--- a/main_testing2/danube.scala Mon Nov 08 01:16:13 2021 +0000
+++ b/main_testing2/danube.scala Mon Nov 08 01:39:00 2021 +0000
@@ -1,8 +1,9 @@
-// Core Part about Movie Recommendations
+// Core Part about Movie Recommendations
// at Danube.co.uk
-//===========================================
+//========================================
-object CW7b {
+
+object M2 { // for purposes of generating a jar
import io.Source
import scala.util._
@@ -12,65 +13,44 @@
// as argument and requests the corresponding file. The two urls
// of interest are ratings_url and movies_url, which correspond
// to CSV-files.
-//
-// The function should ReTurn the CSV-file appropriately broken
+// The function should return the CSV file appropriately broken
// up into lines, and the first line should be dropped (that is without
-// the header of the CSV-file). The result is a list of strings (lines
+// the header of the CSV file). The result is a list of strings (lines
// in the file).
def get_csv_url(url: String) : List[String] = {
- val site = Source.fromURL(url, "ISO-8859-1")
- val site_string = site.mkString
- val output = (site_string.split("\n")).toList
- output.tail
+ val csv = Source.fromURL(url)("ISO-8859-1")
+ csv.mkString.split("\n").toList.drop(1)
}
- // get_csv_url("https://nms.kcl.ac.uk/christian.urban/ratings.csv")
-
-//val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
-//val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
+val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
+val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
-// testcases
-//-----------
-//:
+// test cases
+
+//val ratings = get_csv_url(ratings_url)
//val movies = get_csv_url(movies_url)
- // val ratings = get_csv_url(ratings_url)
//ratings.length // 87313
//movies.length // 9742
-
-// (2) Implement two functions that process the CSV-files from (1). The ratings
-// function filters out all ratings below 4 and ReTurns a list of
-// (userID, movieID) pairs. The movies function just ReTurns a list
-// of (movieID, title) pairs. Note the input to these functions, that is
-// the argument lines, will be the output of the function get_csv_url.
+// (2) Implement two functions that process the CSV files. The ratings
+// function filters out all ratings below 4 and returns a list of
+// (userID, movieID) pairs. The movies function just returns a list
+// of (movieId, title) pairs.
def process_ratings(lines: List[String]) : List[(String, String)] = {
- val filter = lines.filter(_.last.asDigit >=4)
- val output = (for(i <- 0 until filter.length) yield ((filter(i).split(",").toList)(0), (filter(i).split(",").toList)(1))).toList
- output
+ for (cols <- lines.map(_.split(",").toList);
+ if (cols(2).toInt >= 4)) yield (cols(0), cols(1))
}
def process_movies(lines: List[String]) : List[(String, String)] = {
- val output = (for(i <- 0 until lines.length) yield ((lines(i).split(",").toList)(0), (lines(i).split(",").toList)(1))).toList
- output
-}
-
-
-
-def process_ratings2(lines: List[String]) : List[(String, String)] = {
- for (cols <- lines.map(_.split(",").toList);
- if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))
-}
-
-def process_movies2(lines: List[String]) : List[(String, String)] = {
for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))
}
-// testcases
-//-----------
+// test cases
+
//val good_ratings = process_ratings(ratings)
//val movie_names = process_movies(movies)
@@ -78,116 +58,45 @@
//movie_names.length // 9742
-
-
-// (3) Implement a grouping function that calculates a Map
-// containing the userIDs and all the corresponding recommendations
-// (list of movieIDs). This should be implemented in a tail
-// recursive fashion, using a Map m as accumulator. This Map m
-// is set to Map() at the beginning of the calculation.
