384
|
1 |
// Core Part about Movie Recommendations
|
211
|
2 |
// at Danube.co.uk
|
384
|
3 |
//===========================================
|
379
|
4 |
|
384
|
5 |
object CW7b {
|
211
|
6 |
|
|
7 |
import io.Source
|
|
8 |
import scala.util._
|
|
9 |
|
329
|
10 |
|
211
|
11 |
// (1) Implement the function get_csv_url which takes an url-string
|
|
12 |
// as argument and requests the corresponding file. The two urls
|
|
13 |
// of interest are ratings_url and movies_url, which correspond
|
|
14 |
// to CSV-files.
|
384
|
15 |
//
|
|
16 |
// The function should ReTurn the CSV-file appropriately broken
|
211
|
17 |
// up into lines, and the first line should be dropped (that is without
|
384
|
18 |
// the header of the CSV-file). The result is a list of strings (lines
|
211
|
19 |
// in the file).
|
|
20 |
|
|
21 |
def get_csv_url(url: String) : List[String] = {
|
384
|
22 |
val site = Source.fromURL(url, "ISO-8859-1")
|
|
23 |
val site_string = site.mkString
|
|
24 |
val output = (site_string.split("\n")).toList
|
|
25 |
output.tail
|
211
|
26 |
}
|
|
27 |
|
384
|
28 |
// get_csv_url("https://nms.kcl.ac.uk/christian.urban/ratings.csv")
|
|
29 |
|
|
30 |
//val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
|
|
31 |
//val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
|
211
|
32 |
|
384
|
33 |
// testcases
|
|
34 |
//-----------
|
|
35 |
//:
|
329
|
36 |
//val movies = get_csv_url(movies_url)
|
384
|
37 |
// val ratings = get_csv_url(ratings_url)
|
211
|
38 |
|
|
39 |
//ratings.length // 87313
|
|
40 |
//movies.length // 9742
|
|
41 |
|
384
|
42 |
|
|
43 |
// (2) Implement two functions that process the CSV-files from (1). The ratings
|
|
44 |
// function filters out all ratings below 4 and ReTurns a list of
|
|
45 |
// (userID, movieID) pairs. The movies function just ReTurns a list
|
|
46 |
// of (movieID, title) pairs. Note the input to these functions, that is
|
|
47 |
// the argument lines, will be the output of the function get_csv_url.
|
211
|
48 |
|
|
49 |
|
|
50 |
def process_ratings(lines: List[String]) : List[(String, String)] = {
|
384
|
51 |
val filter = lines.filter(_.last.asDigit >=4)
|
|
52 |
val output = (for(i <- 0 until filter.length) yield ((filter(i).split(",").toList)(0), (filter(i).split(",").toList)(1))).toList
|
|
53 |
output
|
211
|
54 |
}
|
|
55 |
|
|
56 |
def process_movies(lines: List[String]) : List[(String, String)] = {
|
384
|
57 |
val output = (for(i <- 0 until lines.length) yield ((lines(i).split(",").toList)(0), (lines(i).split(",").toList)(1))).toList
|
|
58 |
output
|
|
59 |
}
|
|
60 |
|
|
61 |
|
|
62 |
|
|
63 |
def process_ratings2(lines: List[String]) : List[(String, String)] = {
|
|
64 |
for (cols <- lines.map(_.split(",").toList);
|
|
65 |
if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))
|
|
66 |
}
|
|
67 |
|
|
68 |
def process_movies2(lines: List[String]) : List[(String, String)] = {
|
329
|
69 |
for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))
|
211
|
70 |
}
|
|
71 |
|
384
|
72 |
// testcases
|
|
73 |
//-----------
|
329
|
74 |
//val good_ratings = process_ratings(ratings)
|
|
75 |
//val movie_names = process_movies(movies)
|
211
|
76 |
|
|
77 |
//good_ratings.length //48580
|
|
78 |
//movie_names.length // 9742
|
|
79 |
|
384
|
80 |
|
329
|
81 |
|
|
82 |
|
384
|
83 |
// (3) Implement a grouping function that calculates a Map
|
|
84 |
// containing the userIDs and all the corresponding recommendations
|
|
85 |
// (list of movieIDs). This should be implemented in a tail
|
|
86 |
// recursive fashion, using a Map m as accumulator. This Map m
|
|
87 |
// is set to Map() at the beginning of the calculation.
