supp-proofs work except for CoreHaskell and Modules (induct is probably not finding the correct instance)
--- a/Nominal-General/Nominal2_Base.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal-General/Nominal2_Base.thy Fri Sep 10 09:17:40 2010 +0800
@@ -848,6 +848,18 @@
qed
qed
+section {* Support w.r.t. relations *}
+
+text {*
+ This definition is used for unquotient types, where
+ alpha-equivalence does not coincide with equality.
+*}
+
+definition
+ "supp_rel R x = {a. infinite {b. \<not>(R ((a \<rightleftharpoons> b) \<bullet> x) x)}}"
+
+
+
section {* Finitely-supported types *}
class fs = pt +
--- a/Nominal-General/nominal_library.ML Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal-General/nominal_library.ML Fri Sep 10 09:17:40 2010 +0800
@@ -33,6 +33,11 @@
val mk_supp_ty: typ -> term -> term
val mk_supp: term -> term
+ val supp_rel_ty: typ -> typ
+ val supp_rel_const: typ -> term
+ val mk_supp_rel_ty: typ -> term -> term -> term
+ val mk_supp_rel: term -> term -> term
+
val supports_const: typ -> term
val mk_supports_ty: typ -> term -> term -> term
val mk_supports: term -> term -> term
@@ -124,8 +129,13 @@
fun supp_ty ty = ty --> @{typ "atom set"};
fun supp_const ty = Const (@{const_name supp}, supp_ty ty)
-fun mk_supp_ty ty t = supp_const ty $ t;
-fun mk_supp t = mk_supp_ty (fastype_of t) t;
+fun mk_supp_ty ty t = supp_const ty $ t
+fun mk_supp t = mk_supp_ty (fastype_of t) t
+
+fun supp_rel_ty ty = ([ty, ty] ---> @{typ bool}) --> ty --> @{typ "atom set"};
+fun supp_rel_const ty = Const (@{const_name supp_rel}, supp_rel_ty ty)
+fun mk_supp_rel_ty ty r t = supp_rel_const ty $ r $ t
+fun mk_supp_rel r t = mk_supp_rel_ty (fastype_of t) r t
fun supports_const ty = Const (@{const_name supports}, [@{typ "atom set"}, ty] ---> @{typ bool});
fun mk_supports_ty ty t1 t2 = supports_const ty $ t1 $ t2;
--- a/Nominal/Abs.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/Abs.thy Fri Sep 10 09:17:40 2010 +0800
@@ -6,11 +6,6 @@
"Quotient_Product"
begin
-section {* Support w.r.t. relations *}
-
-definition
- "supp_rel R x = {a. infinite {b. \<not>(R ((a \<rightleftharpoons> b) \<bullet> x) x)}}"
-
section {* Abstractions *}
--- a/Nominal/Ex/Ex1.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/Ex/Ex1.thy Fri Sep 10 09:17:40 2010 +0800
@@ -18,8 +18,19 @@
"bv (Bar0 x) = {}"
| "bv (Bar1 v x b) = {atom v}"
-
-thm foo_bar.fv_defs[no_vars] foo_bar.bn_defs[no_vars]
+thm foo_bar.distinct
+thm foo_bar.induct
+thm foo_bar.inducts
+thm foo_bar.exhaust
+thm foo_bar.fv_defs
+thm foo_bar.bn_defs
+thm foo_bar.perm_simps
+thm foo_bar.eq_iff
+thm foo_bar.fv_bn_eqvt
+thm foo_bar.size_eqvt
+thm foo_bar.supports
+thm foo_bar.fsupp
+thm foo_bar.supp
lemma
"fv_foo (Foo1 (Bar1 v x (Bar0 x)) (Foo0 v)) = {}"
--- a/Nominal/Ex/ExPS8.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/Ex/ExPS8.thy Fri Sep 10 09:17:40 2010 +0800
@@ -6,11 +6,11 @@
atom_decl name
-declare [[STEPS = 100]]
+declare [[STEPS = 31]]
-nominal_datatype exp =
+nominal_datatype fun_pats: exp =
EVar name
-| EUnit
+| EUnit
| EPair exp exp
| ELetRec l::lrbs e::exp bind (set) "b_lrbs l" in l e
and fnclause =
@@ -44,6 +44,57 @@
| "b_lrb (Clause fcs) = (b_fnclauses fcs)"
| "b_fnclause (K x pat exp) = {atom x}"
+thm fun_pats.distinct
+thm fun_pats.induct
+thm fun_pats.inducts
+thm fun_pats.exhaust
+thm fun_pats.fv_defs
+thm fun_pats.bn_defs