-
-val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
-val ratings = get_csv_url(ratings_url)
-val good_ratings = process_ratings(ratings)
-val v515 = good_ratings.filter(_._1 == "515")
-val v515_2 = v515.map(_._2)
+// (3) Implement a grouping function that calulates a map
+// containing the userIds and all the corresponding recommendations
+// (list of movieIds). This should be implemented in a tail
+// recursive fashion, using a map m as accumulator. This map
+// is set to Map() at the beginning of the claculation.
def groupById(ratings: List[(String, String)],
- m: Map[String, List[String]]) : Map[String, List[String]] = {
-val users = (for((k,v) <- ratings) yield k).distinct
-val movie_ids = (for(i <- 1 to users.length) yield
- (for ((k,v) <- ratings if(i.toString == k)) yield v).toList).toList
- val out_map = (users zip movie_ids).toMap
-out_map
-}
-
-def groupById2(ratings: List[(String, String)],
m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
case Nil => m
case (id, mov) :: rest => {
val old_ratings = m.getOrElse (id, Nil)
val new_ratings = m + (id -> (mov :: old_ratings))
- groupById2(rest, new_ratings)
+ groupById(rest, new_ratings)
}
}
-val ls0_urban =
- List(("1", "a"), ("1", "c"), ("1", "c"))
-
-groupById(ls0_urban, Map())
-groupById2(ls0_urban, Map())
-
-val ls00_urban =
- List(("3", "a"), ("3", "c"), ("3", "c"))
-
-groupById(ls00_urban, Map())
-groupById2(ls00_urban, Map())
-
-groupById(good_ratings, Map()).getOrElse("515", Nil)
-groupById2(good_ratings, Map()).getOrElse("515", Nil)
-
-val ls1_urban =
- List(("1", "a"), ("2", "a"),
- ("1", "c"), ("2", "a"), ("1", "c"))
-
-groupById(ls1_urban, Map())
-groupById2(ls1_urban, Map())
-
-val ls2_urban =
- List(("1", "a"), ("1", "b"), ("2", "x"),
- ("3", "a"), ("2", "y"), ("3", "c"))
-
-groupById(ls2_urban, Map())
-groupById2(ls2_urban, Map())
-
-val ls3_urban = (1 to 1000 by 10).map(_.toString).toList
-val ls4_urban = ls3_urban zip ls3_urban.tail
-val ls5_urban = ls4_urban ::: ls4_urban.reverse
-
-groupById(ls5_urban, Map()) == groupById2(ls5_urban, Map())
-
-groupById(ls5_urban, Map())
-groupById2(ls5_urban, Map())
-
-groupById(v515, Map())
-groupById2(v515, Map())
-
-groupById(v515.take(1), Map())
-groupById2(v515.take(2), Map())
-
-// testcases
-//-----------
+// test cases
//val ratings_map = groupById(good_ratings, Map())
//val movies_map = movie_names.toMap
-//ratings_map.get("414").get.map(movies_map.get(_)).length
-// => most prolific recommender with 1227 positive ratings
+//ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings
+//ratings_map.get("474").get.map(movies_map.get(_)) // second-most prolific recommender with 787 positive ratings
+//ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating
-//ratings_map.get("475").get.map(movies_map.get(_)).length
-// => second-most prolific recommender with 787 positive ratings
-
-//ratings_map.get("214").get.map(movies_map.get(_)).length
-// => least prolific recommender with only 1 positive rating
-// (4) Implement a function that takes a ratings map and a movie_name as argument.
-// The function calculates all suggestions containing
-// the movie in its recommendations. It ReTurns a list of all these
-// recommendations (each of them is a list and needs to have the movie deleted,
-// otherwise it might happen we recommend the same movie).
+//(4) Implement a function that takes a ratings map and a movie_name as argument.
+// The function calculates all suggestions containing
+// the movie mov in its recommendations. It returns a list of all these
+// recommendations (each of them is a list and needs to have mov deleted,
+// otherwise it might happen we recommend the same movie).