|
|
88 |
|
|
89 |
val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
|
|
90 |
val ratings = get_csv_url(ratings_url)
|
|
91 |
val good_ratings = process_ratings(ratings)
|
|
92 |
val v515 = good_ratings.filter(_._1 == "515")
|
|
93 |
val v515_2 = v515.map(_._2)
|
329
|
94 |
|
|
95 |
def groupById(ratings: List[(String, String)],
|
384
|
96 |
m: Map[String, List[String]]) : Map[String, List[String]] = {
|
|
97 |
val users = (for((k,v) <- ratings) yield k).distinct
|
|
98 |
val movie_ids = (for(i <- 1 to users.length) yield
|
|
99 |
(for ((k,v) <- ratings if(i.toString == k)) yield v).toList).toList
|
|
100 |
val out_map = (users zip movie_ids).toMap
|
|
101 |
out_map
|
|
102 |
}
|
|
103 |
|
|
104 |
def groupById2(ratings: List[(String, String)],
|
329
|
105 |
m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
|
|
106 |
case Nil => m
|
|
107 |
case (id, mov) :: rest => {
|
|
108 |
val old_ratings = m.getOrElse (id, Nil)
|
|
109 |
val new_ratings = m + (id -> (mov :: old_ratings))
|
384
|
110 |
groupById2(rest, new_ratings)
|
329
|
111 |
}
|
|
112 |
}
|
|
113 |
|
384
|
114 |
val ls0_urban =
|
|
115 |
List(("1", "a"), ("1", "c"), ("1", "c"))
|
|
116 |
|
|
117 |
groupById(ls0_urban, Map())
|
|
118 |
groupById2(ls0_urban, Map())
|
|
119 |
|
|
120 |
val ls00_urban =
|
|
121 |
List(("3", "a"), ("3", "c"), ("3", "c"))
|
|
122 |
|
|
123 |
groupById(ls00_urban, Map())
|
|
124 |
groupById2(ls00_urban, Map())
|
|
125 |
|
|
126 |
groupById(good_ratings, Map()).getOrElse("515", Nil)
|
|
127 |
groupById2(good_ratings, Map()).getOrElse("515", Nil)
|
|
128 |
|
|
129 |
val ls1_urban =
|
|
130 |
List(("1", "a"), ("2", "a"),
|
|
131 |
("1", "c"), ("2", "a"), ("1", "c"))
|
|
132 |
|
|
133 |
groupById(ls1_urban, Map())
|
|
134 |
groupById2(ls1_urban, Map())
|
|
135 |
|
|
136 |
val ls2_urban =
|
|
137 |
List(("1", "a"), ("1", "b"), ("2", "x"),
|
|
138 |
("3", "a"), ("2", "y"), ("3", "c"))
|
|
139 |
|
|
140 |
groupById(ls2_urban, Map())
|
|
141 |
groupById2(ls2_urban, Map())
|
|
142 |
|
|
143 |
val ls3_urban = (1 to 1000 by 10).map(_.toString).toList
|
|
144 |
val ls4_urban = ls3_urban zip ls3_urban.tail
|
|
145 |
val ls5_urban = ls4_urban ::: ls4_urban.reverse
|
|
146 |
|
|
147 |
groupById(ls5_urban, Map()) == groupById2(ls5_urban, Map())
|
|
148 |
|
|
149 |
groupById(ls5_urban, Map())
|
|
150 |
groupById2(ls5_urban, Map())
|
|
151 |
|
|
152 |
groupById(v515, Map())
|
|
153 |
groupById2(v515, Map())
|
|
154 |
|
|
155 |
groupById(v515.take(1), Map())
|
|
156 |
groupById2(v515.take(2), Map())
|
|
157 |
|
|
158 |
// testcases
|
|
159 |
//-----------
|
329
|
160 |
//val ratings_map = groupById(good_ratings, Map())
|
|
161 |
//val movies_map = movie_names.toMap
|
|
162 |
|
384
|
163 |
//ratings_map.get("414").get.map(movies_map.get(_)).length
|
|
164 |
// => most prolific recommender with 1227 positive ratings
|
|
165 |
|
|
166 |
//ratings_map.get("475").get.map(movies_map.get(_)).length
|
|
167 |
// => second-most prolific recommender with 787 positive ratings
|
|
168 |
|
|
169 |
//ratings_map.get("214").get.map(movies_map.get(_)).length
|
|
170 |
// => least prolific recommender with only 1 positive rating
|
211
|
171 |
|
|
172 |
|
384
|
173 |
// (4) Implement a function that takes a ratings map and a movie_name as argument.
