--- a/Nominal/Ex/Classical.thy Tue Jun 28 00:48:57 2011 +0100
+++ b/Nominal/Ex/Classical.thy Tue Jun 28 12:36:34 2011 +0900
@@ -125,6 +125,64 @@
finally show ?thesis by simp
qed
+lemma Abs_res_fcb2:
+ fixes as bs :: "atom set"
+ and x y :: "'b :: fs"
+ and c::"'c::fs"
+ assumes eq: "[as]res. x = [bs]res. y"
+ and fin: "finite as" "finite bs"
+ and fcb1: "as \<sharp>* f as x c"
+ and fresh1: "as \<sharp>* c"
+ and fresh2: "bs \<sharp>* c"
+ and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
+ and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
+ shows "f as x c = f bs y c"
+proof -
+ have "supp (as, x, c) supports (f as x c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin1: "finite (supp (f as x c))"
+ using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
+ have "supp (bs, y, c) supports (f bs y c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin2: "finite (supp (f bs y c))"
+ using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
+ obtain q::"perm" where
+ fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and
+ fr2: "supp q \<sharp>* ([as]res. x)" and
+ inc: "supp q \<subseteq> as \<union> (q \<bullet> as)"
+ using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]res. x"]
+ fin1 fin2 fin
+ by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
+ have "[q \<bullet> as]res. (q \<bullet> x) = q \<bullet> ([as]res. x)" by simp
+ also have "\<dots> = [as]res. x"
+ by (simp only: fr2 perm_supp_eq)
+ finally have "[q \<bullet> as]res. (q \<bullet> x) = [bs]res. y" using eq by simp
+ then obtain r::perm where
+ qq1: "q \<bullet> x = r \<bullet> y" and
+ qq2: "(q \<bullet> as \<inter> supp (q \<bullet> x)) = r \<bullet> (bs \<inter> supp y)" and
+ qq3: "supp r \<subseteq> bs \<inter> supp y \<union> q \<bullet> as \<inter> supp (q \<bullet> x)"
+ apply(drule_tac sym)
+ apply(subst(asm) Abs_eq_res_set)
+ apply(simp only: Abs_eq_iff2 alphas)
+ apply(erule exE)
+ apply(erule conjE)+
+ apply(drule_tac x="p" in meta_spec)
+ apply(simp add: set_eqvt)
+ done
+ have "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c" sorry (* FCB? *)
+ then have "q \<bullet> ((as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c)"
+ by (simp add: permute_bool_def)
+ then have "(q \<bullet> (as \<inter> supp x)) \<sharp>* f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ sorry (* perm? *)
+ then have "r \<bullet> (bs \<inter> supp y) \<sharp>* f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq2 apply (simp add: inter_eqvt)
+ (* rest similar reversing it other way around... *)
+ show ?thesis sorry
+qed
+
+
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"
@@ -229,6 +287,10 @@
shows "p \<bullet> l = l \<longleftrightarrow> supp p \<inter> set l = {}"
by (induct l) (auto simp add: supp_Nil supp_perm)
+lemma permute_length_eq:
+ shows "p \<bullet> xs = ys \<Longrightarrow> length xs = length ys"
+ by (auto simp add: length_eqvt[symmetric] permute_pure)
+
lemma Abs_lst_binder_length:
shows "[xs]lst. T = [ys]lst. S \<Longrightarrow> length xs = length ys"
by (auto simp add: Abs_eq_iff alphas length_eqvt[symmetric] permute_pure)
@@ -239,6 +301,13 @@
(metis fresh_star_zero inf_absorb1 permute_atom_list_id supp_perm_eq
supp_zero_perm_zero)
+lemma in_permute_list:
+ shows "py \<bullet> p \<bullet> xs = px \<bullet> xs \<Longrightarrow> x \<in> set xs \<Longrightarrow> py \<bullet> p \<bullet> x = px \<bullet> x"
+ by (induct xs) auto
+
+
+
+
nominal_primrec
crename :: "trm \<Rightarrow> coname \<Rightarrow> coname \<Rightarrow> trm" ("_[_\<turnstile>c>_]" [100,100,100] 100)
where