Nominal/nominal_dt_supp.ML
changeset 2475 486d4647bb37
parent 2451 d2e929f51fa9
child 2481 3a5ebb2fcdbf
--- a/Nominal/nominal_dt_supp.ML	Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/nominal_dt_supp.ML	Fri Sep 10 09:17:40 2010 +0800
@@ -12,44 +12,48 @@
 
   val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->  
     local_theory -> local_theory
+
+  val prove_fv_supp: typ list -> term list -> term list -> term list -> thm list -> thm list -> 
+    thm list -> thm list -> thm list -> thm list -> bclause list list -> Proof.context -> thm list 
 end
 
 structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
 struct
 
+fun lookup xs x = the (AList.lookup (op=) xs x)
 
 (* supports lemmas for constructors *)
 
 fun mk_supports_goal ctxt qtrm =
-let  
-  val vs = fresh_args ctxt qtrm
-  val rhs = list_comb (qtrm, vs)
-  val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
-    |> mk_supp
-in
-  mk_supports lhs rhs
-  |> HOLogic.mk_Trueprop
-end
+  let  
+    val vs = fresh_args ctxt qtrm
+    val rhs = list_comb (qtrm, vs)
+    val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
+      |> mk_supp
+  in
+    mk_supports lhs rhs
+    |> HOLogic.mk_Trueprop
+  end
 
 fun supports_tac ctxt perm_simps =
-let
-  val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
-  val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
-in
-  EVERY' [ simp_tac ss1,
-           Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
-           simp_tac ss2 ]
-end
+  let
+    val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
+    val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
+  in
+    EVERY' [ simp_tac ss1,
+             Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
+             simp_tac ss2 ]
+  end
 
 fun prove_supports_single ctxt perm_simps qtrm =
-let
-  val goal = mk_supports_goal ctxt qtrm 
-  val ctxt' = Variable.auto_fixes goal ctxt
-in
-  Goal.prove ctxt' [] [] goal
-   (K (HEADGOAL (supports_tac ctxt perm_simps)))
-  |> singleton (ProofContext.export ctxt' ctxt)
-end
+  let
+    val goal = mk_supports_goal ctxt qtrm 
+    val ctxt' = Variable.auto_fixes goal ctxt
+  in
+    Goal.prove ctxt' [] [] goal
+      (K (HEADGOAL (supports_tac ctxt perm_simps)))
+    |> singleton (ProofContext.export ctxt' ctxt)
+  end
 
 fun prove_supports ctxt perm_simps qtrms =
   map (prove_supports_single ctxt perm_simps) qtrms
@@ -58,44 +62,182 @@
 (* finite supp lemmas for qtypes *)
 
 fun prove_fsupp ctxt qtys qinduct qsupports_thms =
-let
-  val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
-  val goals = vs ~~ qtys
-    |> map Free
-    |> map (mk_finite o mk_supp)
-    |> foldr1 (HOLogic.mk_conj)
-    |> HOLogic.mk_Trueprop
+  let
+    val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
+    val goals = vs ~~ qtys
+      |> map Free
+      |> map (mk_finite o mk_supp)
+      |> foldr1 (HOLogic.mk_conj)
+      |> HOLogic.mk_Trueprop
 
-  val tac = 
-    EVERY' [ rtac @{thm supports_finite},
-             resolve_tac qsupports_thms,
-             asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
-in
-  Goal.prove ctxt' [] [] goals
-    (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
-  |> singleton (ProofContext.export ctxt' ctxt)
-  |> Datatype_Aux.split_conj_thm
-  |> map zero_var_indexes
-end
+    val tac = 
+      EVERY' [ rtac @{thm supports_finite},
+               resolve_tac qsupports_thms,
+               asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
+  in
+    Goal.prove ctxt' [] [] goals
+      (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
+    |> singleton (ProofContext.export ctxt' ctxt)
+    |> Datatype_Aux.split_conj_thm
+    |> map zero_var_indexes
+  end
 
 
 (* finite supp instances *)
 
 fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
-let
-  val lthy1 = 
-    lthy
-    |> Local_Theory.exit_global
-    |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) 
+  let
+    val lthy1 = 
+      lthy
+      |> Local_Theory.exit_global
+      |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) 
   