|
|
174 |
// The function calculates all suggestions containing
|
|
175 |
// the movie in its recommendations. It ReTurns a list of all these
|
|
176 |
// recommendations (each of them is a list and needs to have the movie deleted,
|
|
177 |
// otherwise it might happen we recommend the same movie).
|
211
|
178 |
|
384
|
179 |
|
|
180 |
def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = {
|
|
181 |
(for((k,v) <- m if (v.contains(mov))) yield v.filter(_!=mov).toList).toList
|
|
182 |
}
|
|
183 |
|
|
184 |
def favourites2(m: Map[String, List[String]], mov: String) : List[List[String]] =
|
329
|
185 |
(for (id <- m.keys.toList;
|
|
186 |
if m(id).contains(mov)) yield m(id).filter(_ != mov))
|
211
|
187 |
|
|
188 |
|
384
|
189 |
// testcases
|
|
190 |
//-----------
|
211
|
191 |
// movie ID "912" -> Casablanca (1942)
|
|
192 |
// "858" -> Godfather
|
|
193 |
// "260" -> Star Wars: Episode IV - A New Hope (1977)
|
|
194 |
|
|
195 |
//favourites(ratings_map, "912").length // => 80
|
|
196 |
|
|
197 |
// That means there are 80 users that recommend the movie with ID 912.
|
|
198 |
// Of these 80 users, 55 gave a good rating to movie 858 and
|
|
199 |
// 52 a good rating to movies 260, 318, 593.
|
|
200 |
|
|
201 |
|
384
|
202 |
|
329
|
203 |
// (5) Implement a suggestions function which takes a rating
|
384
|
204 |
// map and a movie_name as arguments. It calculates all the recommended
|
|
205 |
// movies sorted according to the most frequently suggested movie(s) first.
|
|
206 |
|
211
|
207 |
def suggestions(recs: Map[String, List[String]],
|
384
|
208 |
mov_name: String) : List[String] = {
|
|
209 |
val flat = favourites(recs, mov_name).flatten.groupMapReduce(identity)(_ => 1)(_ + _)
|
|
210 |
val sorted = flat.toList.sortWith(_._2 > _._2).map(_._1)
|
|
211 |
sorted
|
|
212 |
}
|
|
213 |
|
|
214 |
|
|
215 |
def mapValues[S, T, R](m: Map[S, T], f: T => R) =
|
|
216 |
m.map { case (x, y) => (x, f(y)) }
|
|
217 |
|
|
218 |
def suggestions2(recs: Map[String, List[String]],
|
329
|
219 |
mov_name: String) : List[String] = {
|
|
220 |
val favs = favourites(recs, mov_name).flatten
|
384
|
221 |
val favs_counted = mapValues(favs.groupBy(identity), (v:List[String]) => v.size).toList
|
329
|
222 |
val favs_sorted = favs_counted.sortBy(_._2).reverse
|
|
223 |
favs_sorted.map(_._1)
|
211
|
224 |
}
|
|
225 |
|
384
|
226 |
// testcases
|
|
227 |
//-----------
|
211
|
228 |
|
|
229 |
//suggestions(ratings_map, "912")
|
|
230 |
//suggestions(ratings_map, "912").length
|
|
231 |
// => 4110 suggestions with List(858, 260, 318, 593, ...)
