main_testing2/danube.scala
changeset 403 ffce7b61b446
parent 384 6e1237691307
--- a/main_testing2/danube.scala	Mon Nov 08 01:16:13 2021 +0000
+++ b/main_testing2/danube.scala	Mon Nov 08 01:39:00 2021 +0000
@@ -1,8 +1,9 @@
-// Core Part about Movie Recommendations
+// Core Part about Movie Recommendations 
 // at Danube.co.uk
-//===========================================
+//========================================
 
-object CW7b {
+
+object M2 { // for purposes of generating a jar
 
 import io.Source
 import scala.util._
@@ -12,65 +13,44 @@
 //     as argument and requests the corresponding file. The two urls
 //     of interest are ratings_url and movies_url, which correspond 
 //     to CSV-files.
-//
-//     The function should ReTurn the CSV-file appropriately broken
+//     The function should return the CSV file appropriately broken
 //     up into lines, and the first line should be dropped (that is without
-//     the header of the CSV-file). The result is a list of strings (lines
+//     the header of the CSV file). The result is a list of strings (lines
 //     in the file).
 
 def get_csv_url(url: String) : List[String] = {
-  val site = Source.fromURL(url, "ISO-8859-1")
-  val site_string = site.mkString
-  val output = (site_string.split("\n")).toList
-  output.tail
+  val csv = Source.fromURL(url)("ISO-8859-1")
+  csv.mkString.split("\n").toList.drop(1)
 }
 
-  // get_csv_url("https://nms.kcl.ac.uk/christian.urban/ratings.csv")
-
-//val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
-//val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
+val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
+val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
 
-// testcases
-//-----------
-//:
+// test cases
+
+//val ratings = get_csv_url(ratings_url)
 //val movies = get_csv_url(movies_url)
-  // val ratings = get_csv_url(ratings_url)
 
 //ratings.length  // 87313
 //movies.length   // 9742
 
-
-// (2) Implement two functions that process the CSV-files from (1). The ratings
-//     function filters out all ratings below 4 and ReTurns a list of 
-//     (userID, movieID) pairs. The movies function just ReTurns a list 
-//     of (movieID, title) pairs. Note the input to these functions, that is
-//     the argument lines, will be the output of the function get_csv_url.
+// (2) Implement two functions that process the CSV files. The ratings
+//     function filters out all ratings below 4 and returns a list of 
+//     (userID, movieID) pairs. The movies function just returns a list 
+//     of (movieId, title) pairs.
 
 
 def process_ratings(lines: List[String]) : List[(String, String)] = {
-  val filter = lines.filter(_.last.asDigit >=4)
-  val output = (for(i <- 0 until filter.length) yield ((filter(i).split(",").toList)(0), (filter(i).split(",").toList)(1))).toList
-  output
+  for (cols <- lines.map(_.split(",").toList); 
+       if (cols(2).toInt >= 4)) yield (cols(0), cols(1))  
 }
 
 def process_movies(lines: List[String]) : List[(String, String)] = {
-  val output = (for(i <- 0 until lines.length) yield ((lines(i).split(",").toList)(0), (lines(i).split(",").toList)(1))).toList
-  output
-}
-
-
-
-def process_ratings2(lines: List[String]) : List[(String, String)] = {
-  for (cols <- lines.map(_.split(",").toList); 
-       if (cols(2).toFloat >= 4)) yield (cols(0), cols(1))  
-}
-
-def process_movies2(lines: List[String]) : List[(String, String)] = {
   for (cols <- lines.map(_.split(",").toList)) yield (cols(0), cols(1))  
 }
 
-// testcases
-//-----------
+// test cases
+
 //val good_ratings = process_ratings(ratings)
 //val movie_names = process_movies(movies)
 
@@ -78,116 +58,45 @@
 //movie_names.length    // 9742
 
 
-
-
-// (3) Implement a grouping function that calculates a Map
-//     containing the userIDs and all the corresponding recommendations 
-//     (list of movieIDs). This  should be implemented in a tail
-//     recursive fashion, using a Map m as accumulator. This Map m
-//     is set to Map() at the beginning of the calculation.
-
-val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
-val ratings = get_csv_url(ratings_url)
-val good_ratings = process_ratings(ratings)
-val v515 = good_ratings.filter(_._1 == "515")
-val v515_2 = v515.map(_._2)
+// (3) Implement a grouping function that calulates a map
+//     containing the userIds and all the corresponding recommendations 
+//     (list of movieIds). This  should be implemented in a tail
+//     recursive fashion, using a map m as accumulator. This map
+//     is set to Map() at the beginning of the claculation.
 