+thm fun_pats.perm_simps
+thm fun_pats.eq_iff
+thm fun_pats.fv_bn_eqvt
+thm fun_pats.size_eqvt
+thm fun_pats.supports
+thm fun_pats.fsupp
+thm fun_pats.supp
+
+
+ML {*
+fun add_ss thms =
+ HOL_basic_ss addsimps thms
+
+fun symmetric thms =
+ map (fn thm => thm RS @{thm sym}) thms
+*}
+
+lemma
+ "(fv_exp x = supp x) \<and>
+ (fv_fnclause xa = supp xa \<and> fv_b_lrb xa = supp_rel alpha_b_lrb xa) \<and>
+ (fv_fnclauses xb = supp xb \<and> fv_b_fnclauses xb = supp_rel alpha_b_fnclauses xb) \<and>
+ (fv_lrb xc = supp xc \<and> fv_b_fnclause xc = supp_rel alpha_b_fnclause xc) \<and>
+ (fv_lrbs xd = supp xd \<and> fv_b_lrbs xd = supp_rel alpha_b_lrbs xd) \<and>
+ (fv_pat xe = supp xe \<and> fv_b_pat xe = supp_rel alpha_b_pat xe)"
+apply(rule fun_pats.induct)
+apply(tactic {* ALLGOALS (TRY o rtac @{thm conjI})*})
+thm fun_pats.inducts
+oops
+
+
+lemma
+ "fv_exp x = supp x" and
+ "fv_fnclause y = supp y" and
+ "fv_fnclauses xb = supp xb" and
+ "fv_lrb xc = supp xc" and
+ "fv_lrbs xd = supp xd" and
+ "fv_pat xe = supp xe" and
+ "fv_b_lrbs xd = supp_rel alpha_b_lrbs xd" and
+ "fv_b_pat xe = supp_rel alpha_b_pat xe" and
+ "fv_b_fnclauses xb = supp_rel alpha_b_fnclauses xb" and
+ "fv_b_fnclause xc = supp_rel alpha_b_fnclause xc" and
+ "fv_b_lrb y = supp_rel alpha_b_lrb y"
+apply(induct "x::exp" and "y::fnclause" and xb and xc and xd and xe rule: fun_pats.inducts)
+thm fun_pats.inducts
+oops
end
--- a/Nominal/Ex/LetFun.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/Ex/LetFun.thy Fri Sep 10 09:17:40 2010 +0800
@@ -4,8 +4,11 @@
atom_decl name
-(* x is bound in both e1 and e2
- names in p are bound only in e1 *)
+(* x is bound in both e1 and e2;
+ bp-names in p are bound only in e1
+*)
+
+declare [[STEPS = 100]]
nominal_datatype exp =
Var name
@@ -22,4 +25,19 @@
| "bp (PUnit) = []"
| "bp (PPair p1 p2) = bp p1 @ bp p2"
+thm exp_pat.distinct
+thm exp_pat.induct
+thm exp_pat.inducts
+thm exp_pat.exhaust
+thm exp_pat.fv_defs
+thm exp_pat.bn_defs
+thm exp_pat.perm_simps
+thm exp_pat.eq_iff
+thm exp_pat.fv_bn_eqvt
+thm exp_pat.size_eqvt
+thm exp_pat.supports
+thm exp_pat.fsupp
+thm exp_pat.supp
+
+
end
\ No newline at end of file
--- a/Nominal/Ex/SingleLet.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/Ex/SingleLet.thy Fri Sep 10 09:17:40 2010 +0800
@@ -6,14 +6,14 @@
declare [[STEPS = 100]]
-nominal_datatype single_let: trm =
+nominal_datatype single_let: trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let a::"assg" t::"trm" bind "bn a" in t
| Foo x::"name" y::"name" t::"trm" t1::"trm" t2::"trm" bind (set) x in y t t1 t2
| Bar x::"name" y::"name" t::"trm" bind y x in t x y
-| Baz x::"name" t1::"trm" t2::"trm" bind x in t1, bind x in t2
+| Baz x::"name" t1::"trm" t2::"trm" bind (set) x in t1, bind (set) x in t2
and assg =
As "name" x::"name" t::"trm" bind x in t
binder
@@ -34,6 +34,7 @@
thm single_let.size_eqvt
thm single_let.supports
thm single_let.fsupp
+thm single_let.supp
lemma test2:
assumes "fv_trm t = supp t"
@@ -44,26 +45,25 @@
apply(rule assms)
done
-
lemma supp_fv:
- "fv_trm t = supp t" "fv_assg as = supp as" "fv_bn as = supp_rel alpha_bn as"
-apply(induct t and as rule: single_let.inducts)
+ "fv_trm x = supp x"
+ "fv_assg xa = supp xa"
+ "fv_bn xa = supp_rel alpha_bn xa"
+apply(induct rule: single_let.inducts)
-- " 0A "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])?