|
|
232 |
// being the most frequently suggested movies
|
|
233 |
|
384
|
234 |
|
|
235 |
|
|
236 |
// (6) Implement a recommendations function which generates at most
|
|
237 |
// *two* of the most frequently suggested movies. It ReTurns the
|
|
238 |
// actual movie names, not the movieIDs.
|
|
239 |
|
211
|
240 |
|
|
241 |
def recommendations(recs: Map[String, List[String]],
|
384
|
242 |
movs: Map[String, String],
|
|
243 |
mov_name: String) : List[String] = {
|
|
244 |
val sugg = suggestions(recs, mov_name)
|
|
245 |
val movies = (for (i <- 0 until 2 if (i < sugg.length)) yield movs(sugg(i))).toList
|
|
246 |
movies
|
|
247 |
}
|
|
248 |
|
211
|
249 |
|
|
250 |
|
|
251 |
// testcases
|
384
|
252 |
//-----------
|
211
|
253 |
// recommendations(ratings_map, movies_map, "912")
|
|
254 |
// => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
|
|
255 |
|
384
|
256 |
//recommendations(ratings_map, movies_map, "260")
|
211
|
257 |
// => List(Star Wars: Episode V - The Empire Strikes Back (1980),
|
|
258 |
// Star Wars: Episode VI - Return of the Jedi (1983))
|
|
259 |
|
|
260 |
// recommendations(ratings_map, movies_map, "2")
|
|
261 |
// => List(Lion King, Jurassic Park (1993))
|
|
262 |
|
|
263 |
// recommendations(ratings_map, movies_map, "0")
|
|
264 |
// => Nil
|
|
265 |
|
|
266 |
// recommendations(ratings_map, movies_map, "1")
|
|
267 |
// => List(Shawshank Redemption, Forrest Gump (1994))
|
|
268 |
|
|
269 |
// recommendations(ratings_map, movies_map, "4")
|
379
|
270 |
// => Nil (there are three ratings for this movie in ratings.csv but they are not positive)
|
|
271 |
|
384
|
272 |
|
|
273 |
|
379
|
274 |
// (7) Calculate the recommendations for all movies according to
|
|
275 |
// what the recommendations function in (6) produces (this
|
|
276 |
// can take a few seconds). Put all recommendations into a list
|
|
277 |
// (of strings) and count how often the strings occur in
|
|
278 |
// this list. This produces a list of string-int pairs,
|
|
279 |
// where the first component is the movie name and the second
|
384
|
280 |
// is the number of how many times the movie was recommended.
|
379
|
281 |
// Sort all the pairs according to the number
|
|
282 |
// of times they were recommended (most recommended movie name
|
|
283 |
// first).
|
|
284 |
|
|
285 |
def most_recommended(recs: Map[String, List[String]],
|
|
286 |
movs: Map[String, String]) : List[(String, Int)] = {
|
384
|
287 |
val movies = (((for((k,v) <- movs) yield recommendations(recs, movs, k)).toList).flatten).groupMapReduce(identity)(_ => 1)(_ + _)
|
|
288 |
val sorted = movies.toList.sortWith(_._2 > _._2)
|
|
289 |
sorted
|
379
|
290 |
}
|
211
|
291 |
|
384
|
292 |
// testcase
|
|
293 |
//
|
379
|
294 |
//most_recommended(ratings_map, movies_map).take(3)
|
|
295 |
// =>
|
|
296 |
// List((Matrix,698),
|
|
297 |
// (Star Wars: Episode IV - A New Hope (1977),402),
|
|
298 |
// (Jerry Maguire (1996),382))
|
211
|
299 |
|
379
|
300 |
|
|
301 |
|
384
|
302 |
}
|