Nominal/Ex/Classical.thy
changeset 2914 db0786a521fd
parent 2913 bc86f5c3bc65
child 2926 37c0d7953cba
equal deleted inserted replaced
2913:bc86f5c3bc65 2914:db0786a521fd
   123     apply(rule perm_supp_eq)
   123     apply(rule perm_supp_eq)
   124     using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
   124     using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
   125   finally show ?thesis by simp
   125   finally show ?thesis by simp
   126 qed
   126 qed
   127 
   127 
       
   128 lemma Abs_res_fcb2:
       
   129   fixes as bs :: "atom set"
       
   130     and x y :: "'b :: fs"
       
   131     and c::"'c::fs"
       
   132   assumes eq: "[as]res. x = [bs]res. y"
       
   133   and fin: "finite as" "finite bs"
       
   134   and fcb1: "as \<sharp>* f as x c"
       
   135   and fresh1: "as \<sharp>* c"
       
   136   and fresh2: "bs \<sharp>* c"
       
   137   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
       
   138   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
       
   139   shows "f as x c = f bs y c"
       
   140 proof -
       
   141   have "supp (as, x, c) supports (f as x c)"
       
   142     unfolding  supports_def fresh_def[symmetric]
       
   143     by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
       
   144   then have fin1: "finite (supp (f as x c))"
       
   145     using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
       
   146   have "supp (bs, y, c) supports (f bs y c)"
       
   147     unfolding  supports_def fresh_def[symmetric]
       
   148     by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
       
   149   then have fin2: "finite (supp (f bs y c))"
       
   150     using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
       
   151   obtain q::"perm" where 
       
   152     fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and 
       
   153     fr2: "supp q \<sharp>* ([as]res. x)" and 
       
   154     inc: "supp q \<subseteq> as \<union> (q \<bullet> as)"
       
   155     using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]res. x"]  
       
   156       fin1 fin2 fin
       
   157     by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
       
   158   have "[q \<bullet> as]res. (q \<bullet> x) = q \<bullet> ([as]res. x)" by simp
       
   159   also have "\<dots> = [as]res. x"
       
   160     by (simp only: fr2 perm_supp_eq)
       
   161   finally have "[q \<bullet> as]res. (q \<bullet> x) = [bs]res. y" using eq by simp
       
   162   then obtain r::perm where 
       
   163     qq1: "q \<bullet> x = r \<bullet> y" and 
       
   164     qq2: "(q \<bullet> as \<inter> supp (q \<bullet> x)) = r \<bullet> (bs \<inter> supp y)" and 
       
   165     qq3: "supp r \<subseteq> bs \<inter> supp y \<union> q \<bullet> as \<inter> supp (q \<bullet> x)"
       
   166     apply(drule_tac sym)
       
   167     apply(subst(asm) Abs_eq_res_set)
       
   168     apply(simp only: Abs_eq_iff2 alphas)
       
   169     apply(erule exE)
       
   170     apply(erule conjE)+
       
   171     apply(drule_tac x="p" in meta_spec)
       
   172     apply(simp add: set_eqvt)
       
   173     done
       
   174   have "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c" sorry (* FCB? *)
       
   175   then have "q \<bullet> ((as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c)"
       
   176     by (simp add: permute_bool_def)
       
   177   then have "(q \<bullet> (as \<inter> supp x)) \<sharp>* f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c"
       
   178     apply(simp add: fresh_star_eqvt set_eqvt)
       
   179     sorry (* perm? *)
       
   180   then have "r \<bullet> (bs \<inter> supp y) \<sharp>* f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq2 apply (simp add: inter_eqvt)
       
   181   (* rest similar reversing it other way around... *)
       
   182   show ?thesis sorry
       
   183 qed
       
   184 
       
   185 
   128 
   186 
   129 lemma Abs_lst_fcb2:
   187 lemma Abs_lst_fcb2:
   130   fixes as bs :: "atom list"
   188   fixes as bs :: "atom list"
   131     and x y :: "'b :: fs"
   189     and x y :: "'b :: fs"
   132     and c::"'c::fs"
   190     and c::"'c::fs"
   227 
   285 
   228 lemma permute_atom_list_id:
   286 lemma permute_atom_list_id:
   229   shows "p \<bullet> l = l \<longleftrightarrow> supp p \<inter> set l = {}"
   287   shows "p \<bullet> l = l \<longleftrightarrow> supp p \<inter> set l = {}"
   230   by (induct l) (auto simp add: supp_Nil supp_perm)
   288   by (induct l) (auto simp add: supp_Nil supp_perm)
   231 
   289 
       
   290 lemma permute_length_eq:
       
   291   shows "p \<bullet> xs = ys \<Longrightarrow> length xs = length ys"
       
   292   by (auto simp add: length_eqvt[symmetric] permute_pure)
       
   293 
   232 lemma Abs_lst_binder_length:
   294 lemma Abs_lst_binder_length:
   233   shows "[xs]lst. T = [ys]lst. S \<Longrightarrow> length xs = length ys"
   295   shows "[xs]lst. T = [ys]lst. S \<Longrightarrow> length xs = length ys"
   234   by (auto simp add: Abs_eq_iff alphas length_eqvt[symmetric] permute_pure)
   296   by (auto simp add: Abs_eq_iff alphas length_eqvt[symmetric] permute_pure)
   235 
   297 
   236 lemma Abs_lst_binder_eq:
   298 lemma Abs_lst_binder_eq:
   237   shows "Abs_lst l T = Abs_lst l S \<longleftrightarrow> T = S"
   299   shows "Abs_lst l T = Abs_lst l S \<longleftrightarrow> T = S"
   238   by (rule, simp_all add: Abs_eq_iff2 alphas)
   300   by (rule, simp_all add: Abs_eq_iff2 alphas)
   239      (metis fresh_star_zero inf_absorb1 permute_atom_list_id supp_perm_eq
   301      (metis fresh_star_zero inf_absorb1 permute_atom_list_id supp_perm_eq
   240        supp_zero_perm_zero)
   302        supp_zero_perm_zero)
       
   303 
       
   304 lemma in_permute_list:
       
   305   shows "py \<bullet> p \<bullet> xs = px \<bullet> xs \<Longrightarrow>  x \<in> set xs \<Longrightarrow> py \<bullet> p \<bullet> x = px \<bullet> x"
       
   306   by (induct xs) auto
       
   307 
       
   308 
       
   309 
   241 
   310 
   242 nominal_primrec 
   311 nominal_primrec 
   243   crename :: "trm \<Rightarrow> coname \<Rightarrow> coname \<Rightarrow> trm"  ("_[_\<turnstile>c>_]" [100,100,100] 100) 
   312   crename :: "trm \<Rightarrow> coname \<Rightarrow> coname \<Rightarrow> trm"  ("_[_\<turnstile>c>_]" [100,100,100] 100) 
   244 where
   313 where
   245   "(Ax x a)[d\<turnstile>c>e] = (if a=d then Ax x e else Ax x a)" 
   314   "(Ax x a)[d\<turnstile>c>e] = (if a=d then Ax x e else Ax x a)"