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
-- " 0B"
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])?
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
apply(simp only: alphas prod_alpha_def prod_fv.simps prod_rel.simps permute_prod_def prod.recs prod.cases prod.inject)
--" 1 "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(tactic {* EqSubst.eqsubst_tac @{context} [1] @{thms supp_abs(3)[symmetric]} 1 *})
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -72,7 +72,7 @@
apply(simp only:)
-- " 2 "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(subst supp_abs(3)[symmetric])
apply(simp (no_asm) only: supp_def supp_rel_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -82,7 +82,7 @@
apply(simp only:)
-- " 3 "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(1)[symmetric])
+apply(subst supp_abs(1)[symmetric])
apply(simp (no_asm) only: supp_def supp_rel_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -91,7 +91,7 @@
apply(simp only: supp_Pair Un_assoc conj_assoc)
-- " Bar "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(subst supp_abs(3)[symmetric])
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -100,7 +100,8 @@
apply(simp only: supp_Pair Un_assoc conj_assoc)
-- " Baz "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(subst supp_abs(1)[symmetric])
+apply(subst supp_abs(1)[symmetric])
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -110,7 +111,7 @@
apply(simp only: supp_Pair Un_assoc conj_assoc)
-- "last"
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(tactic {* EqSubst.eqsubst_tac @{context} [1] @{thms supp_abs(3)[symmetric]} 1 *})
apply(simp (no_asm) only: supp_def supp_rel_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
--- a/Nominal/Nominal2.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/Nominal2.thy Fri Sep 10 09:17:40 2010 +0800
@@ -249,7 +249,6 @@
end
*}
-
ML {*
(* for testing porposes - to exit the procedure early *)
exception TEST of Proof.context
@@ -259,6 +258,7 @@
fun get_STEPS ctxt = Config.get ctxt STEPS
*}
+
setup STEPS_setup
ML {*
@@ -333,9 +333,8 @@
mk_alpha_distincts lthy4 alpha_cases raw_distinct_thms alpha_trms raw_tys
(* definition of alpha_eq_iff lemmas *)
- (* they have a funny shape for the simplifier ---- CHECK WHETHER NEEDED*)
val _ = warning "Eq-iff theorems";
- val (alpha_eq_iff_simps, alpha_eq_iff) =
+ val alpha_eq_iff =
if get_STEPS lthy > 5
then mk_alpha_eq_iff lthy4 alpha_intros raw_distinct_thms raw_inject_thms alpha_cases
else raise TEST lthy4
@@ -542,6 +541,7 @@
val qinducts = Project_Rule.projections lthyA qinduct
(* supports lemmas *)
+ val _ = warning "Proving Supports Lemmas and fs-Instances"
val qsupports_thms =
if get_STEPS lthy > 28
then prove_supports lthyB qperm_simps qtrms
@@ -559,6 +559,15 @@
then fs_instance qtys qty_full_names tvs qfsupp_thms lthyB
else raise TEST lthyB
+ (* fv - supp equality *)
+ val _ = warning "Proving Equality between fv and supp"
+ val qfv_supp_thms =
+ if get_STEPS lthy > 31
+ then prove_fv_supp qtys qfvs qfv_bns qalpha_bns qbn_defs qfv_defs qeq_iffs
+ qperm_simps qfv_qbn_eqvts qinducts (flat raw_bclauses) lthyC
+ else []
+
+
(* noting the theorems *)
(* generating the prefix for the theorem names *)
@@ -575,15 +584,17 @@
||>> Local_Theory.note ((thms_suffix "fv_bn_eqvt", []), qfv_qbn_eqvts)
||>> Local_Theory.note ((thms_suffix "size_eqvt", []), qsize_eqvt)
||>> Local_Theory.note ((thms_suffix "induct", []), [qinduct])
- ||>> Local_Theory.note ((thms_suffix "inducts", []), qinducts)