-  fun tac _ =
-    Class.intro_classes_tac [] THEN
-      (ALLGOALS (resolve_tac qfsupp_thms))
-in
-  lthy1
-  |> Class.prove_instantiation_exit tac 
-  |> Named_Target.theory_init
-end
+    fun tac _ =
+      Class.intro_classes_tac [] THEN
+        (ALLGOALS (resolve_tac qfsupp_thms))
+  in
+    lthy1
+    |> Class.prove_instantiation_exit tac 
+    |> Named_Target.theory_init
+  end
+
+
+(* proves that fv and fv_bn equals supp *)
+
+fun mk_fvs_goals ty_arg_map fv =
+  let
+    val arg = fastype_of fv
+      |> domain_type
+      |> lookup ty_arg_map
+  in
+    (fv $ arg, mk_supp arg)
+      |> HOLogic.mk_eq
+      |> HOLogic.mk_Trueprop 
+  end
+
+fun mk_fv_bns_goals ty_arg_map fv_bn alpha_bn =
+  let
+    val arg = fastype_of fv_bn
+      |> domain_type
+      |> lookup ty_arg_map
+  in
+    (fv_bn $ arg, mk_supp_rel alpha_bn arg)
+      |> HOLogic.mk_eq
+      |> HOLogic.mk_Trueprop 
+  end
+
+fun add_ss thms =
+  HOL_basic_ss addsimps thms
+
+fun symmetric thms = 
+  map (fn thm => thm RS @{thm sym}) thms
+
+val supp_abs_set = @{thms supp_abs(1)[symmetric]}
+val supp_abs_res = @{thms supp_abs(2)[symmetric]}
+val supp_abs_lst = @{thms supp_abs(3)[symmetric]}
+
+fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_set 
+  | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_res
+  | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_lst
+
+fun mk_supp_abs_tac ctxt [] = []
+  | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
+  | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
+
+fun mk_bn_supp_abs_tac thm =
+  (prop_of thm)
+  |> HOLogic.dest_Trueprop
+  |> snd o HOLogic.dest_eq
+  |> fastype_of
+  |> (fn ty => case ty of
+        @{typ "atom set"}  => simp_tac (add_ss supp_abs_set)
+      | @{typ "atom list"} => simp_tac (add_ss supp_abs_lst)
+      | _ => raise TERM ("mk_bn_supp_abs_tac", [prop_of thm]))
+
+
+val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
+val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
+val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel.simps permute_prod_def 
+  prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] Finite_Set.finite.emptyI}
+
+fun ind_tac ctxt qinducts = 
+  let
+    fun CASES_TAC_TO_TAC cases_tac st = Seq.map snd (cases_tac st)
+  in
+    DETERM o (CASES_TAC_TO_TAC o (Induct.induct_tac ctxt false [] [] [] (SOME qinducts) []))
+  end
+
+fun p_tac msg i = 
+  if false then print_tac ("ptest: " ^ msg) else all_tac
+
+fun q_tac msg i = 
+  if true then print_tac ("qtest: " ^ msg) else all_tac
+
+fun prove_fv_supp qtys fvs fv_bns alpha_bns bn_simps fv_simps eq_iffs perm_simps 
+  fv_bn_eqvts qinducts bclausess ctxt =
+  let
+    val (arg_names, ctxt') = 
+      Variable.variant_fixes (replicate (length qtys) "x") ctxt 
+    val args = map2 (curry Free) arg_names qtys 
+    val ty_arg_map = qtys ~~ args
+    val ind_args = map SOME arg_names
+
+    val goals1 = map (mk_fvs_goals ty_arg_map) fvs
+    val goals2 = map2 (mk_fv_bns_goals ty_arg_map) fv_bns alpha_bns
+
+    fun fv_tac ctxt bclauses =
+      SOLVED' (EVERY' [
+        (fn i => print_tac ("FV Goal: " ^ string_of_int i ^ "  with  " ^ (@{make_string} bclauses))),
+        TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)), 
+        p_tac "A",
+        TRY o EVERY' (mk_supp_abs_tac ctxt bclauses),
+        p_tac "B",
+        TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
+        p_tac "C",
+        TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], 
+        p_tac "D",
+        TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
+        p_tac "E",
+        TRY o asm_full_simp_tac (add_ss thms3),
+        p_tac "F",
+        TRY o simp_tac (add_ss thms2),
+        p_tac "G",
+        TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
+        p_tac "H",
+        (fn i => print_tac ("finished with FV Goal: " ^ string_of_int i))
+        ])
+    
+    fun bn_tac ctxt bn_simp =
+      SOLVED' (EVERY' [
+        (fn i => print_tac ("BN Goal: " ^ string_of_int i)),
+        TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
+        q_tac "A",
+        TRY o mk_bn_supp_abs_tac bn_simp,
+        q_tac "B",
+        TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
+        q_tac "C",
+        TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], 
+        q_tac "D",
+        TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
+        q_tac "E",
+        TRY o asm_full_simp_tac (add_ss thms3),
+        q_tac "F",
+        TRY o simp_tac (add_ss thms2),
+        q_tac "G",
+        TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
+        (fn i => print_tac ("finished with BN Goal: " ^ string_of_int i))
+        ])
+
+    fun fv_tacs ctxt = map (fv_tac ctxt) bclausess
+    fun bn_tacs ctxt = map (bn_tac ctxt) bn_simps
+    
+  in
+    Goal.prove_multi ctxt' [] [] (goals1 @ goals2)
+     (fn {context as ctxt, ...} => HEADGOAL 
+       (ind_tac ctxt qinducts THEN' RANGE  (fv_tacs ctxt @ bn_tacs ctxt)))
+    |> ProofContext.export ctxt' ctxt
+  end
+
 
 
 end (* structure *)