 def groupById(ratings: List[(String, String)], 
-              m: Map[String, List[String]]) : Map[String, List[String]] = {
-val users = (for((k,v) <- ratings) yield k).distinct
-val movie_ids = (for(i <- 1 to users.length) yield
-  (for ((k,v) <- ratings if(i.toString == k)) yield v).toList).toList
-  val out_map = (users zip movie_ids).toMap
-out_map
-}
-
-def groupById2(ratings: List[(String, String)], 
               m: Map[String, List[String]]) : Map[String, List[String]] = ratings match {
   case Nil => m
   case (id, mov) :: rest => {
     val old_ratings = m.getOrElse (id, Nil)
     val new_ratings = m + (id -> (mov :: old_ratings))
-    groupById2(rest, new_ratings)
+    groupById(rest, new_ratings)
   }
 }
 
-val ls0_urban = 
-  List(("1", "a"), ("1", "c"), ("1", "c"))
-
-groupById(ls0_urban, Map())
-groupById2(ls0_urban, Map())
-
-val ls00_urban = 
-  List(("3", "a"), ("3", "c"), ("3", "c"))
-
-groupById(ls00_urban, Map())
-groupById2(ls00_urban, Map())
-
-groupById(good_ratings, Map()).getOrElse("515", Nil)
-groupById2(good_ratings, Map()).getOrElse("515", Nil)
-
-val ls1_urban = 
-  List(("1", "a"), ("2", "a"), 
-       ("1", "c"), ("2", "a"), ("1", "c"))
-
-groupById(ls1_urban, Map())
-groupById2(ls1_urban, Map())
-
-val ls2_urban = 
-  List(("1", "a"), ("1", "b"), ("2", "x"), 
-       ("3", "a"), ("2", "y"), ("3", "c"))
-
-groupById(ls2_urban, Map())
-groupById2(ls2_urban, Map())
-
-val ls3_urban = (1 to 1000 by 10).map(_.toString).toList
-val ls4_urban = ls3_urban zip ls3_urban.tail
-val ls5_urban = ls4_urban ::: ls4_urban.reverse
-
-groupById(ls5_urban, Map()) == groupById2(ls5_urban, Map())
-
-groupById(ls5_urban, Map())
-groupById2(ls5_urban, Map())
-
-groupById(v515, Map())
-groupById2(v515, Map())
-
-groupById(v515.take(1), Map())
-groupById2(v515.take(2), Map())
-
-// testcases
-//-----------
+// test cases
 //val ratings_map = groupById(good_ratings, Map())
 //val movies_map = movie_names.toMap
 
-//ratings_map.get("414").get.map(movies_map.get(_)).length
-//    => most prolific recommender with 1227 positive ratings
+//ratings_map.get("414").get.map(movies_map.get(_)) // most prolific recommender with 1227 positive ratings
+//ratings_map.get("474").get.map(movies_map.get(_)) // second-most prolific recommender with 787 positive ratings
+//ratings_map.get("214").get.map(movies_map.get(_)) // least prolific recommender with only 1 positive rating
 
-//ratings_map.get("475").get.map(movies_map.get(_)).length
-//    => second-most prolific recommender with 787 positive ratings
-
-//ratings_map.get("214").get.map(movies_map.get(_)).length 
-//    => least prolific recommender with only 1 positive rating
 
 
-// (4) Implement a function that takes a ratings map and a movie_name as argument.
-//     The function calculates all suggestions containing
-//     the movie in its recommendations. It ReTurns a list of all these
-//     recommendations (each of them is a list and needs to have the movie deleted, 
-//     otherwise it might happen we recommend the same movie).
+//(4) Implement a function that takes a ratings map and a movie_name as argument.
+// The function calculates all suggestions containing
+// the movie mov in its recommendations. It returns a list of all these
+// recommendations (each of them is a list and needs to have mov deleted, 
+// otherwise it might happen we recommend the same movie).
 