+ ||>> Local_Theory.note ((thms_suffix "inducts", []), qinducts)
||>> Local_Theory.note ((thms_suffix "exhaust", []), qexhausts)
||>> Local_Theory.note ((thms_suffix "supports", []), qsupports_thms)
||>> Local_Theory.note ((thms_suffix "fsupp", []), qfsupp_thms)
+ ||>> Local_Theory.note ((thms_suffix "supp", []), qfv_supp_thms)
in
(0, lthy9')
end handle TEST ctxt => (0, ctxt)
*}
+
section {* Preparing and parsing of the specification *}
ML {*
--- a/Nominal/nominal_dt_alpha.ML Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/nominal_dt_alpha.ML Fri Sep 10 09:17:40 2010 +0800
@@ -14,7 +14,7 @@
term list -> typ list -> thm list
val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list ->
- thm list -> (thm list * thm list)
+ thm list -> thm list
val alpha_prove: term list -> (term * ((term * term) -> term)) list -> thm ->
(Proof.context -> int -> tactic) -> Proof.context -> thm list
@@ -315,11 +315,12 @@
(** produces the alpha_eq_iff simplification rules **)
-(* in case a theorem is of the form (C.. = C..), it will be
- rewritten to ((C.. = C..) = True) *)
+(* in case a theorem is of the form (Rel Const Const), it will be
+ rewritten to ((Rel Const = Const) = True)
+*)
fun mk_simp_rule thm =
case (prop_of thm) of
- @{term "Trueprop"} $ (Const (@{const_name "op ="}, _) $ _ $ _) => @{thm eqTrueI} OF [thm]
+ @{term "Trueprop"} $ (_ $ Const _ $ Const _) => thm RS @{thm eqTrueI}
| _ => thm
fun alpha_eq_iff_tac dist_inj intros elims =
@@ -347,7 +348,7 @@
val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
in
Variable.export ctxt' ctxt thms
- |> `(map mk_simp_rule)
+ |> map mk_simp_rule
end
--- a/Nominal/nominal_dt_quot.ML Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/nominal_dt_quot.ML Fri Sep 10 09:17:40 2010 +0800
@@ -20,11 +20,13 @@
(string * term * mixfix) list -> local_theory -> local_theory
val lift_thms: typ list -> thm list -> thm list -> Proof.context -> thm list * Proof.context
+
end
structure Nominal_Dt_Quot: NOMINAL_DT_QUOT =
struct
+
(* defines the quotient types *)
fun define_qtypes qtys_descr alpha_tys alpha_trms alpha_equivp_thms lthy =
let
@@ -86,7 +88,7 @@
end
-(* lifts a theorem and cleans all "_raw" instances
+(* lifts a theorem and cleans all "_raw" parts
from variable names *)
local
@@ -126,6 +128,5 @@
#> unraw_vars_thm
#> Drule.zero_var_indexes) thms, ctxt)
-
end (* structure *)
--- a/Nominal/nominal_dt_supp.ML Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/nominal_dt_supp.ML Fri Sep 10 09:17:40 2010 +0800
@@ -12,44 +12,48 @@
val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->
local_theory -> local_theory
+
+ val prove_fv_supp: typ list -> term list -> term list -> term list -> thm list -> thm list ->
+ thm list -> thm list -> thm list -> thm list -> bclause list list -> Proof.context -> thm list
end
structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
struct
+fun lookup xs x = the (AList.lookup (op=) xs x)
(* supports lemmas for constructors *)
fun mk_supports_goal ctxt qtrm =
-let
- val vs = fresh_args ctxt qtrm
- val rhs = list_comb (qtrm, vs)
- val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
- |> mk_supp
-in
- mk_supports lhs rhs
- |> HOLogic.mk_Trueprop
-end
+ let
+ val vs = fresh_args ctxt qtrm
+ val rhs = list_comb (qtrm, vs)
+ val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
+ |> mk_supp
+ in
+ mk_supports lhs rhs
+ |> HOLogic.mk_Trueprop
+ end
fun supports_tac ctxt perm_simps =
-let
- val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
