a"), ("1", "c"))
+
+groupById(ls1_urban, Map())
+groupById2(ls1_urban, Map())
+
+val ls2_urban = 
+  List(("1", "a"), ("1", "b"), ("2", "x"), 
+       ("3", "a"), ("2", "y"), ("3", "c"))
+
+groupById(ls2_urban, Map())
+groupById2(ls2_urban, Map())
+
+val ls3_urban = (1 to 1000 by 10).map(_.toString).toList
+val ls4_urban = ls3_urban zip ls3_urban.tail
+val ls5_urban = ls4_urban ::: ls4_urban.reverse
+
+groupById(ls5_urban, Map()) == groupById2(ls5_urban, Map())
+
+groupById(ls5_urban, Map())
+groupById2(ls5_urban, Map())
+
+groupById(v515, Map())
+groupById2(v515, Map())
+
+groupById(v515.take(1), Map())
+groupById2(v515.take(2), Map())
+
+// testcases
+//-----------
 //val ratings_map = groupById(good_ratings, Map())
 //val movies_map = movie_names.toMap
 
-//ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings
-//ratings_map.get("474").get.map(movies_map.get(_)) // second-most prolific recommender with 787 positive ratings
-//ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating
+//ratings_map.get("414").get.map(movies_map.get(_)).length
+//    => most prolific recommender with 1227 positive ratings
+
+//ratings_map.get("475").get.map(movies_map.get(_)).length
+//    => second-most prolific recommender with 787 positive ratings
+
+//ratings_map.get("214").get.map(movies_map.get(_)).length 
+//    => least prolific recommender with only 1 positive rating
 
 
-//(4) Implement a function that takes a ratings map and a movie_name as argument.
-// The function calculates all suggestions containing
-// the movie mov in its recommendations. It returns a list of all these
-// recommendations (each of them is a list and needs to have mov deleted, 
-// otherwise it might happen we recommend the same movie).
+// (4) Implement a function that takes a ratings map and a movie_name as argument.
+//     The function calculates all suggestions containing
+//     the movie in its recommendations. It ReTurns a list of all these
+//     recommendations (each of them is a list and needs to have the movie deleted, 
+//     otherwise it might happen we recommend the same movie).
 
-def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = 
+
+def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = {
+ (for((k,v) <- m if (v.contains(mov))) yield v.filter(_!=mov).toList).toList
+}
+
+def favourites2(m: Map[String, List[String]], mov: String) : List[List[String]] = 
   (for (id <- m.keys.toList;
         if m(id).contains(mov)) yield m(id).filter(_ != mov))
 
 
-
-// test cases
+// testcases
+//-----------
 // movie ID "912" -> Casablanca (1942)
 //          "858" -> Godfather
 //          "260" -> Star Wars: Episode IV - A New Hope (1977)
@@ -117,40 +199,61 @@
 // 52 a good rating to movies 260, 318, 593.
 
 
+
 // (5) Implement a suggestions function which takes a rating
-// map and a movie_name as arguments. It calculates all the recommended
-// movies sorted according to the most frequently suggested movie(s) first.
+//     map and a movie_name as arguments. It calculates all the recommended
+//     movies sorted according to the most frequently suggested movie(s) first.
+
 def suggestions(recs: Map[String, List[String]], 
+                mov_name: String) : List[String] = {
+  val flat = favourites(recs, mov_name).flatten.groupMapReduce(identity)(_ => 1)(_ + _)
+  val sorted = flat.toList.sortWith(_._2 > _._2).map(_._1)
+  sorted
+}
+
+
+def mapValues[S, T, R](m: Map[S, T], f: T => R) =
+  m.map { case (x, y) => (x, f(y)) }
+
+def suggestions2(recs: Map[String, List[String]], 
                     mov_name: String) : List[String] = {
   val favs = favourites(recs, mov_name).flatten
-  val favs_counted = favs.groupBy(identity).view.mapValues(_.size).toList
+  val favs_counted = mapValues(favs.groupBy(identity), (v:List[String]) => v.size).toList
   val favs_sorted = favs_counted.sortBy(_._2).reverse
   favs_sorted.map(_._1)
 }
 
-// test cases
+// testcases
+//-----------
 
 //suggestions(ratings_map, "912")
 //suggestions(ratings_map, "912").length  
 // => 4110 suggestions with List(858, 260, 318, 593, ...)
 //    being the most frequently suggested movies
 
-// (6) Implement recommendations functions which generates at most
-// *two* of the most frequently suggested movies. It Returns the 
-// actual movie names, not the movieIDs.
+
+
+// (6) Implement a recommendations function which generates at most
+//     *two* of the most frequently suggested movies. It ReTurns the 
+//     actual movie names, not the movieIDs.
+
 
 def recommendations(recs: Map[String, List[String]],
-                   movs: Map[String, String],
-                   mov_name: String) : List[String] =
-  suggestions(recs, mov_name).take(2).map(movs.get(_).get)                 
+                    movs: Map[String, String],
+                    mov_name: String) : List[String] = {
+  val sugg = suggestions(recs, mov_name)
+  val movies = (for (i <- 0 until 2 if (i < sugg.length)) yield movs(sugg(i))).toList
+  movies
+}
+
 
 
 // testcases
-
+//-----------
 // recommendations(ratings_map, movies_map, "912")
 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
 
-// recommendations(ratings_map, movies_map, "260")
+//recommendations(ratings_map, movies_map, "260")
 //   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
 //           Star Wars: Episode VI - Return of the Jedi (1983))
 
@@ -166,51 +269,34 @@
 // recommendations(ratings_map, movies_map, "4")
 //   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
 
+
+
 // (7) Calculate the recommendations for all movies according to
 // what the recommendations function in (6) produces (this
 // can take a few seconds). Put all recommendations into a list 
 // (of strings) and count how often the strings occur in
 // this list. This produces a list of string-int pairs,
 // where the first component is the movie name and the second
-// is the number of how many times they were recommended. 
+// is the number of how many times the movie was recommended. 
 // Sort all the pairs according to the number
 // of times they were recommended (most recommended movie name 
 // first).
 
-def occurrences(xs: List[String]): List[(String, Int)] =
-  for (x <- xs.distinct) yield (x, xs.count(_ == x))
-
 def most_recommended(recs: Map[String, List[String]],
                      movs: Map[String, String]) : List[(String, Int)] = {
-   val all =  (for (name <- movs.toList.map(_._1)) yield {
-     recommendations(recs, movs, name)                     
-   }).flatten
-   val occs = occurrences(all)
-   occs.sortBy(_._2).reverse
+  val movies = (((for((k,v) <- movs) yield recommendations(recs, movs, k)).toList).flatten).groupMapReduce(identity)(_ => 1)(_ + _)
+  val sorted = movies.toList.sortWith(_._2 > _._2)
+  sorted
 }
 
-
+// testcase
+//
 //most_recommended(ratings_map, movies_map).take(3)
 // =>
 // List((Matrix,698), 
 //      (Star Wars: Episode IV - A New Hope (1977),402), 
 //      (Jerry Maguire (1996),382))
 
-}
-
-//val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
-//val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
-
-/*
-val ratings = get_csv_url(ratings_url)
-val movies = get_csv_url(movies_url)
-
-val good_ratings = process_ratings(ratings)
-val movie_names = process_movies(movies)
-
-val ratings_map = groupById(good_ratings, Map())
-val movies_map = movie_names.toMap
 
 
-println(most_recommended(ratings_map, movies_map).take(3))
-*/
+}