-
-def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = {
- (for((k,v) <- m if (v.contains(mov))) yield v.filter(_!=mov).toList).toList
-}
-
-def favourites2(m: Map[String, List[String]], mov: String) : List[List[String]] = 
+def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = 
   (for (id <- m.keys.toList;
         if m(id).contains(mov)) yield m(id).filter(_ != mov))
 
 
-// testcases
-//-----------
+
+// test cases
 // movie ID "912" -> Casablanca (1942)
 //          "858" -> Godfather
 //          "260" -> Star Wars: Episode IV - A New Hope (1977)
@@ -199,57 +108,36 @@
 // 52 a good rating to movies 260, 318, 593.
 
 
-
 // (5) Implement a suggestions function which takes a rating
-//     map and a movie_name as arguments. It calculates all the recommended
-//     movies sorted according to the most frequently suggested movie(s) first.
-
+// map and a movie_name as arguments. It calculates all the recommended
+// movies sorted according to the most frequently suggested movie(s) first.
 def suggestions(recs: Map[String, List[String]], 
-                mov_name: String) : List[String] = {
-  val flat = favourites(recs, mov_name).flatten.groupMapReduce(identity)(_ => 1)(_ + _)
-  val sorted = flat.toList.sortWith(_._2 > _._2).map(_._1)
-  sorted
-}
-
-
-def mapValues[S, T, R](m: Map[S, T], f: T => R) =
-  m.map { case (x, y) => (x, f(y)) }
-
-def suggestions2(recs: Map[String, List[String]], 
                     mov_name: String) : List[String] = {
   val favs = favourites(recs, mov_name).flatten
-  val favs_counted = mapValues(favs.groupBy(identity), (v:List[String]) => v.size).toList
+  val favs_counted = favs.groupBy(identity).view.mapValues(_.size).toList
   val favs_sorted = favs_counted.sortBy(_._2).reverse
   favs_sorted.map(_._1)
 }
 
-// testcases
-//-----------
+// test cases
 
 //suggestions(ratings_map, "912")
 //suggestions(ratings_map, "912").length  
 // => 4110 suggestions with List(858, 260, 318, 593, ...)
 //    being the most frequently suggested movies
 
-
-
-// (6) Implement a recommendations function which generates at most
-//     *two* of the most frequently suggested movies. It ReTurns the 
-//     actual movie names, not the movieIDs.
-
+// (6) Implement recommendations functions which generates at most
+// *two* of the most frequently suggested movies. It Returns the 
+// actual movie names, not the movieIDs.
 
 def recommendations(recs: Map[String, List[String]],
-                    movs: Map[String, String],
-                    mov_name: String) : List[String] = {
-  val sugg = suggestions(recs, mov_name)
-  val movies = (for (i <- 0 until 2 if (i < sugg.length)) yield movs(sugg(i))).toList
-  movies
-}
-
+                   movs: Map[String, String],
+                   mov_name: String) : List[String] =
+  suggestions(recs, mov_name).take(2).map(movs.get(_).get)                 
 
 
 // testcases
-//-----------
+
 // recommendations(ratings_map, movies_map, "912")
 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
 
@@ -270,33 +158,4 @@
 //   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
 
 
-
-// (7) Calculate the recommendations for all movies according to
-// what the recommendations function in (6) produces (this
-// can take a few seconds). Put all recommendations into a list 
-// (of strings) and count how often the strings occur in
-// this list. This produces a list of string-int pairs,
-// where the first component is the movie name and the second
-// is the number of how many times the movie was recommended. 
-// Sort all the pairs according to the number
-// of times they were recommended (most recommended movie name 
-// first).
-
-def most_recommended(recs: Map[String, List[String]],
-                     movs: Map[String, String]) : List[(String, Int)] = {
-  val movies = (((for((k,v) <- movs) yield recommendations(recs, movs, k)).toList).flatten).groupMapReduce(identity)(_ => 1)(_ + _)
-  val sorted = movies.toList.sortWith(_._2 > _._2)
-  sorted
 }
-
-// testcase
-//
-//most_recommended(ratings_map, movies_map).take(3)
-// =>
-// List((Matrix,698), 
-//      (Star Wars: Episode IV - A New Hope (1977),402), 
-//      (Jerry Maguire (1996),382))
-
-
-
-}