- val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
-in
- EVERY' [ simp_tac ss1,
- Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
- simp_tac ss2 ]
-end
+ let
+ val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
+ val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
+ in
+ EVERY' [ simp_tac ss1,
+ Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
+ simp_tac ss2 ]
+ end
fun prove_supports_single ctxt perm_simps qtrm =
-let
- val goal = mk_supports_goal ctxt qtrm
- val ctxt' = Variable.auto_fixes goal ctxt
-in
- Goal.prove ctxt' [] [] goal
- (K (HEADGOAL (supports_tac ctxt perm_simps)))
- |> singleton (ProofContext.export ctxt' ctxt)
-end
+ let
+ val goal = mk_supports_goal ctxt qtrm
+ val ctxt' = Variable.auto_fixes goal ctxt
+ in
+ Goal.prove ctxt' [] [] goal
+ (K (HEADGOAL (supports_tac ctxt perm_simps)))
+ |> singleton (ProofContext.export ctxt' ctxt)
+ end
fun prove_supports ctxt perm_simps qtrms =
map (prove_supports_single ctxt perm_simps) qtrms
@@ -58,44 +62,182 @@
(* finite supp lemmas for qtypes *)
fun prove_fsupp ctxt qtys qinduct qsupports_thms =
-let
- val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
- val goals = vs ~~ qtys
- |> map Free
- |> map (mk_finite o mk_supp)
- |> foldr1 (HOLogic.mk_conj)
- |> HOLogic.mk_Trueprop
+ let
+ val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
+ val goals = vs ~~ qtys
+ |> map Free
+ |> map (mk_finite o mk_supp)
+ |> foldr1 (HOLogic.mk_conj)
+ |> HOLogic.mk_Trueprop
- val tac =
- EVERY' [ rtac @{thm supports_finite},
- resolve_tac qsupports_thms,
- asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
-in
- Goal.prove ctxt' [] [] goals
- (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
- |> singleton (ProofContext.export ctxt' ctxt)
- |> Datatype_Aux.split_conj_thm
- |> map zero_var_indexes
-end
+ val tac =
+ EVERY' [ rtac @{thm supports_finite},
+ resolve_tac qsupports_thms,
+ asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
+ in
+ Goal.prove ctxt' [] [] goals
+ (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
+ |> singleton (ProofContext.export ctxt' ctxt)
+ |> Datatype_Aux.split_conj_thm
+ |> map zero_var_indexes
+ end
(* finite supp instances *)
fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
-let
- val lthy1 =
- lthy
- |> Local_Theory.exit_global
- |> Class.instantiation (qfull_ty_names, tvs, @{sort fs})
+ let
+ val lthy1 =
+ lthy
+ |> Local_Theory.exit_global
+ |> Class.instantiation (qfull_ty_names, tvs, @{sort fs})
- fun tac _ =
- Class.intro_classes_tac [] THEN
- (ALLGOALS (resolve_tac qfsupp_thms))
-in
- lthy1
- |> Class.prove_instantiation_exit tac
- |> Named_Target.theory_init
-end
+ fun tac _ =
+ Class.intro_classes_tac [] THEN
+ (ALLGOALS (resolve_tac qfsupp_thms))
+ in
+ lthy1
+ |> Class.prove_instantiation_exit tac
+ |> Named_Target.theory_init
+ end
+
+
+(* proves that fv and fv_bn equals supp *)
+
+fun mk_fvs_goals ty_arg_map fv =
+ let
+ val arg = fastype_of fv
+ |> domain_type
+ |> lookup ty_arg_map
+ in
+ (fv $ arg, mk_supp arg)
+ |> HOLogic.mk_eq
+ |> HOLogic.mk_Trueprop
+ end
+
+fun mk_fv_bns_goals ty_arg_map fv_bn alpha_bn =
+ let
+ val arg = fastype_of fv_bn
+ |> domain_type
+ |> lookup ty_arg_map
+ in
+ (fv_bn $ arg, mk_supp_rel alpha_bn arg)
+ |> HOLogic.mk_eq
+ |> HOLogic.mk_Trueprop
+ end
+
+fun add_ss thms =
+ HOL_basic_ss addsimps thms
+
+fun symmetric thms =
+ map (fn thm => thm RS @{thm sym}) thms
+
+val supp_abs_set = @{thms supp_abs(1)[symmetric]}
+val supp_abs_res = @{thms supp_abs(2)[symmetric]}