-
-def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = {
- (for((k,v) <- m if (v.contains(mov))) yield v.filter(_!=mov).toList).toList
-}
-
-def favourites2(m: Map[String, List[String]], mov: String) : List[List[String]] =
+def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] =
(for (id <- m.keys.toList;
if m(id).contains(mov)) yield m(id).filter(_ != mov))
-// testcases
-//-----------
+
+// test cases
// movie ID "912" -> Casablanca (1942)
// "858" -> Godfather
// "260" -> Star Wars: Episode IV - A New Hope (1977)
@@ -199,57 +108,36 @@
// 52 a good rating to movies 260, 318, 593.
-
// (5) Implement a suggestions function which takes a rating
-// map and a movie_name as arguments. It calculates all the recommended
-// movies sorted according to the most frequently suggested movie(s) first.
-
+// map and a movie_name as arguments. It calculates all the recommended
+// movies sorted according to the most frequently suggested movie(s) first.
def suggestions(recs: Map[String, List[String]],
- mov_name: String) : List[String] = {
- val flat = favourites(recs, mov_name).flatten.groupMapReduce(identity)(_ => 1)(_ + _)
- val sorted = flat.toList.sortWith(_._2 > _._2).map(_._1)
- sorted
-}
-
-
-def mapValues[S, T, R](m: Map[S, T], f: T => R) =
- m.map { case (x, y) => (x, f(y)) }
-
-def suggestions2(recs: Map[String, List[String]],
mov_name: String) : List[String] = {
val favs = favourites(recs, mov_name).flatten
- val favs_counted = mapValues(favs.groupBy(identity), (v:List[String]) => v.size).toList
+ val favs_counted = favs.groupBy(identity).view.mapValues(_.size).toList
val favs_sorted = favs_counted.sortBy(_._2).reverse
favs_sorted.map(_._1)
}
-// testcases
-//-----------
+// test cases
//suggestions(ratings_map, "912")
//suggestions(ratings_map, "912").length
// => 4110 suggestions with List(858, 260, 318, 593, ...)
// being the most frequently suggested movies
-
-
-// (6) Implement a recommendations function which generates at most
-// *two* of the most frequently suggested movies. It ReTurns the
-// actual movie names, not the movieIDs.
-
+// (6) Implement recommendations functions which generates at most
+// *two* of the most frequently suggested movies. It Returns the
+// actual movie names, not the movieIDs.
def recommendations(recs: Map[String, List[String]],
- movs: Map[String, String],
- mov_name: String) : List[String] = {
- val sugg = suggestions(recs, mov_name)
- val movies = (for (i <- 0 until 2 if (i < sugg.length)) yield movs(sugg(i))).toList
- movies
-}
-
+ movs: Map[String, String],
+ mov_name: String) : List[String] =
+ suggestions(recs, mov_name).take(2).map(movs.get(_).get)
// testcases
-//-----------
+
// recommendations(ratings_map, movies_map, "912")
// => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
@@ -270,33 +158,4 @@
// => Nil (there are three ratings for this movie in ratings.csv but they are not positive)
-
-// (7) Calculate the recommendations for all movies according to
-// what the recommendations function in (6) produces (this
-// can take a few seconds). Put all recommendations into a list
-// (of strings) and count how often the strings occur in
-// this list. This produces a list of string-int pairs,
-// where the first component is the movie name and the second
-// is the number of how many times the movie was recommended.
-// Sort all the pairs according to the number
-// of times they were recommended (most recommended movie name
-// first).
-
-def most_recommended(recs: Map[String, List[String]],
- movs: Map[String, String]) : List[(String, Int)] = {
- val movies = (((for((k,v) <- movs) yield recommendations(recs, movs, k)).toList).flatten).groupMapReduce(identity)(_ => 1)(_ + _)
- val sorted = movies.toList.sortWith(_._2 > _._2)
- sorted
}
-
-// testcase
-//
-//most_recommended(ratings_map, movies_map).take(3)
-// =>
-// List((Matrix,698),
-// (Star Wars: Episode IV - A New Hope (1977),402),
-// (Jerry Maguire (1996),382))
-
-
-
-}