+val supp_abs_lst = @{thms supp_abs(3)[symmetric]}
+
+fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_set
+ | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_res
+ | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_lst
+
+fun mk_supp_abs_tac ctxt [] = []
+ | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
+ | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
+
+fun mk_bn_supp_abs_tac thm =
+ (prop_of thm)
+ |> HOLogic.dest_Trueprop
+ |> snd o HOLogic.dest_eq
+ |> fastype_of
+ |> (fn ty => case ty of
+ @{typ "atom set"} => simp_tac (add_ss supp_abs_set)
+ | @{typ "atom list"} => simp_tac (add_ss supp_abs_lst)
+ | _ => raise TERM ("mk_bn_supp_abs_tac", [prop_of thm]))
+
+
+val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
+val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
+val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel.simps permute_prod_def
+ prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] Finite_Set.finite.emptyI}
+
+fun ind_tac ctxt qinducts =
+ let
+ fun CASES_TAC_TO_TAC cases_tac st = Seq.map snd (cases_tac st)
+ in
+ DETERM o (CASES_TAC_TO_TAC o (Induct.induct_tac ctxt false [] [] [] (SOME qinducts) []))
+ end
+
+fun p_tac msg i =
+ if false then print_tac ("ptest: " ^ msg) else all_tac
+
+fun q_tac msg i =
+ if true then print_tac ("qtest: " ^ msg) else all_tac
+
+fun prove_fv_supp qtys fvs fv_bns alpha_bns bn_simps fv_simps eq_iffs perm_simps
+ fv_bn_eqvts qinducts bclausess ctxt =
+ let
+ val (arg_names, ctxt') =
+ Variable.variant_fixes (replicate (length qtys) "x") ctxt
+ val args = map2 (curry Free) arg_names qtys
+ val ty_arg_map = qtys ~~ args
+ val ind_args = map SOME arg_names
+
+ val goals1 = map (mk_fvs_goals ty_arg_map) fvs
+ val goals2 = map2 (mk_fv_bns_goals ty_arg_map) fv_bns alpha_bns
+
+ fun fv_tac ctxt bclauses =
+ SOLVED' (EVERY' [
+ (fn i => print_tac ("FV Goal: " ^ string_of_int i ^ " with " ^ (@{make_string} bclauses))),
+ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
+ p_tac "A",
+ TRY o EVERY' (mk_supp_abs_tac ctxt bclauses),
+ p_tac "B",
+ TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
+ p_tac "C",
+ TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [],
+ p_tac "D",
+ TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
+ p_tac "E",
+ TRY o asm_full_simp_tac (add_ss thms3),
+ p_tac "F",
+ TRY o simp_tac (add_ss thms2),
+ p_tac "G",
+ TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
+ p_tac "H",
+ (fn i => print_tac ("finished with FV Goal: " ^ string_of_int i))
+ ])
+
+ fun bn_tac ctxt bn_simp =
+ SOLVED' (EVERY' [
+ (fn i => print_tac ("BN Goal: " ^ string_of_int i)),
+ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
+ q_tac "A",
+ TRY o mk_bn_supp_abs_tac bn_simp,
+ q_tac "B",
+ TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
+ q_tac "C",
+ TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [],
+ q_tac "D",
+ TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
+ q_tac "E",
+ TRY o asm_full_simp_tac (add_ss thms3),
+ q_tac "F",
+ TRY o simp_tac (add_ss thms2),
+ q_tac "G",
+ TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
+ (fn i => print_tac ("finished with BN Goal: " ^ string_of_int i))
+ ])
+
+ fun fv_tacs ctxt = map (fv_tac ctxt) bclausess
+ fun bn_tacs ctxt = map (bn_tac ctxt) bn_simps
+
+ in
+ Goal.prove_multi ctxt' [] [] (goals1 @ goals2)
+ (fn {context as ctxt, ...} => HEADGOAL
+ (ind_tac ctxt qinducts THEN' RANGE (fv_tacs ctxt @ bn_tacs ctxt)))
+ |> ProofContext.export ctxt' ctxt
+ end
+
end (* structure *)